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ABSTRACT 
Support Vector Machines is a very attractive and useful tool 
for classification and regression; however, since they rely on 
subtle and complex algebraic notions of optimization theory, 
lose their elegance and simplicity when implementation is 
concerned. It has been shown that the SVM solution, for the 
case of separate classes, corresponds to the minimum dis-
tance between the respective convex hulls. For the non-
separable case, this is true for the Reduced Convex Hulls 
(RCH). In this paper a new geometric algorithm is pre-
sented, applied and compared with other non-geometric al-
gorithms for the non-separable case. 

1. INTRODUCTION 

Geometry provides a very intuitive background for the 
understanding and the solution of many problems in the 
fields of Pattern Recognition and Machine Learning, which, 
in turn, play a decisive role in Signal and Image Processing. 

Support Vector Machine (SVM) paradigm in pattern rec-
ognition presents a lot of advantages over other approaches 
(e.g., [4], [10]), some of which are: 1) the assurance that 
once a solution has been reached, it is the unique (global) 
solution, 2) good generalization properties of the solution, 
3) reduced number of tuning parameters and, last but not 
least, 4) clear geometric intuition on the classification pro-
cedure. 

The contribution of this work consists of the following: 
1) It exploits the intrinsic geometric intuition to the full 
extend, i.e., not only theoretically but also practically (lead-
ing to a novel algorithmic solution), in the context of classi-
fication through the SVM approach, 2) it provides, for the 
first time, the theoretical background for a geometric solu-
tion of the non-separable (both linear and non-linear) classi-
fication problems with linear (1st degree) penalty factors, by 
means of the reduction of the size of the convex hulls of the 
training patterns, 3) it provides an easy way to relate each 
class with a different penalty factor, i.e., to relate each class 
with a different risk (weight), 4) it develops, for the first 
time, an efficient algorithm for the computation of the 
minimum distance between the RCHs and finally 5) it 
opens the road for applying other geometric algorithms, 
finding the closest pair of points between convex sets in 
Hilbert spaces, for the non-separable SVM problem. 
 

2. SUPPORT VECTOR MACHINES 

Simply stated, a SVM finds the best separating (maximal 
margin) hyperplane between the two classes of training 
samples in the feature space, which leads to maximal gen-
eralization. The patterns in the original, low dimensional 
space X , are mapped ( :Φ →X H ) in a high-dimensional 
feature space H , which is  a Reproducing Kernel Hilbert 
Space (RKHS). It is not necessary to know the map itself 
analytically, but only its kernel, i.e., the value of the inner 
products of the mappings of all the samples 
( ( ) ( ) ( )1 2 1 2, ,k x x x x= Φ Φ  for all pairs of samples 

1 2,x x ∈X ) [9]. Through this “kernel trick”, it is possible to 
transform a nonlinear classification problem to a linear one, 
but in a higher (maybe infinite) dimensional space. 

Although some authors have presented the theoretical 
background of the geometric properties of SVMs, exposed 
thoroughly in [11], the main stream of solving methods 
comes from the algebraic field (mainly decomposition). 
One of the best representative algebraic algorithms with 
respect to speed and ease of implementation, also present-
ing very good scalability properties, is the Sequential 
Minimal Optimization (SMO)  [8]. The geometric proper-
ties of learning [1] and specifically of SVMs in the feature 
space, have been pointed out early enough, through the dual 
representation (i.e., the convexity of each class and finding 
the respective support hyperplanes that exhibit the maximal 
margin) for the separable case [2] and also for the non-
separable case through the notion of the Reduced Convex 
Hull (RCH) [3]. Actually, the geometric algorithms pre-
sented until now ([7], [5]) are suitable only for solving di-
rectly the separable case and indirectly the non-separable 
case through the trick proposed in [6]. However, the latter 
(artificially extending the dimension of the input space by 
the number of training patterns) is equivalent  to a quadratic 
penalty factor and, besides the increase of complexity, due 
to the artificial expansion of the dimension of the input 
space, it has been reported that the generalization properties 
of the resulting SVMs can be poor [7]. 

In this work, we support the notion of the RCH with the 
sufficient mathematical background, so that to overcome 
the combinatorial complexity problems inherent in RCH 
constructs and, therefore, making it suitable for solving 



efficiently the SVM problem, employing geometric argu-
ments. 

3. REDUCED CONVEX HULLS (RCH) 

The set of all convex combinations of points in some set 
C , with the additional constraint that each coefficient ia  is 
upper-bounded by a non-negative number 1µ <  is called 

the reduced convex hull of C  and denoted ( )R ,C µ : 

( ) { }1 1
R , : ,  ,  1,  0k k

i i i i ii i
C w w a x x X a aµ µ

= =
= = ∈ = ≤ ≤∑ ∑

 
In this way, the initially overlapping convex hulls, with a 

suitable selection of the bound µ , can be reduced so that to 
become separable. Once separable, the theory and tools 
developed for the separable case can be readily applied. 
The algebraic proof is found in [3] and [2] and the geomet-
ric one in [11]. 

The effect of the value of bound µ  to the size of the 
RCH is presented in Fig. 1. 

