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ABSTRACT

Perceptually optimal processing of speech and audio signals de-
mands distortion measures that are based on sophisticated auditory
models. High-rate theory can simplify these models by means of
a sensitivity matrix. We present a method to derive the sensitivity
matrix for distortion measures based on spectro-temporal auditory
models under the assumption of small errors. This method is ap-
plied to an example auditory model and the region of validity of the
approximation as well as a way to analyze the characteristics of the
model with subspace methods are discussed.

1. INTRODUCTION

In recent years, the development and usage of perceptual models
within the various fields of speech and audio processing has become
increasingly important. Not only speech/audio coding, but also the
fields of speech enhancement, noise reduction, speech recognition,
audio restauration profit if properties of human hearing are taken
into account.

In signal processing we usually try to approach the problem of
close-to perceptually optimal speech and audio processing by the
development of simplified and sometimes ad hoc solutions, most
of them only approximating the behavior of simultaneous mask-
ing. While highly sophisticated models have been developed to
mimic the signal processing of the human auditory system (e.g.,
[1, 2, 3, 4]), they are very complex. Thus, only a few of these
models have been put into the context of a distortion measure as
needed in coding or speech/audio quality assessment (e.g., [4, 5]),
while other models even lack the proof of predicting human audi-
tory masking behavior properly. So far, objective tools have been
missing to evaluate the reliability of a distortion value defined on
the ouput of an auditory model. Especially in coding we have the
problem that we have to use analysis-by-synthesis techniques to find
the perceptually optimal code. Thus, a strong need exists for simple
and yet accurate approximations of perceptual distortion measures
that facilitate practical coding schemes.

Several authors have promoted the idea that the mathematical
framework to solve these problems can be found in high-rate theory
[6, 7, 8, 9, 10]. Under the assumption of small errors, it is often pos-
sible to describe systems analytically, and the results obtained often
seem to hold even for low and thus practical rates. In this paper, we
follow the work in [7] to derive a high-rate solution to the problems
above. We show that for very low distortions a perceptual distor-
tion measure based on an auditory model can be approximated by
means of a single matrix multiplication. We can therefore analyze
the signal dependent model behavior with standard tools from linear
algebra.

Section 2 provides a short overview over the theory used to ob-
tain the sensitivity matrix, a new method to obtain a masking thresh-
old from the sensitivity matrix and how to analyze the perceptual
distortion measure by means of eigenvalue decomposition. In sec-
tion 3 we show how to apply this theory to an example auditory
model. We evaluate the validity of the high-rate approximations
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in section 4 and show to which extent it is possible to linearize a
non-linear perceptual distortion measure.

2. THEORY

In this section we provide a brief introduction to the theory needed
to derive a sensitivity matrix for a non-difference distortion mea-
sure. Let y = [y0, . . . ,yn, . . . ,yN−1]H be an N-dimensional vector of
source samples, ŷ = Q(y) a vector-quantized version of this vector
and let D be the expected value of some distortion measure d(y, ŷ),

D = E[d(y, ŷ)], (1)

under the conditions d(y, ŷ) is continuous and has continuous dif-
ferentiables and d(y, ŷ) ≥ 0 with equality iff ŷ = y. Then a Taylor
series expansion of d(y, ŷ) around ŷ = y, leaving out terms van-
ishing for D → 0 [7], results in

d(y, ŷ) ≈ 1
2
(y− ŷ)HDy(ŷ)(y− ŷ), (2)

where Dy(ŷ) is an N by N dimensional matrix, the so-called sensi-
tivity matrix, with the i, jth element defined by

[
Dy(ŷ)

]
i, j =

∂ 2d(y, ŷ)
∂ ŷi∂ ŷ j

∣∣∣∣
ŷ=y

. (3)

It can be shown that a high-rate vector quantizer minimizing the
right-hand side of (2) will have the same centroid density, Voronoi
region shapes and performance as the quantizer minimizing the
original distortion measure.

