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ABSTRACT

We reconsider the MMSE-based time-domain equalizer (TEQ), bi-
trate maximizing TEQ (BM-TEQ) and per-tone equalizer design
for DMT transmission. The MMSE-TEQ criterion can be formu-
lated as a least-squares (LS) criterion that minimizes a time-domain
(TD) error energy. Based on this LS-based TD-MMSE-TEQ, we
derive new LS-based frequency-domain (FD) MMSE-TEQ criteria
that are intermediate in terms of computational complexity and per-
formance between the TD-MMSE-TEQ and the BM-TEQ. In ad-
dition, we show that the BM-TEQ design itself is equivalent to a
so-called iteratively-reweighted separable nonlinear LS-based FD-
MMSE-TEQ design. As a side result, the considered LS-based
equalizer designs, although at first sight very different in nature- ap-
pear closely related when turning them into generalized eigenvalue
problems.

1. INTRODUCTION

In discrete multitone (DMT) based systems, such as asymmetric
digital subscriber lines (ADSL), channel impulse responses can be
very long, hence a long cyclic prefix (CP, length ν) would be re-
quired. A solution to avoid this overhead is to insert a (real) T -tap
time domain equalizer w (TEQ) before demodulation, which then
shortens the channel impulse response to ν + 1 samples. Among
the numerous TEQ designs, we will focus in this paper on the so-
called minimum mean-square error (MMSE)-based TEQ design [1]
with a unit energy constraint (UEC) [2, 3] and the recently proposed
bitrate maximizing TEQ design (BM-TEQ) [4]. In [5], the alter-
native per-tone equalizer (PTEQ) scheme is proposed that always
performs at least as well as - and usually better than - a TEQ based
receiver while keeping complexity during data transmission at the
same level. The PTEQ is a complex MMSE equalizer designed for
each tone separately.

The classical MMSE-TEQ criterion can be formulated as a con-
strained linear least-squares (CLLS) criterion that minimizes a time-
domain (TD) error energy. Starting from this CLLS-based TD-
MMSE-TEQ criterion, we derive new LS-based MMSE-TEQ cri-
teria, that minimize a sum-square of frequency-domain (FD) er-
ror energies (i.e., after DFT demodulation), rather than a TD error
energy; especially the so-called separable nonlinear LS (SNLLS)-
based FD-MMSE-TEQ appears a reasonable intermediate in terms
of complexity and performance between the TD-MMSE-TEQ and
the BM-TEQ. Remarkably, the BM-TEQ criterion itself is found
to be equivalent to a so-called iteratively-reweighted SNLLS-based
FD-MMSE-TEQ criterion. As a side result, the LS-based formu-
lations of the TD-MMSE-TEQ, FD-MMSE-TEQ, BM-TEQ and
PTEQ design cost functions appear to be closely related, especially
when turning each of them into a generalized eigenvalue (GEV)
problem

Bw = λAw (1)
where, loosely speaking, A is an autocorrelation metric of the re-
ceived signal yl and B depends on a crosscorrelation metric be-
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tween transmitted (TX) and received (RX) signal xl and yl . For an
extended version of this paper, we refer to [6].

Notation. The DMT symbol index is k. Sa is the set of Na active
tones; n is a tone index; N is the (I)DFT size; FSa

is an Na ×N
submatrix of the full DFT matrix FN with only the Na rows of the
active tones Sa; the n-th DFT row is Fn. Vectors are typeset in
bold lowercase while matrices are in bold uppercase. A tilde over a
variable distinguishes frequency-domain (FD) symbols from time-
domain (TD) symbols, e.g. the Na × 1 TX symbol vector at time
k, x̃k. FD vectors or matrices only account for the Na active tones
Sa unless a subscript N is added (e.g., the N × 1 TX symbol vec-
tor, x̃k,N ). The entry for tone n of a FD vector is denoted with a
subscript, e.g., x̃k,n. A subscript with the number of data points,
e.g., L samples or K DMT symbols, is used to distinguish between
a (deterministic) correlation estimate, e.g., Σ2

L,y = 1
L ∑L

l=1 yly
T
l or

σσσK,n,x̃ỹ = 1
K ∑K

k=1 x̃∗k,nỹk,n, and the true (stochastic) correlation,

e.g., Σ2
y = E

{
yT

l yl
}

or σσσn,x̃ỹ = E
{

x̃∗k,nỹk,n

}
. Throughout the

text we only define the stochastic correlations.

