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ABSTRACT

The heavy-tailed Multivariate Normal Inverse Gaussian (MNIG)
distribution is a recent variance-mean mixture of a multivariate
Gaussian with a univariate inverse Gaussian distribution. Due to
the complexity of the likelihood function, parameter estimation
by direct maximization is exceedingly difficult. To overcome this
problem, we propose a fast and accurate multivariate Expectation-
Maximization (EM) algorithm for maximum likelihood estimation
of the scalar, vector, and matrix parameters of the MNIG distribu-
tion. Important fundamental and attractive properties of the MNIG
as a modeling tool for multivariate heavy-tailed processes are dis-
cussed. The modeling strength of the MNIG, and the feasibility of
the proposed EM parameter estimation algorithm, are demonstrated
by fitting the MNIG to real world wideband synthetic aperture sonar
data.

1. INTRODUCTION

In most applications of statistical signal processing, Gaussian ran-
dom processes are assumed since other distributional assumptions
often lead to untractable mathematical difficulties. However, in
many practical instances the measured probability density function
of the random process exhibits much heavier tails than the Gaus-
sian distribution. A number of models have been proposed for such
heavy tailed random processes. In the last two decades data with
heavy tails have been collected in several fields.

The multivariate normal inverse Gaussian (MNIG) is a recent
variance-mean mixture of a multivariate Gaussian distribution with
an inverse Gaussian mixing distribution. Recently, there has been
an increasing interest in such models for financial and signal pro-
cessing applications, mainly because the resulting distributions are
highly suitable to model a large class of non-Gaussian semi heavy-
tailed processes which also allows for skewness [4, 9]. In particular,
we propose that the MNIG-model may be very useful for modeling
multivariate impulsive noise.

Estimation of MNIG parameters is not treated to any great ex-
tent in the existing literature. The conventional way of estimating
the MNIG parameters has been the maximum likelihood estimation
method, but unfortunately, this method is complicated and computa-
tionally intensive since slowly converging numerical optimizations
routines have to be applied [7]. Also, due to the complexity of the
likelihood, direct maximization is difficult. In this paper we will
present a multivariate EM-algorithm for estimation of the scalar,
vector, and matrix parameters of the MNIG distribution. This EM-
algorithm overcomes the numerical complexities, and it is readily
implemented.

The paper is organized as follows. In section 2 we discuss the
MNIG in detail, and the attractiveness of the MNIG-distribution as
a practical tool for multivariate noise modeling is demonstrated. In
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section 3 we present a multivariate Expectation-Maximization (EM)
algorithm for the estimation of the scalar, vector, and matrix param-
eters of the MNIG. In section 4 we analyze a real world wideband
synthetic aperture sonar data set, and we fit the data to the MNIG
model by applying our parameter estimation algorithm.

2. MULTIVARIATE NORMAL INVERSE GAUSSIAN
DISTRIBUTION

Mixtures of normal distributions play an increasingly important role
in the theory and practice of contemporary statistical modeling.
Scale mixtures of the normal distribution, which assume that the
variance is not fixed for all the members of the population, have
been widely used to model heteroscedacity (non constant variance).
Extending such models, normal variance-mean mixtures assume
that the variance is not fixed but it is also related to the mean [3].
A rich family of distributions with useful properties can arise using
this scheme.

An MNIG distributed random variable is a variance-mean mix-
ture of a d-dimensional Gaussian random variable� with a univari-
ate inverse Gaussian distributed mixing variable Z. Hence, a MNIG
distributed random variable with parameters α � 0, β � �d , δ � 0,
µ � �d , and � � �d�d can be constructed from

�� µ �Z�β �
�

Z�1�2
�� (1)
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�
δ2�α 2�βT

�β
�
, IG�χ �ψ� � χ �ψ � 0, denotes the

inverse Gaussian distribution with probability density function [8]
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and � � �d �����. Observe that the random variable ��Z is
Gaussian with mean µ � Z�β and variance Z�, i.e. ��Z �
�d �µ �Z�β �Z��. Thus, we have a stochastic mean and variance
when Z is stochastic, and hence the term variance-mean mixture.

From Eq. (1) we can calculate the probability density function
of �, and we say that a d-dimensional stochastic column vector
� is MNIG distributed if the probability density function can be
written as [5, 9, 16]
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Figure 1: (a) Univariate NIG-density for different values of α . Here,
β � µ � 0, and δ � 1, (b) NIG-density for different values of β .
Here, α � δ � 5, and µ � 0.

