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ABSTRACT

In this paper, an efficient implementation of the Affine Projection
algorithm (AP) is introduced in order to avoid the direct computa-
tion of matrix inversions. In the presented formulation, a recursive
relation is devoted to calculate matrix inversion, thus improving the
computational load (as much improvement as greater projection or-
der). Furthermore, the proposed AP version has been introduced for
multichannel Active Noise Control (ANC) and the new algorithm
is named new efficient multichannel filtered-x affine projection al-
gorithm (new efficient MFXAP). A comparative practical study of
different AP implementations with the new approach has been also
carried out and validates the use of the proposed method. Simu-
lations and a practical implementation based on the TMS320C40
DSP took part in this study. The most meaningful results are shown
throughout the paper.

1. INTRODUCTION

The use of adaptive algorithms for multichannel active noise control
(ANC) [1] has been subject of continuous study and research since
the decade of 80. The classical LMS algorithm applied to ANC
systems is the widely used filtered-x LMS algorithm (FXLMS) [2].
The simplicity and robustness of the LMS algorithm together with
the improvement of the computational capacities of new families of
DSPs made possible several changes over the original structure of
the LMS algorithms. Most of the times, the aim of these changes
was the improvement of the convergence speed of the algorithm. An
interesting alternative to the LMS algorithm is the Affine Projection
algorithm (AP) [3], and their fast versions, Fast Affine Projection
algorithms (FAP) [4], which were first proposed for single channel
Active Noise Control (ANC) systems in [5] and for multichannel
ANC in [6]. AP algorithms show a good tradeoff between compu-
tational effort and convergence speed preserving numerical stability.
Nevertheless, the implementation of AP algorithms implies several
matrix inversions that may become a drawback in a practical DSP
implementation. Different methods have been recently proposed to
improve the computational complexity in matrix inversions of AP
algorithms. Recursive methods like the sliding window Fast Re-
cursive Least Squares (FRLS), the sliding window Fast Transversal
Filters (FTF), and the sliding window RLS [7] have been applied
in fast versions of RLS and AP algorithms, nevertheless, numerical
stability is not always assured. A multichannel ANC system us-
ing a FAP algorithm with sliding window RLS inverse matrix cal-
culation was recently implemented in simulation [6]. Otherwise,
the Gauss-Seidel method described in [8], which iteratively com-
putes an approximation to inverse matrix, was introduced in [9]
for a multichannel FAP algorithm. In this paper, the application
to active noise control of the multichannel AP algorithm (standard
MFXAP) is presented together with a recursive method to calculate
the matrix inversions thus saving computational load with respect
to the original formulation providing the new efficient multichannel
filtered-x affine projection algorithm (new efficient MFXAP algo-
rithm). In Section 2, we describe the standard MFXAP algorithm.
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In Section 3, the proposed recursive method to compute matrix in-
versions in the MFXAP algorithm instead of the direct computation
is reported. The performance of the new efficient MFXAP algo-
rithm will be compared with the standard MFXAP algorithm and
also with two more algorithms derived from the MFXAP algorithm
that apply alternative efficient techniques to compute inverse ma-
trices: the MFXAP algorithm with an embedded sliding window
RLS method (MFXAP-RLS) and the MFXAP algorithm with an
embedded Gauss-Seidel technique (MFXAP-GS). In Section 4 sim-
ulation results for multichannel ANC systems comparing the four
commented algorithms are presented. In Section 5 experimental re-
sults obtained in a real practical system are shown, concretely, the
new efficient MFXAP and the multichannel FXLMS have been im-
plemented. Section 6 concludes this work.

2. MULTICHANNEL AFFINE PROJECTION
ALGORITHM APPLIED TO ACTIVE NOISE CONTROL

Application of AP algorithms to ANC [5, 6] is similar to the imple-
mentation of gradient descent algorithms, among which the LMS
algorithm [1] is the most commonly used. The filtered-x LMS
(FXLMS) structure [2] applied to the AP algorithm for multichan-
nel ANC systems, leads to the multichannel filtered-x affine projec-
tion algorithm (MFXAP). To describe this algorithm we will use the
following notation:

• ANC system definition: I:J:K ANC system, where it means,
Number of reference signals:Number of secondary sources:
Number of error sensors.