2. MMSE-TEQ, BM-TEQ AND PTEQ: LS PROBLEMS

2.1 CLLS-based TD-MMSE-TEQ design
One of the earliest presented TEQ designs is the MMSE-based TEQ
[1]: it minimizes the time-domain (TD) MSE between the output of
the TEQ, yl,w = yT

l w, with w the T -tap TEQ, l the sample index

and yl = [ yl · · · yl−T+1 ]T a vector of RX samples1, and the
output xT

l b of a virtual FIR channel, the so-called target impulse
response (TIR) b of length ν + 1 (with ν the CP length), which is
fed with a vector of TX samples xl = [ xl · · · xl−ν ]T :

min
w,b

E
{
|el |2

}
= min

w,b
E

{∣∣∣yT
l w−xT

l b
∣∣∣2} (2)

To avoid the trivial solution w = 0, b = 0, a nontriviality constraint
is added [2]. We focus on the particular choice of a so-called unit
energy constraint (UEC) on w [3]:

wT Σ2
yw = 1 (3)

with the autocorrelation matrix Σ2
y = E

{
yT

l yl
}

. This constrained
TD-MMSE-TEQ criterion (2) forces the joint channel-TEQ impulse
response to have a main energy window of ν + 1 samples. A de-
terministic constrained linear least-squares (CLLS) based TD-
MMSE-TEQ criterion, equivalent to (2), is given by:

min
w,b

1
L

L

∑
l=1

∣∣∣yT
l w−xT

l b
∣∣∣2 s.t. wT Σ2

L,yw = 1 (4)

with L the total number of available data samples and Σ2
L,y an es-

timate of Σ2
y as clarified earlier on this page in the paragraph on

the adopted notation. Using the so-called orthogonality condition

1The RX signal yl and vector yl depend on a synchronization delay ∆,
which we do not mention explicitly here.
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[1, 2] eliminating b and defining Σ2
x = E

{
xlx

T
l

}
and ΣL,xy =

E
{
xly

T
l

}
, (4) reduces to:

min
w

wT
[
Σ2

L,y−ΣT
L,xy

(
Σ2

L,x

)−1
ΣL,xy

]
w s.t. wT Σ2

L,yw = 1 (5)

The solution is seen to be the dominant GEV of (1) with the matrix
pair

(B,A) =
(
ΣT

L,xy

(
Σ2

L,x

)−1
ΣL,xy,Σ2

L,y

)
(6)

2.2 CLLS-based FD-MMSE-TEQ design

The TD-MMSE-TEQ (2) is sample-based and minimizes a TD
MSE. In this and the next section, we develop new frequency do-
main (FD) MMSE-TEQ criteria that account for the DMT block
transmission structure, including the CP, and minimize a sum of FD
MSEs. Especially the FD-MMSE-TEQ criterion, developed in Sec-
tion 2.3, appears a useful intermediate in terms of complexity and
performance between the TD-MMSE-TEQ on one hand, and the
PTEQ and the BM-TEQ on the other hand (see Section 3).

First, we rewrite (2) on a per-DMT-symbol basis:

min
w,b

E
{
‖Ykw−Xkb‖2

}
︸ ︷︷ ︸

E{‖ek‖2}

s.t. wT Σ2
Yw = 1 (7)

The Toeplitz matrix Yk has size N × T ; its first column and row
are given by [yk,0 · · · yk,N−1]

T and [yk,0 · · · yk,−T+1], respectively,
with yk,i = yk(N+ν)+i. The matrix Xk, which incorporates the CP,
has size N × (ν + 1) and is columnwise circulant with first column
[xk,0 · · · xk,N−1]

T and xk,i = xk(N+ν)+i. The first term Ykw in (7)
convolves the k-th DMT RX symbol with the TEQ and is the N ×1
TEQ output vector that is fed to the RX DFT. The second term Xkb
is the convolution of the k-th DMT TX symbol and the TIR b.