Here, Kd�x� is the modified Bessel function of the second kind with
index d. As seen from definition in Eq. (4) the shape of the MNIG
density is specified by two scalar parameters α �δ � 0, two vector
parameters β , and µ and one matrix parameter �. This parameter-
ization is very flexible indeed, making it possible to model a large
variety of unimodal shapes and with various decay rates of the tails.

The parameters of the MNIG-distribution have natural interpre-
tations relating to the overall shape of the density as follows. The
parameter α controls the “steepness” of the density, in the sense that
the steepness or pointiness of the density increases monotonically
with increasing α . This has implications also for the tail behavior
by the fact that large values of α implies light tails, while smaller
values of α implies heavier tails. The parameter β is a vector skew-
ness parameter, the parameter δ is a scale parameter, and the pa-
rameter µ is a vector translation parameter. The structure matrix
� is assumed to be a positive semidefinite symmetric matrix with
unity determinant, det�� 1. This matrix is decisive in controlling
the degree of correlations between the components of �. Note that
the inequality α2 � βT

�β has to be satisfied for the MNIG to exist
[5].

By choosing � appropriately, and by choosing the parameters
α , β , µ , and δ, one may use the multivariate NIG to model statisti-
cally dependent (semi) heavy-tailed data.

In Fig. 1 we show the univariate NIG (d � 1) as a special case.
The left panel shows the dependency on α for fixed β � µ � 0,
and δ � 1. Note that the tails become heavier as the value of the α
parameter decreases. The right panel shows the dependency on the
β parameter for fixed α � δ � 1, and µ � 0. Note that the skewness
increases as β increases. Note that the vertical scale is logarithmic
to emphasize the tails.

MNIG variables obey several desirable properties that make
them suitable for practical multivariate modeling. We will in the
following sections demonstrate the attractiveness of the MNIG dis-
tribution in terms of some of its properties.

2.1 Moments of the MNIG

The cumulant generating function of the MNIG is given by [9, 16]

ΨX �ω� � δ

�

α 2�βT�β (5)

�
�

α 2� �β � jω�T
��β � jω�

�
� jωT µ�

Note the simple form of the cumulant generating function despite
the relatively complex form of the probability density function.
Also, from Eq. (5) we note that the MNIG distribution is infinitely
divisible.

The mean vector variable can now easily be evaluated to give

[9]
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and the covariance matrix of� is given by [9]

�� δ
�

α 2�βT
�β

��1�2
�
��

�
α 2�βT

�β
��1

�ββT
�

�
� (7)

Notice that choosing � � � is not sufficient to produce a diagonal
covariance matrix. This is because the vector parameter β enters
the first and second order statistics in a non-trivial manner. The
MNIG is symmetric if and only if � � � and β � �. In this case
we denote the MNIG distribution a symmetric multivariate normal
inverse Gaussian (SMNIG) distribution. When β � � and � �� �
the MNIG is semi-symmetric.

2.2 Summation property and transformation property

A very attractive and useful property of the MNIG that cannot be
overrated, is that it exhibits a certain closedness under summation
(but not for weighted summation). This has far reaching conse-
quences when considering sums of MNIG variables.

Let�1� � � � ��M be M independent MNIG-variables with com-
mon shape parameters α , β , and �, but having individual location
parameters µ1� � � � �µM and individual scale parameters δ1� � � � �δM.
Then, the sum variable � � �1 � � � ���M is also MNIG dis-
tributed with parameters �α �β �µtot �δtot�, where µtot � ∑M

i�1 µi and
δtot � ∑M

i�1 δi.
Now, let� ����� be an arbitrary linear transformation of

�, where �� MNIG[α �β �δ�µ��],� is a real valued d	d coef-
ficient matrix, and � is a d	1 dimensional real vector. Then, it can
be shown that the transformed variable� is also MNIG distributed
with parameters �α̃ � β̃ � δ̃� µ̃� �̃� [4], where

α̃ � α �det���1�d (8)

β̃ � �
�T β (9)

δ̃ � δ �det��1�d (10)
µ̃ � �µ �� (11)

�̃ � ���
T �det���2�d � (12)

Here �det�� denote the magnitude of the determinant of �. Also,
for the univariate NIG distribution we have that the parameters ᾱ �
δα and β̄ � δβ are invariant under location-scale changes of the
NIG distributed random variable X [5].

2.3 Limiting distributions

The multivariate Gaussian distribution is in fact a limiting distribu-
tion for the MNIG, � ��d

�
µ �σ2

�β �σ2
�
�

in the limit δ 
 ∞
and α 
 ∞ but such that δ�α � σ2.