• L: Length of adaptive filters.
• N: Affine projection order.
• M: Length of the FIR filters modelling the acoustic plants be-

tween the actuators and the error sensors.
• xi(n): Value at time n of the ith reference signal.
• y j(n): Value at time n of the signal at the jth actuator.
• ek(n): Value at time n of the kth error sensor.
• wi, j,l(n): Value at time n of the lth coefficient in the adaptive

filter linking xi(n) and y j(n).

• wi, j = [wi, j,1(n),wi, j,2(n), ...,wi, j,L(n)]T

• h j,k,m: Value of the mth coefficient in the FIR filter modelling
the plant between y j(n) and ek(n).

• h j,k = [h j,k,1,h j,k,2, ...h j,k,M ]T

• vi, j,k(n): Value at time n of the reference signal xi(n) filtered by
the plant model h j,k.

• vi, j,k(n)=[vi, j,k(n),vi, j,k(n−1), ...vi, j,k(n−L+1)]T

• Vi, j,k(n) = [vi, j,k(n) . . .vi, j,k(n−N +1)]
• xi(n) = [xi(n),xi(n−1), ...xi(n−L+1)]T

• x′i(n) = [xi(n),xi(n−1), ...xi(n−M +1)]T

• Ek(n) = [ek(n),ek(n−1), ... ek(n−N +1)]T

According to the preceding notation the MFXAP algorithm
would be described as follows:

vi, j,k(n−1) = hT
j,kx

′
i(n−1), (1)
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wi, j(n) = wi, j(n−1)−µ ∑K
k=1 Vi, j,k(n−1)

{Vi, j,k(n−1)T Vi, j,k(n−1)+δI}−1Ek(n),
(2)

y j(n) =
J

∑
j=1

wT
i, jxi(n), (3)

where in equation (2) we have included the convergence step, µ , and
the regularization factor, δ , which controls numerical instability. If
δ is not properly chosen the convergence speed may be affected.
I represents the N ×N identity matrix. It should also be noticed
that in equations (1) and (2) the reference signals are delayed by
one sample. As ek(n)=dk(n-1)+∑J

j=1 hT
j,ky j(n−1), and because of

the mentioned delay, now signals coming from the reference signal
(Vi, j,k(n− 1)) and signals coming from error sensors (Ek(n)) are
derived from the same iteration of the signal xi(n) thus meaningfully
improving the convergence speed in practice.

In order to update the coefficients in each iteration (equation
(2)), the calculation of the inverse of a N×N matrix is needed as
well as matrix multiplications of sizes (L×N)×(N×N)×(N×1).
Previously developed fast versions of AP algorithm (FAP algo-
rithms) [4, 5, 6] reduce computational complexity by means of
efficient methods to invert these matrices like the sliding window
RLS [6] and the Gauss-Seidel [9] techniques. Moreover, those FAP
algorithms compute, instead of the normal coefficients, some auxil-
iary coefficients which require less operations to be updated. Like-
wise, for values of the convergence step µ close to unity, the co-
efficients update can be approximated with matrix multiplications
of size (L×N)× (N× 1)× (1× 1), achieving a meaningful com-
putational saving as higher as the projection order increases [5].
However, it should be pointed out that ANC applications work well
with small projection orders (lower than 5), see [6, 10], and in those
cases the complexity of FAP algorithms may be similar to the com-
plexity of the AP algorithm with a much simpler implementation.
That is why an efficient version of the AP algorithm avoiding only
direct computation of matrix inversions is proposed in this work
and applied to the MFXAP algorithm resulting in the new efficient
MFXAP algorithm. In fact, this paper shows hereafter how to avoid
these matrix inversions using the previous inverse matrix and an it-
erative computation. The recursive inversion method can be used to
compute the matrix inversion of order N×N in equation (2). The
proposed algorithm is as robust as the standard MFXAP algorithm
and with a computational complexity similar to the MFXAP-GS
and the MFXAP-RLS. Even these last two algorithms can exhibit
a poorer performance in comparison with the new approach, with
instabilities and initialization problems.