In a second step, Xk is extended with N − ν − 1 columns
to an N ×N circulant matrix Xk,C, b is zero-padded accordingly
and the DFT-based decomposition of the circulant matrix Xk,C =
F H

N X̃k,N,DFN , with X̃k,N,D = diag(x̃k,N) and x̃k,N the N×1 DMT
TX symbol vector, is plugged in:

Xkb = Xk,C

[
b
0

]
= F H

N X̃k,N,D FN

[
b
0

]
︸ ︷︷ ︸

b̃N

(8)

Thirdly, the cost function and constraint (7) are transformed to the
FD and only the active tones Sa are considered:

min
w,b

E
{∥∥FSa

ek
∥∥2
}

︸ ︷︷ ︸
E{‖ẽk‖2}

= min
w,b

E
{∥∥Ỹkw− X̃k,Db̃

∥∥2
}

(9)

s.t. wT Σ2
Ỹ

w = 1, b̃ = FSa

[
b
0

]
and real w and b (10)

where Ỹk = FSa
Yk, X̃k,D = diag(x̃k) (with x̃k the Na × 1 DMT

TX symbol vector) and Σ2
Ỹ

= E
{
ỸH

k Ỹk
}

. The first term of the
error vector ẽk in (9) corresponds to the RX DFT output at the tones
Sa:

FSa
(Ykw)︸ ︷︷ ︸
{1}

= (FSa
Yk)w︸ ︷︷ ︸

{2}

= Ỹkw = ỹk,w (11)

which can either be computed as {1} the DFT of the TEQ output
Ykw or {2} as a linear combination w of the sliding DFT of the
k-th DMT RX symbol, Ỹk = FSa

Yk (see [4] for details). The
second constraint in (10) comes from the original TD-MMSE-TEQ
design that imposes channel shortening by means of a TIR b of
length ν + 1. If we drop the constraints on b̃ in (10) and instead
optimize

min
w,b̃

E
{∥∥Ỹkw− X̃k,Db̃

∥∥2
}

s.t.wT Σ2
Ỹ

w =1 and real w (12)

we obtain an FD-MMSE-TEQ criterion in the (typically) real TEQ
w and the complex vector b̃ instead of b. The optimum solution
for the unconstrained b̃ follows from the so-called orthogonality
condition and is a vector with as entries bn the inverses of the unbi-
ased MMSE-based (uMMSE) FEQs d̃uMMSE

n , which are in fact the
optimal choice of FEQs for a given w [4, 7]:

d̃uMMSE
n =

σ2
n,x̃

σσσn,x̃ỹw
=

1

b̃n
(13)

where σ2
n,x̃ = E

{∣∣x̃k,n
∣∣2} is the variance of x̃k,n and where the de-

nominator is the crosscorrelation E
{

x̃∗k,nỹk,n,w

}
between the RX

DFT output and the TX symbol on tone n. It follows from (11) that

this crosscorrelation is equal to σσσn,x̃ỹw, with σσσn,x̃ỹ = E
{

x̃∗k,nỹk,n

}
the 1× T crosscorrelation vector of x̃k,n and the n-th sliding DFT
output ỹk,n = FnYk (see [4] for details). Solving (12) then opti-
mizes the sum-square energy between the DFT outputs ỹk,n,w and

the scaled desired symbols x̃k,n

d̃uMMSE
n

. A deterministic CLLS-based

FD-MMSE-TEQ criterion, equivalent with (12) is given by:

min
w,b̃

1
K

K

∑
k=1

∥∥Ỹkw− X̃k,Db̃
∥∥2

s.t.wT Σ2
K,Ỹ

w = 1 and real w

(14)
where K is the number of available DMT symbols. Due to the simi-
larity between the CLLS-based FD-MMSE-TEQ criterion (12) and
the CLLS-based TD-MMSE-TEQ (4), it comes as no surprise that
(12) reduces to a GEV problem (1) that is closely related to (6):

(B,A)=
(

ℜ
{
ΣH

K,x̃Ỹ

(
Σ2

K,x̃

)−1
ΣK,x̃Ỹ

}
,ℜ
{
Σ2

K,Ỹ

})
(15)

=

(
ℜ

{
σ
−2
K,n,x̃ ∑

n∈Sa

σσσ
H
K,n,x̃ỹσσσK,n,x̃ỹ

}
,ℜ

{
∑

n∈Sa

Σ2
K,n,ỹ

})

The Na rows of Σx̃Ỹ = E
{
X̃∗

k,DỸk

}
are the above defined

crosscorrelation vectors σσσn,x̃ỹ; Σ2
Ỹ

= ∑
n∈Sa

Σ2
n,ỹ with Σ2

n,ỹ =

E
{
ỹH

k,nỹk,n

}
the autocorrelation matrix of the n-th sliding DFT

output; Σ2
x̃ = E

{
x̃kx̃

H
k

}
is the autocorrelation matrix of the DMT

TX symbol vector; the second equality assumes independent sym-
bols x̃k,n such that Σx̃ is diagonal with diagonal elements σ2

n,x̃; the
ℜ-operators ensure a real TEQ.

