WEANING FROM MECHANICAL VENTILATION: FEATURE EXTRACTION FROM A STATISTICAL SIGNAL PROCESSING VIEWPOINT (TueAmPO3)

Author(s): Pablo Casaseca De La Higuera (Universidad de Valladolid, Spain)
Rodrigo De-Luis-García (Universidad de Valladolid, Spain)
Federico Simmross-Wattenberg (Universidad de Valladolid, Spain)
Carlos Alberola-López (Universidad de Valladolid, Spain)

Abstract:
Clinicians’ decision for mechanical aid discontinuation is a challenging task that involves a complete knowledge of a great number of clinical parameters, as well as its evolution in time. Respiratory pattern variability appears as a useful extubation readiness indicator, and thus can be used as an informative feature in a statistical pattern recognition framework. Reliable assessment of this variability involves a set of signal processing techniques that should be carefully evaluated for statistical validity. This paper evaluates different variability extraction techniques aimed to build a Bayesian classifier for weaning readiness decision. As a conclusion, Sample Entropy is selected as the best performance extraction method. By calculating it over tidal volume signals, and with mean respiratory rates as additional input patterns, a 2D Bayesian classifier is constructed with principal component analysis selection. The obtained misclassification probability ($P_e = 0.2141$) is acceptable if compared with performance of single feature classifiers.