3. RECURSIVE IMPLEMENTATION OF THE MATRIX
INVERSION

A recursive method is presented in order to obtain the exact matrix
inversion in eq. (2) which presents numerical stability and a com-
putational cost similar to the sliding window RLS method [6].

From eq. (2) and assuming that:

M(n) = Vi, j,k(n)T Vi, j,k(n), (4)

then the following relation can be written:

M(n) = M(n−1)+vNi, j,k (n)vT
Ni, j,k

(n)
−vNi, j,k (n−L−N)vT

Ni, j,k
(n−L−N),

(5)

where

vNi, j,k (n) = [vi, j,k(n),vi, j,k(n−1), ...,vi, j,k(n−N +1)]T . (6)

This recursive expression would save us operations before the
computation of the inverse, but we still have to compute M−1(n) for
the actualization of the weights in the AP algorithms. However the

matrix inversion lemma states that two positive definite matrices A
and B of dimensions N×N fulfill the following relation:

A = B−1 +CD−1CT . (7)

Then we are able to compute A−1 as:

A−1 = B−BC(D+CT BC)−1CT B, (8)

where D and C are other two matrices of M×M and N×M respec-
tively. Now, using expressions (5) and (8) we can write:

M(n) = M(n−1)+F(n)DFT (n), (9)

being F(n) = [vNi, j,k (n), vNi, j,k (n− L−N)] of dimensions N× 2,

and D = D−1 =
[

1 0
0 −1

]
.

Then we can identify:

A = M(n), (10)

B−1 = M(n−1), (11)

C = F(n), (12)

D−1 =
[

1 0
0 −1

]
. (13)

Furthermore, we can use the inversion lemma for matrices to
compute M(n)−1:

M(n)−1 = M(n−1)−1−M(n−1)−1F(n){D+
+FT (n)M(n−1)F(n)}−1FT (n)M(n−1)−1.

(14)

This way we are able to compute the inverse matrix of M(n)
from the inverse of that same matrix in the previous iteration plus a
few operations that involve the computation of a 2×2 inverse matrix
(almost reduced to the evaluation of a determinant). It is clear that
computational time saving increases with increasing order of the
matrix to invert (higher projection order). The recursive approach
leads us to a feasible implementation of the MFXAP algorithm.

It should be noted that direct computation of matrix inversion
in eq. (4) depends on N and L. However, computation using the
recursive approach only depends on N, see eq. (14). In case of low
projection orders of the MFXAP algorithm and adaptive filters with
only a few coefficients, the recursive approach is not an improve-
ment compared to the direct computation of the inverse matrix, but
in case of a large length of the adaptive filters is a very useful tool
to improve computational saving.

In the recursive inverse computation, an initial value of the in-
verse is needed as a starting point. A direct (non-recursive) compu-
tation of the inverse matrix could be carried out in a setup stage of
the adaptive algorithm, thus it can start with an exact value of the in-
verse matrix. Nevertheless, experience has confirmed that using an
estimation of the inverse as starting point the algorithm still works
properly (even though the performance can be improved using an
exact inverse initial value). An implementation using identity ma-
trix multiplied by a small positive constant number shows results
comparable to the results achieved with direct inverse computation.

4. SIMULATIONS OF THE MULTICHANNEL AFFINE
PROJECTION ALGORITHMS FOR ANC

In order to test the performance of the new efficient MFXAP com-
pared with the MFXAP, the MFXAP-RLS and the MFXAP-GS,
several simulations have been carried out using MatlabT M and real
acoustic paths measured in an enclosed room. Computational cost
and convergence speed were used to compare the different imple-
mentations. The measurement setup consisted in one loudspeaker
acting as primary source, two loudspeakers acting as secondary
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sources and two error sensors. Therefore the system was config-
ured with I=1, J=2 and K=2 (1:2:2 ANC system), see an scheme in
Fig. 1. All acoustic paths (primary and secondary ones) have been
modelled as FIR filters of 250 coefficients. A zero mean white noise
signal has been used as perturbation signal. Adaptive filters of 50
coefficients and different projection orders have been applied.
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Figure 1: Scheme of the 1:2:2 ANC system
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Figure 2: Comparison of the computational cost of the MFXAP, the
new efficient MFXAP, the MFXAP-RLS and the MFXAP-GS for
different projection orders.