The complex LS-based MMSE-PTEQ [5] is closely related to
the CLLS-based FD-MMSE-TEQ (14) when only 1 tone n is con-
sidered. It follows from (15) that the real PTEQ for tone n, wn, is
the dominant eigenvector of

(B,A)=
(

σ
−2
K,n,x̃ℜ

{
σσσ

H
K,n,x̃ỹσσσK,n,x̃ỹ

}
,ℜ
{
Σ2

K,n,ỹ

})
(16)

In case of a complex wn, the ℜ-operators should be dropped. In this
case the matrix B becomes rank-one and the dominant eigenvector
of (16) (up to a scaling) is seen to be given by [6]

wn =
(
Σ2

K,n,ỹ

)−1
σσσ

H
K,n,x̃ỹ (17)

This is exactly the solution of the LS-based MMSE-PTEQ crite-
rion of [5]:

min
wn

1
K

K

∑
k=1

∣∣ỹk,nwn − x̃k,n
∣∣2 (18)

2.3 SNLLS-based FD-MMSE-TEQ design

An alternative (suboptimal) FD criterion is obtained by mini-
mizing the sum-square energies at the FEQ output instead of the
DFT output:
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min
w,d̃

E
{∥∥diag(d̃)Ỹkw− x̃k

∥∥2
}

︸ ︷︷ ︸
E
{
‖ẽk,θθθ‖2

}
with real w (19)

where the FEQ output error vector ẽk,θθθ depends on both the real

TEQ and complex FEQ parameters, θθθ =
[
wH d̃H

]H . The UEC
constraint of (12) has been dropped as the criterion (19) has no triv-
ial solution anymore. This criterion corresponds to an SNLLS cri-
terion [8, 9]:

min
w,d̃

1
K

K

∑
k=1

∥∥diag(d̃)Ỹkw− x̃k
∥∥2

with real w (20)

which we call an SNLLS-based FD-MMSE-TEQ criterion. The
separability property follows from the fact that the error ẽk,θθθ is non-
linear in θθθ , whereas the TEQ w and FEQs d̃ appear linearly. Solv-
ing (19) as a linear problem in d̃, while keeping w fixed, results in
the (biased) MMSE FEQs for the given w [4, 7]:

d̃MMSE
n =

wT σσσH
n,x̃ỹ

wT Σ2
n,ỹw

(21)

where the numerator is equal to the complex conjugate of the de-
nominator of the uMMSE FEQ (13) and where the denominator

is the autocorrelation of the DFT output, i.e., E
{∣∣ỹk,n,w

∣∣2} =

wT Σ2
n,ỹw. It will be shown in Section 2.4 that the SNLLS problem

(20) can be solved iteratively with a sequence of GEV problems (1).
As will be shown in the simulations of Section 3, this SNLLS-based
FD-MMSE-TEQ design consistently outperforms the CLLS-based
TD-MMSE-TEQ design and closely approaches the BM-TEQ per-
formance.

2.4 Bitrate maximizing FD-MMSE-TEQ design
The bitrate maximizing TEQ (BM-TEQ), originally presented in
[4], is the solution to the following constrained nonlinear optimiza-
tion problem in θθθ =