Suppose we want to quantize other dimension-N representa-
tions z of the vectors y, where z = z(y) is a continuous one-to-one
vector function, such that the inverse transform y = y(z) exists.
The i, jth element of the sensitivity matrix in the domain of z is
then given by (compare (3))

[Dz(z)]i, j =
∂ 2d(y(z),y(ẑ))

∂ ẑi∂ ẑ j

∣∣∣∣
ẑ=z

(4)

and straightforward application of the chain rule yields

Dz(z) = JH
z (z)Dy(y(z))Jz(z), (5)

where Jz(z) is the N by N Jacobian matrix of the transform y(z)
with the i, jth element defined by

[Jz(z)]i, j =
∂yi(z)

∂ ẑ j

∣∣∣∣
ẑ=z

. (6)

Minimizing

d̂(y(z),y(ẑ)) =
1
2
(z− ẑ)HDz(z)(z− ẑ) (7)
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yields the same performance in high-rate as minimizing (2). In the
same manner we obtain the sensitivity matrix for the vector z in the
frequency domain Z = Fz with the Fourier transform F in matrix
notation,

DZ(Z) = FDz(z)FH . (8)

Let us denote an error vector in perceptual domain as ra. Our
high-rate distortion measure assumes locally quadratic distortions
in the perceptual domain, that is D = rH

a ra. All perceptual error vec-
tors resulting in the same distortion are located on a sphere around
the original value. Using this assumption and (8), we can derive the
shape of a masking curve in frequency domain from the sensitivity
matrix, keeping the perceptual distortion at a constant level

1 = rH
a ra (9)

= rH
Z DZ(Z)rZ , (10)

where rZ is an error vector in frequency domain.
Except for a scaling factor, the masking curve at frequency i is

the gain gi that results in

gi|uH
i DZ(Z)ui| = 1, (11)

with the unit vector ui. Solving (11) we get

gi =
1

| [DZ(Z)]i,i |
. (12)

This clearly shows the weakness of a two-tone masking curve: it
assumes a diagonal weighting matrix and does therefore not take
into consideration all available perceptual information.

In case the sensitivity matrix D (in any domain) is symmet-
ric, an eigenvalue decomposition yields D = QΛQH , where Λ =
diag[λ0, . . . ,λN−1] contains the eigenvalues and Q= [q0, . . . ,qN−1]
the corresponding orthonormal eigenvectors as columns. We will
see later that D for our measure is indeed symmetric. Note, that for
an input error vector r = qi the distortion value is 1

2q
H
i QΛQHqi =

λi
2 (from (7) and the orthonormality of Q), i.e. the eigenvalue de-

composition tells us in a sorted manner, in which direction qi of the
input the high-rate distortion measure is most sensitive.

Let us define the ε-space as the space spanned by the set Qε of
all eigenvectors qi corresponding to very small eigenvalues λi

Qε = {qi : 0 < λi ≤ ε,∀ε ∈ R
+}. (13)

Then, quantization error vectors should preferably lie in the ε-
space, as all vectors in this space correspond to a low sensitivity
of the measure and are therefore most likely to be masked. An ele-
gant way to analyse the ε-space is to form a matrix Hε containing
all vectors from the set Qε as columns and use it to project a vector
n of white noise onto the ε-space according to

nε = Hε (HH
ε Hε )−1HH

ε n. (14)

where nε contains all noise components that lie in the ε-space.

3. APPLICATION TO AN EXAMPLE AUDITORY MODEL

In this section we explain how to apply the theory above to a dis-
tortion measure based on an example spectro-temporal perceptual
model. The model we selected was proposed by Dau et al. in [2]
and was exhaustively tuned and tested against experimental data in
[3]. In this paper it is referred to as the Dau auditory model and
the basic system including a definition of a distortion measure on
its output is described in 3.1. In 3.2 we show how to linearize the
non-linear stages of the Dau model for small errors, using general
techniques that can be applied to similar auditory models.
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Figure 1: The single stages of a channel of the Dau auditory model.