Another important special case for the MNIG is the multivari-
ate Cauchy distribution (i.e., the multivariate t-distribution with one
degree of freedom [6]). This occurs when �� � and α 
 0.

When β � � the MNIG belongs to the class of elliptical distri-
butions [6]. If in addition � � � it belongs to the class of spherical
distributions [6].

2.4 Tail behavior

Asymptotically, the Bessel function behaves as [1]

Kd�x��
	

π
2x

exp��x�� �x� 
 ∞� �d� (13)

Hence, the tail of the MNIG decays as

f
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2
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for α � 0, where ���
�
�

�

T
�
�1
�
�1�2

is the weighted �-norm
of �.

The multivariate Cauchy limit is obtained for α 
 0. In this
case the Bessel function asymptotically behaves as [1]

Kd�x�� �x��d � �x� 
 0� (15)

for which we find that the tail of the MNIG behaves as

f
�
���� �����d�1�

�
� ��� 
 ∞� (16)

It is interesting to note that in the non-Cauchy limit, the tails exhibit
a combined algebraic and exponential decay, and that the exponen-
tial component is controlled by the values of α and β .

3. THE MULTIVARIATE
EXPECTATION-MAXIMIZATION ALGORITHM

In principle, one could find the maximum-likelihood estimates of
the MNIG parameters. In practice, however, the direct maximiza-
tion of the likelihood function proves to be difficult. The EM algo-
rithm is a powerful algorithm for ML estimation for data containing
“missing values” [12, 13]. This formulation is particularly suitable
for distributions arising as mixtures since the mixing operation can
be considered responsible for producing missing data [11]. The EM
algorithm consists of two major steps: an expectation step, followed
by a maximization step. The expectation is with respect to the un-
known underlying variables, using the current estimate of the pa-
rameters and conditioned upon the observations. During the max-
imization step one maximizes the complete data likelihood using
the expectations of the previous step. In [11] an EM-algorithm for
estimation of the parameters of the univariate NIG distribution was
developed. We will in this section provide an EM-type algorithm
for the maximum likelihood estimation of the MNIG parameters.
The algorithm is very easy to implement, it is numerically stable,
and the convergence rate is reasonably fast. However, if the like-
lihood contains several modes it may be trapped in local extrema.
This can be solved by choosing proper initial values, or by repeating
the procedure several times with different initial values.

We assume that the true data �i � ��i�Zi� consist of an ob-
servable part �i and an unobservable part Zi. In our case, the un-
observed quantities Zi are simply the realizations of the unobserved
IG distributed mixing parameter for each data point [11].

As a helpful tool for the derivation of the EM-algorithm we
exploit the fact that the conditional distribution Z��, where Z is
GIG�λ �δ�γ� distributed, and � is the multivariate generalized hy-
perbolic distributed with parameters �λ �α �β �δ�µ���, is also GIG
distributed,

Z��� GIG�λ �d�2�q����α �� (17)

Note that the conditional distribution is independent of β . In our
case it is sufficient to focus on the IG distribution, which is a special
case of the GIG distribution for λ ��1�2 [4, 5].

For densities belonging to the exponential family, the E-step
calculates the conditional expectations of the sufficient statistics of
the unobserved data. Hence, at the E-step one needs to calculate
the conditional expectation of the sufficient statistics for the inverse
Gaussian distribution. These are ∑i Zi and ∑i Z�1

i [11]. Thus, in the
E-step we need the first order moment and the inverse first moment
of Z��. It can be shown that these are given by

ςi � E
�

Zi��i � �i

�
�

q��i�

α

K
�d�1��2�αq��i��

K
�d�1��2�αq��i��
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�d�1��2�αq��i��

� (19)

for i � 1� � � � �N. Next, compute ξ � ∑N
i�1 ςi�N and ϑ �

N

∑N

i�1�ϕi�ξ�1�
��1

.