[
wH d̃H

]H :

maxθθθ ∑n∈Sa
log2

(
1+ SNRn,θθθn

Γn

)
(22)

with SNRn,θθθ n
=

σ 2
n,x̃

E
{
|ẽk,n,θθθn |

2
} =

σ 2
n,x̃

E
{
|d̃nỹk,nw−x̃k,n|2

} (23)

subject to d̃n =
σ 2

n,x̃
Σn,x̃ỹw , ∀n ∈ Sa (24)

with θθθ n =
[
wH d̃∗n

]H , i.e., maximizing the number of bits per DMT
symbol (given a certain SNR gap Γn between SNRn and the SNR
required to achieve Shannon capacity, typically assumed to be in-
dependent of the equalizer [4]), over the joint TEQ-FEQ parame-
ters θθθ , subject to the use of uMMSE FEQs (24) (see also (13)),
which render the subchannel SNR model in (23) exact [4]. It has
been shown in [6], based on (22-24), that this optimization crite-
rion is equivalent to the following iteratively reweighted SNLLS-
based bitrate maximizing FD-MMSE-TEQ (IR-SNLLS-based
BM-FD-MMSE-TEQ) criterion (explained below) [10]:

min
θθθ

1
K

K

∑
k=1

∥∥∥diag
(√

γ̌γγK,θθθ prev

)
ek,θθθ

∥∥∥2
(25)

with ěk,n,θθθ n
= d̃nỹk,nw− x̃k,n (26)

γ̌K,n,θθθ n
=

(
SNRK,n,θθθ n

+1
)2

σ2
K,n,x̃

(
SNRK,n,θθθ n

+Γn
) (27)

SNRK,n,θθθ n
=

σ2
K,n,x̃

1
K ∑K

k=1

∥∥ěk,n,θθθ n

∥∥2 =
1

ρ
−2
K,n,θθθ n

−1
(28)

ρ
2
K,n,θθθ n

=

∣∣σσσK,n,x̃ỹw
∣∣2

σ2
K,n,x̃

(
wT Σ2

K,n,ỹw
) (29)

The SNLLS-based FD-MMSE-TEQ (19) is indeed an un-
weighted version of, hence closely related to the IR-SNLLS-based
BM-FD-MMSE-TEQ (25).

IR-LS problems such as (25) are weighted LS problems where
the weights γ̌γγK,θθθ prev

depend on the LS errors ek,θθθ (here: via the sub-
channel SNRs (28)), hence on the optimization parameters θθθ . They
are typically solved as a sequence of weighted LS problems (here: a
SNLLS problem) where the weights in each iteration are computed
with the parameter estimates from the previous iteration, θθθ prev. Ac-
cording to [10], convergence occurs provided that the weights are
bounded and non-increasing in the (absolute value) of the LS errors.
For a non-convex cost function, the IR-LS algorithm leads to a local
optimum.

According to [8, 9], an SNLLS problem, such as the FD-
MMSE-TEQ criteria (19) and (25), are -as the IR-LS problem-
also solved iteratively by alternately updating the parameters w
and d̃. An iteration step for the IR-SNLLS-based BM-FD-MMSE-
TEQ criterion then consists of the computation of (1) the weights,
γ̌γγK,θθθ prev

, (2) estimates of the biased MMSE FEQs (21), d̃K , which
are the solutions of (25) for a fixed wprev and (3) a new BM-TEQ
estimate w:

w = ℜ

{
∑

n∈Sa

γ̌n
∣∣d̃n
∣∣2 Σ2

K,n,ỹ

}−1

︸ ︷︷ ︸
(Σ2

K,ỹ,γ)
−1

ℜ

{
∑

n∈Sa

γ̌nd̃nσσσ
H
K,n,x̃ỹ

}
︸ ︷︷ ︸

σσσ K,x̃ỹ,γ

(30)

with γ̌n = γ̌K,n,θθθ n,prev
and d̃n = d̃K,n, which is (similar to the PTEQ

wn (17)) the solution of a GEV problem with rank-one matrix B:

(B,A) =
(

σσσK,x̃ỹ,γ σσσ
H
K,x̃ỹ,γ ,Σ

2
K,ỹ,γ

)
(31)

For a complex TEQ, the ℜ-operators must be omitted. The itera-
tions for solving the SNLLS-based FD-MMSE-TEQ (19) do not in-
clude the first step, i.e., the weights γ̌K,n,θθθ n,prev

always equal 1. Note
that other solution strategies for SNLLS problems exist: in [8, 9],
it is argued that step (3), which solves for w keeping d̃ fixed can
be better replaced by, e.g., a much faster converging Gauss-Newton
updating step of the joint parameter vector θθθ .