3.1 The Dau auditory model

One channel of the Dau auditory model is shown in Fig. 1. The in-
put signal x is filtered by a gammatone filterbank (GTF) that mim-
ics the behavior of the basilar membrane. Our implementation has
one gammatone filter per ERB, resulting in Mc = 29 channels for
8 kHz sampling frequency. The gammatone filter is followed by
a half-wave rectifier and a low-pass filter with cut-off frequency
1 kHz. Then, the signal is processed by five so-called adaptation
loops, which, after applying a positive threshold on the signal c re-
lated to the threshold of hearing, perform a signal-dependent gain
compression that models the non-simultaneous masking behavior
of the human ear. These adaptation loops converge to a logarith-
mic transform for stationary input signals x, while rapid changes in
the input signal are transformed linearly. The last stage LPTS is a
first-order low-pass filter for temporal smoothing with a very low
cut-off frequency of 8 Hz, yielding the internal representation a(x)
per channel. If we index the channels by m < Mc, m ∈N and denote
the internal representation per channel by am, the complete internal
representation is a matrix A(x) = [a0, . . . ,am, . . . ,aMc−1]H .

To facilitate block-by-block distortion measurement of N-
dimensional signal vectors x we have to pay special attention to
the ringing of the non-linear internal processing. The model input
has to be constructed by M-dimensional, M > N, signal vectors x′
and x̂′, where x̂′ contains distorted signal values only in the first N
elements. This way the model is provided with the (clean) signal
future and the signal future dependent perceptual error can ring out
correctly.

We can define a simple distortion measure on the matrices
A(x′) and Â(x̂′)

dDau(x, x̂) =
Mc−1

∑
m=0

M−1

∑
n=0

|Am,n(x′)− Âm,n(x̂′)|2, (15)

assuming synchrony in x′ and x̂′. For stationary input signals,
where the adaptation loops correspond to a logarithmic transform,
(15) will have a meaning similar to a log spectral distortion measure
on critical bands. We assume that measuring the Euclidean distance
in the perceptual domain per channel is a good measure for very low
distortions even for non-stationary input signals. Unlike the work
in [5], we assume in this study that the model is accurate and do
not apply any additional weighting on the distortion measure per
channel.

3.2 The sensitivity matrix for the Dau auditory model

Finding a sensitivity matrix for the Dau model is not practical from
a straightforward application of (3), because the function d(x, x̂)
cannot be described in a simple fashion. However, we can use the
fact that, for each channel of the model, the distortion measure on
the internal representation am is already of quadratic form (15),

d(m)
Dau(am, âm) =

1
2
(am − âm)HD

(m)
a (am)(am − âm), (16)

with D
(m)
a (am) = 2I, where I is the identity matrix and

dDau(x, x̂) = ∑Mc−1
m=0 d(m)

Dau(am, âm). Using (16) and by recursive ap-
plication of the chain rule (5), we can express the sensitivity matrix
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per channel in the signal domain as

D
(m)
x (x) = 2

(
W

(m)
x

)H
W

(m)
x . (17)

W
(m)
x is an M by N matrix, M > N, containing the first N columns

of the product of M by M Jacobian matrices for the single stages

J
(m)
b J

(m)
c J

(m)
d J

(m)
e J

(m)
x , and

J
(m)
c = J

(m)
c(5) J

(m)
c(4) J

(m)
c(3) J

(m)
c(2) J

(m)
c(1) J

(m)
c(0) , (18)

where J
(m)
c(0) denotes the Jacobian for the signal threshold on signal

c(0) = c and J
(m)
c(l) the Jacobian for adaptation loop l with input sig-

nal c(l), l ∈ {1,2,3,4,5}. M needs to be much larger than N to
ensure that every sample of the error vector (x− x̂) is transformed
into perceptual domain without boundary effects. Indeed, the ma-

trix W
(m)
x then represents a convolution matrix for a time-varying

linear filter and for small errors (x− x̂) the product W
(m)
x (x− x̂)

resembles the changes (am− âm) in the output of the channel m. Fi-
nally, we obtain a sensitivity matrix for the entire model from (15)
and (17)