The M-step maximizes the complete likelihood by updating the
parameters using the expectations of the sufficient statistics found
at the E-step. As mentioned earlier, we have that�i�Zi is Gaussian
distributed. Hence, the log-likelihood function is given by

L�µ�β �����Z� ∝ �N
2

logdet�

� 1
2

N

∑
i�1

1
Zi
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�
�

From this we get the maximum likelihood equations
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where 	 � N�1 ∑i


�i�µ

�
�i�µ

�T
�Zi, and � �

ββT N�1 ∑i 1�Zi. Then, by solving for the parameters using
Eqs. (20) – (22), and replacing the quantities Zi and Z�1

i with their
respective estimators, we get the following set of estimators

�δ �
�

ϑ (23)

�β � ���1
�

∑i�iϕi� �̄∑i ϕi
n�ξ ∑i ϕi

�
(24)

�µ � �̄�ξ ���β (25)

�α �

	��δ�ξ
�2

� �βT ���β � (26)

where �̄� ∑i�i�n. The �-matrix can then be estimated as follows

���
	�
� ���1�

det


	�
� ���1

��1�d
� (27)

where


�
1
2



����

��4�AR

�1�2
�

�1
�
� (28)

and�AR ���1
�	�, where�AR is a diagonal matrix of eigen-

values, and � is a matrix whose columns are the corresponding
eigenvectors so that �	� ���AR. The algorithm is iterated
between these two steps until a reasonable convergence criterion
has been reached. Observe that det��� 1, as required. Also, we see
that in the symmetric case (β � �), we have that the matrix 
� �.
Thus, in this particular case the � estimator reduces to a weighed
empirical correlation matrix estimator where the weights are the
ϕi’s. The algorithm yields very accurate estimates, even for small
data sets, and it converges fast to a stable solution. The convergence
of the univariate version of the EM algorithm is studied thoroughly
in [11].

4. WIDEBAND SYNTHETIC APERTURE SONAR DATA

In this section we study the statistics of randomly selected pixels in
a wideband synthetic aperture sonar image of the seafloor [10]. The
sonar operates with 64 kHz bandwidth around 150 kHz center fre-
quency, and the length of the synthetic aperture is 15 m. This gives
a theoretical resolution of 1.2 cm x 1.5 cm in the processed image.
The data for the statistical analysis are taken from a selected area of
the processed image. The area contains no visible features on the
seafloor, i.e., only background acoustical noise and reverberation is
assumed to be present.
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We fitted a bivariate NIG to the complex in-phase/quadrature
pixel pairs constituting the complex image. The MNIG parameters
were found to be

�α � 1885 �δ � 0�0066�β �

� �3�1982
23�747

� �µ �

�
1�871 �10�3

�6�081 �10�3

�
���

�
0�9888 �0�0025
�0�0025 1�0113

�
�

The left and right panel of Fig. 2 shows level plots of the MNIG
(d � 2) model fit and the bivariate Stable model fit, respectively, for
the wideband synthetic aperture sonar data. The model fits were
compared to a non-parametric bivariate kernel density estimate [12]
where the Gaussian kernel was used, and the smoothing parame-
ters were hI � 0�029 and hQ � 0�030. When fitting the complex
valued synthetic aperture sonar data to the bivariate Stable model,
we assumed independence between the in-phase and the quadrature
components. The program STABLE described in [14] was used to
estimate the parameters of the time series and to calculate the Stable
densities fI�x� and fQ�y� for the in-phase and quadrature compo-
nents, respectively. The bivariate Stable density was calculated by
means of f �x�y� � fI�x� fQ�y�. We see that both the MNIG fit and
the Stable fit appears to model the radar data with a high degree of
accuracy, both around the mode and in the tails.

5. CONCLUSION

In this paper we reviewed the recent multivariate normal in-
verse Gaussian (MNIG) distribution. We demonstrated that the
parametrization of the MNIG-distribution allows for a very flexi-
ble formulation of multivariate leptokurtic data. By adjusting the
parameters of the MNIG distribution, we argued that one may cap-
ture the behavior of a large number of non-Gaussian multivariate
distributions with tails ranging from the multivariate Gaussian to
the multivariate Cauchy distribution.

Among the many advantages of the MNIG-distribution, we re-
call that (i) the density is given in closed form, (ii) MNIG variables
are closed under summation, and (iii) the parametrization of the
model allows for a large range of probability density shapes with an
arbitrary degree of multivariate skewness.

We introduced a fast and efficient EM-algorithm for maximum
likelihood estimation of the MNIG parameters. The proposed EM-
algorithm has several advantages over direct maximization of the
likelihood function. E.g., the EM-algorithm is readily implemented,
it is numerically stable, and it is very accurate.

We fitted synthetic aperture sonar data to the MNIG distribu-
tion, and we found that the MNIG captured the inherent impulsive-
ness of these data with great accuracy. We believe that the MNIG
distribution will prove to be useful for the modeling of impulsive
signals, noise, and interference in multivariate sonar, radar, and
communication systems.
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