The computational complexity of the algorithms were estimated
by the number of flops required per iteration. Fig. 2 compares
the performance of the four selected algorithms in terms of com-
putational cost. As expected, the complexity of the new efficient
MFXAP algorithm is significantly less than for the MFXAP algo-
rithm. Therefore, the improvement increases with the projection
order. The results of the new algorithm were found to be almost
the same (up to the projection order N = 5) as for the MFXAP-
RLS and the MFXAP-GS algorithms. Although the proposed algo-
rithm is less efficient than the MFXAP-RLS and the MFXAP-GS
algorithms for increasing projection orders, it has been empirically
showed a superior performance in numerical stability and almost in
convergence speed as it can be seen in Fig. 3.
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Figure 3: Convergence curves measured at error sensor SE1 for the
four algorithms (N=10).
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Figure 4: Convergence curves measured at error sensor SE1.
From top to bottom at the dashed line position: multichannel
FXLMS, new efficient MFXAP (N=5), new efficient MFXAP
(N=10), MFXAP (N=5) and MFXAP (N=10).

In Fig. 3 and 4, those curves, called convergence curves, are
obtained by plotting the ratio of the instantaneous estimated power
at each error sensor over its initial value in decibels. Moreover, they
provide information about the temporary evolution of the attenua-
tion level measured at error sensors referred to its initial value in
decibels.

In order to compare the convergence of the new MFXAP al-
gorithm for projection orders N = 5 and N = 10 with the classi-
cal multichannel FXLMS algorithm [2] and the standard MFXAP,
Fig. 4 is shown. As expected, the convergence speed of the MFXAP
algorithms, including the proposed version, over the multichannel
FXLMS is considerable. Since in practice it may not always be
possible to compute matrix inversions, the fact that the new effi-
cient MFXAP has a good convergence speed (comparing with the
standard MFXAP) and seems more robust to numerical instabili-
ties with a similar computational load than the MFXAP-GS and
MFXAP-RLS algorithms, are good reasons to consider this algo-
rithm for practical implementations.
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(a)

(b)

Figure 5: Real 1:1:2 ANC system. Attenuation noise levels mea-
sured at the left mannequin’s microphone for a single tone using:
(a) the FXLMS and (b) the new efficient MFXAP with N=2.

5. PRACTICAL ANC SYSTEM IMPLEMENTATION

We now investigate the behavior of the new MFXAP algorithm
compared with the classical multichannel FXLMS algorithm in a
real ANC system based on a TMS320C40 DSP processor. A 1:1:2
ANC system using the secondary loudspeaker SS1 in Fig. 1, work-
ing with a 80 Hz single tone disturbance signal, adaptive filters of
14 coefficients and a projection order of N = 2, has been tested
measuring the attenuation levels achieved into a controlled zone of
30× 30 cm2 placed between the error sensors. A mannequin with
two calibrated microphones at the ear canals, was displaced into the
area using a mobile platform in order to monitor the noise levels at
different points of the zone.

Fig. 5 shows the attenuation levels measured at the left ear of the
mannequin using the multichannel FXLMS and the new MFXAP.
Meaningful quiet zones can be observed in both cases. It must be
noted that these two algorithms exhibit similar final attenuation lev-
els, the new MFXAP is faster than the FXLMS and its performance
can be significantly improved increasing its projection order, as it is
shown in Fig. 4.

6. CONCLUSIONS

In this paper, a computationally efficient MFXAP algorithm has
been presented, the new efficient MFXAP. The proposed algorithm
avoids the direct computation of matrix inversions, which are now

calculated by means of a recursive form based on the matrix inver-
sion lemma. It was shown through simulations that the new algo-
rithm provides a performance as good as other MFXAP algorithms
in terms of convergence speed and attenuation levels. The computa-
tional cost of the proposed approach is significantly better than the
standard MFXAP algorithm and similar to the complexity of the
MFXAP-GS and MFXAP-RLS algorithms. Finally, experiments in
a real ANC system validate the use of the new efficient MFXAP
algorithm compared with the classical multichannel FXLMS algo-
rithm.
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