Dx(x) = 2
Mc−1

∑
m=0

(
W

(m)
x

)H
W

(m)
x . (19)

All Jacobians for the linear filters of the model (Jx, Jd and Jb)
are directly given by the lower triangular Toeplitz matrix H with as
first column the filter impulse response hn, n = 0 . . .M − 1. Note
that for the low-frequency basilar membrane filters, as well as the
temporal smoothing filters, a very long block length M is needed to
minimize aliasing.

For an input signal sample zn at time n, the half-wave recti-
fier as well as all other thresholds contained in the model can be
defined as a threshold function Tn(zn,∆) = r(zn −∆)+ ∆ with the
ramp function r(t). Tn(zn,∆) is continuous and differentiable al-
most everywhere. Taking the partial derivative with respect to zm,
we get:

∂Tn(zn,∆)
∂ zm

=
{

u(zn −∆) for m = n
0 for m �= n,

(20)

with the unit step function u(t). Thus, the Jacobian of the half-wave
rectifier is a diagonal matrix with elements

[Je]n,n = u(zn). (21)

The derivation of the Jacobian Jc(l) for the adaptation loop l
is more complicated. Fig. 2 shows the single adaptation loop l in
discrete-time. It implements a division of the positive input signal
zn by the first order low-pass filtered version fn of the output sig-
nal yn, with coefficients a(l) = e−1/( fsτ (l)) and b(l) = 1− a(l). The

denominator fn is limited by an absolute threshold f (l)
min to avoid

a division by zero. The single adaptation loops only differ in the

time constants τ(l) of the low-pass filters and the thresholds f (l)
min,

l ∈ {1,2,3,4,5} [2]. From Fig. 2, the difference equation for this
system is

znyn−1 = Tn

(
β (l)

n , f (l)
minynyn−1

)
, (22)

with
β (l)

n = (1−a(l))yny2
n−1 +a(l)ynzn−1. (23)

Taking the derivatives ∂
∂ zn−k

, k < M−1, k ∈ N on both sides of (22)
and sorting the single terms yields the diagonals of the Jacobian
for the adaptation loop. Note that the loop is causal and therefore

zn

fn

gn

yn

Tn(·)

z−1 a(l)z−1

b(l)

Figure 2: One adaptation loop in discrete-time implementation.

∂ yn
∂ zn+k

= 0 for all n, resulting in a lower triangular Jacobian. After
some algebra, the elements of the Jacobian for adaptation loop l are
given by[

Jc(l)

]
n,n = ξ (l)

n
yn

zn
(24)

[
Jc(l)

]
n,n−1 = ξ (l)

n
[
Jc(l)

]
n,n

([
Jc(l)

]
n−1,n−1 γ(l)

n − a(l)yn

yn−1

)
(25)

[
Jc(l)

]
n,n−k = ξ (l)

n
[
Jc(l)

]
n,n

[
Jc(l)

]
n−1,n−k γ(l)

n , (26)

for 1 < k < M with

ξ (l)
n = u

(
β (l)

n − f (l)
minynyn−1

)
, (27)

and
γ(l)

n =
zn

yn−1
−2(1−a(l))yn. (28)

If (24) is calculated first, (25) second and then (26) with increas-
ing k, the right hand sides of (25) and (26) only contain previously
calculated values. Note that evaluating this Jacobian at the point
ẑ = z corresponds to reading z and y from the model when run on
the original signal x′ and then applying (24)-(28). With the same
arguments as in section 3.1, the model needs to be run once on an
M-dimensional signal vector to obtain an N by N sensitivity matrix.