2.5 Relation between the LS cost functions
Throughout the text, each LS problem has been shown to be equiv-
alent to a GEV problem (1), with the SNLLS-based criteria giving
rise to an iterative sequence of GEV problems. Table 1 summa-
rizes the encountered matrix pairs (B,A) (for real-valued TEQ and
PTEQ designs) and shows that the A matrices are closely related
autocorrelation matrices of the RX signal yl , while the B matri-
ces are closely related, often low-rank, matrices determined by a
crosscorrelation metric between the RX and TX signal yl and xl , re-
spectively. Complex TEQs or PTEQs are obtained by omitting the
ℜ-operators in Table 1.

3. SIMULATIONS

Figure 1 shows bitrate performance plots for the considered equal-
izer designs with 32 taps (both real and complex TEQs and PTEQs
are considered). The FD-SNLLS-based TEQ and IR-SNLLS-based
BM-TEQ have been computed using the iterative Gauss-Newton
algorithm suggested in Section 2.4. The bitrate is depicted for 8
downstream CSA loops with strong front-end filtering to separate
up- and downstream transmission (see [4] for details). All simula-
tions use the same synchronization delay ∆, which is determined by
the first sample index of the channel impulse response window of
ν +1 samples with maximum energy. The noise in Figure 1a is a su-
perposition of AWG noise at -140dBm/Hz, residual echo and near-
end crosstalk from 24 ADSL disturbers. In Figure 1b, severe RFI
(7 RFIs with carrier frequencies 540, 650, 680, 760, 790, 840 and
1080kHz; the first two RFIs have a power of -30dBm, the remaining
five have a power of -50dBm) is added. RFI, especially ingress from
AM radio stations, can be an important interferer in ADSL. It is
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B A

CLLS-based
TD-MMSE-TEQ

ΣT
L,xy

(
Σ2

L,x

)−1
ΣL,xy Σ2

L,y

CLLS-based
FD-MMSE-TEQ

ℜ
{
ΣH

K,x̃Ỹ

(
Σ2

x̃

)−1
ΣK,x̃Ỹ

}
=

∑n∈Sa
σ
−2
K,n,x̃ℜ

{
σσσH

K,n,x̃ỹσσσK,n,x̃ỹ

} ℜ
{
Σ2

K,Ỹ

}
= ∑n∈Sa

ℜ
{
Σ2

K,n,ỹ

}

SNLLS-based
FD-MMSE-TEQ

ℜ
{

∑n∈Sa
d̃∗K,nσσσH

K,n,x̃ỹ

}
×

ℜ
{

∑n∈Sa
d̃K,nσσσK,n,x̃ỹ

} ℜ
{

∑n∈Sa

∣∣d̃K,n
∣∣2 Σ2

K,n,ỹ

}
IR-SNLLS-based
BM-FD-MMSE-TEQ

ℜ
{

∑n∈Sa
γ̌K,n,θθθ n,prev

d̃∗K,nσσσH
K,n,x̃ỹ

}
×

ℜ
{

∑n∈Sa
γ̌K,n,θθθ n,prev

d̃K,nσσσK,n,x̃ỹ

} ℜ
{

∑n∈Sa
γ̌K,n,θθθ n,prev

∣∣d̃K,n
∣∣2 Σ2

K,n,ỹ

}

LS-based MMSE-PTEQ σ
−2
K,n,x̃ℜ

{
σσσH

K,n,x̃ỹσσσK,n,x̃ỹ

}
ℜ
{
Σ2

K,n,ỹ

}
Table 1: Real-valued TEQ/PTEQ designs as a GEV problem Bw = λAw. Complex equalizers are obtained by omitting ℜ-operators.
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Figure 1: Bitrate performance of the considered TEQ and PTEQ designs for 8 CSA loops. From left to right: TD-MMSE-TEQ, real and
complex CLLS-based FD-MMSE-TEQ, real and complex SNLLS-based FD-MMSE-TEQ, real and complex BM-TEQ, real and complex
PTEQ. (a) Without RFI. (b) With RFI.

clear from Figure 1b that in this RFI case, the BM-TEQ and PTEQ
can effectively mitigate RFI and outperform the suboptimal TEQ
designs. The SNLLS-based FD-MMSE-TEQ consistently outper-
forms the CLLS-based FD-MMSE-TEQ and TD-MMSE-TEQ and
closely approaches the BM-TEQ performance. The CLLS-based
FD-MMSE-TEQ performs worse than the TD-MMSE-TEQ; appar-
ently, it makes more sense to minimize the sum-square FEQ output
energies than the sum-square FFT output energies.
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