4. RESULTS

We tested the above described distortion measures with blocks of
narrow band music signals and artificial test signals. The dimen-
sion of the Jacobians for all experiments was M = 800. The first
artificial signal consisted of a single sinusoid at 458 Hz, the cen-
ter frequency of the eleventh gammatone filter of our model, with
an additive white Gaussian noise floor at either −20 dB or −35
dB. This signal was used to test the simultaneous masking prop-
erties of our distortion measure. The second artificial signal was
used for non-simultaneous masking experiments and consists of a
white noise blip of 6.25 ms duration, with an additive white Gaus-
sian noise floor at −35 dB. First we comment on the validity of the
high-rate approximations and then show a few results obtained with
the analysis techniques described in section 2.

4.1 Range of the Linearized Model

Fig. 3 a) shows the true distortion from the Dau auditory model
versus the estimated value obtained with the sensitivity matrix, av-
eraged over 200-sample blocks of 4 seconds of narrow-band music
with i.i.d. Gaussian noise at different SNRs. The difference is be-
low 3 dB above an SNR of 30 dB, and the approximation becomes
exact at higher SNRs. Fig. 3 b) shows a very high accuracy in
the same experiment for a simplified model without the adaptation
loops and the temporal smoothing filter. The results of this figure
indicate that the discrepancies in Fig. 3 a) are mainly due to the non-
linearities in the adaptation loops, since for large block lengths the
linear temporal smoothing filter is described exactly by a Jacobian
matrix.
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Figure 3: True (dotted line) and estimated (solid line) distortion
values for narrow-band music signals with additive white gaussian
noise for different input SNR; (a) full Dau model, (b) Dau model
without adaptation loops and temporal smoothing.
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Figure 4: A masking curve shape obtained from (12) (solid line)
compared to a spectral masking model [11] (dotted line) for a sinu-
soid at 458 Hz with additive white Gaussian noise.

4.2 Analysis

Fig. 4 shows the shape of the masking curve obtained from (12)
for a 400-sample block of the sinusoidal test signal with −20 dB
noise floor compared to the masking curve obtained from a spectral
psychoacoustical model described in [11]. In general, a good cor-
respondence is found, although our masking curve shape predicts a
peak at 458 Hz that is around 9 dB lower than the predicted thresh-
old from the spectral model. It is also clearly visible that the hearing
threshold in quiet is not modeled by our implementation of the Dau
model. Note that (12) yields frequencies of equal perceptual distor-
tion for small distortions, which should be more valuable to most
coding applications than an absolute masking threshold without any
information about the perceptual sensitivity.

An analysis based on the eigenvalue decomposition allows a
more detailed view on the model characteristics both in time and
frequency. Fig. 5 (a) shows the sinusoidal test signal at 35 dB
SNR (first row) and the lowest-sensitivity eigenvectors q1,q2 and
q3 from Qε . As expected, these eigenvectors are sums of sinusoids
that have frequencies close to the sinusoidal test signal, and this is
confirmed by spectral analysis.

Fig. 5 (b) shows white Gaussian noise projected onto the ε-
space of the sensitivity matrix according to (14) for the blip test
signal. Here the ε-space is spanned by the first 118 out of 400
eigenvectors qi. In the first row we see the test signal, the second
row contains the noise vector n used for projection, the third row
shows the corresponding nε , and in the last row the result of a pro-
jection on the orthogonal space is shown. Errors corresponding to
a low sensitivity of the Dau auditory model apparently have an en-
ergy envelope in time with support from 1−3 milliseconds before
the blip to about 30 ms after the blip, while the orthogonal space ex-
hibits opposite behavior. This clearly shows the non-simultaneous
masking prediction capabilities of the model.
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Figure 5: Characteristics of the eigenvectors in Qε .

5. CONCLUSION

In this paper, we described a general method to derive a sensitivity
matrix for distortion measures based on spectro-temporal auditory
models under the assumption of small errors. The linearizations are
shown to be accurate for high SNRs above 30 dB. Using methods
from linear algebra, an analysis of the sensitivity matrix revealed
insight into the characteristics of the auditory model for low distor-
tions. Known properties of human auditory masking behavior were
clearly visible in the studied model.
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