 
Fig. 1. The RCHs ( )R P5, 2 5  is shown – generated by 5 points (stars) and 

having 2 5µ =  – to present the points that are candidates to be extreme ( 
marked by small squares). Each point in the RCH is labeled in order to 
present the original points from which it has been constructed; the last 
label is the one with the lowest coefficient. 
 

In the sequel, we will prove some theorems and proposi-
tions that shed further intuition and usefulness to the RCH 
notion and at the same time form the basis for the develop-
ment of the novel algorithm, proposed in this paper. 

The main rationale of our methodology consists of the 
following steps: 1) Any convex hull is defined by its ex-
treme points, 2) We prove that the extreme points of a RCH 
are computed by a specific finite linear combination of the 
points of the originally convex hull, 3) We prove that the 
minimum projection of a RCH onto a certain direction is a 
specific linear combination of the projections of its extreme 
points. The respective proofs will only be sketched here due 
to limited space. 

Theorem 1: The extreme points of a RCH  

( ) { }1 1
R , : ,   ,   1,   0k k

i i i i ii i
C w w a x x X a aµ µ

= =
= = ∈ = ≤ ≤∑ ∑

 have coefficients ia  belonging to the set 

{ }0, 1 1 ,S µ µ µ= − ⎢ ⎥⎣ ⎦ , where 1 µ⎢ ⎥⎣ ⎦  is the integral part 

of the ratio 1 µ . 
Proof:  The proof is rather lengthy, so suitable sketch of 

it is presented here. In the case that 1µ =  the theorem is 
obviously true. For 0 1µ< <  the theorem will be proved by 

contradiction: Assuming that a point  ( )R ,w C µ∈  is an 
extreme point, with some coefficients not belonging in S , a 
couple of other points ( )1 2, R ,w w C µ∈  is needed to be 
found and then to be proved that w  belongs to the line 
segment [ ]1 2,w w . But since two other points are needed, at 
least two coefficients have to be found not belonging in S . 
Therefore, the first aim is to prove, by contradiction, that 
any point ( )R ,w C µ∈  cannot have only one coefficient 
not belonging in S . Afterwards, using these coefficients, it 
is easy to construct a couple of points ( )1 2, ,w w C µ , such 
that w  is the middle point of the line segment joining them. 
 

Proposition 1: Each of the extreme points of a RCH  

( ) { }1 1
R , : ,   ,   1,   0k k

i i i i ii i
C w w a x x X a aµ µ

= =
= = ∈ = ≤ ≤∑ ∑

 is a reduced convex combination of 1m µ= ⎡ ⎤⎢ ⎥  (distinct) 

points of the original set X , where 1 µ⎡ ⎤⎢ ⎥  is the smallest 

integer for which it is 1 1µ µ≥⎡ ⎤⎢ ⎥ . Furthermore, if 

1 1µ µ= ⎡ ⎤⎢ ⎥  then all ia µ= ; otherwise, ia µ=  for 

1, , 1i m= −…  and 1 1ma µ µ= − ⎢ ⎥⎣ ⎦ . 
Sketch of the Proof: Theorem 1 states that the only coef-

ficients through which a point from the original set X  con-
tributes to an extreme point of the RCH ( )R ,C µ  are either 

µ  or 1 1 µ µ− ⎢ ⎥⎣ ⎦ . Furthermore, the fact that only one coef-

ficient with value 1 1 0µ µ− >⎢ ⎥⎣ ⎦  can be present, is proved 

by contradiction.  
Theorem 2: The minimum projection of the extreme 

points of a RCH 

( )
1 1

R , : ,   ,   1,   0
k k

i i i i i
i i

C w w a x x X a aµ µ
= =

⎧ ⎫
= = ∈ = ≤ ≤⎨ ⎬
⎩ ⎭

∑ ∑
 in the direction p  (setting 1 1λ µ µ= − ⎢ ⎥⎣ ⎦  and 

1m µ= ⎢ ⎥⎣ ⎦ ) is: 

• 
1 j

m
ij

sµ
=∑  if 0 µ<  and 0λ =  

• 
11 j m

m
i ij

s sµ λ
+=

+∑  if 0 λ µ< <  

where ( )|
ji js p x p=  and is  is an ordering, such that 

p qi is s≤  if p q< .  

The effect of Theorem 2 is illustrated in Fig. 2. 
 



Proposition 2: A linearly non-separable SVM problem 
can be transformed to a linearly separable one through the 
use of RCHs (by a suitable selection of the reduction factor 
µ for each class) if and only if the centroids of the classes 
do not coincide. 

Proof:  This is a direct consequence of Proposition 2, 
found in [3].  

 

 
 

Fig. 2.   The minimum projection p  of the RCH ( )R P3,3 5 , generated 

by 3 points and having 3 5µ = , onto the direction 2 1w w−  belongs to the 
point (01), which is calculated, according to Theorem 2, as the ordered 
weighted sum of the projection of only 5 3 2=⎡ ⎤⎢ ⎥  points ((0) and (1)) of 
the 3 initial points. The magnitude of the projection, in lengths of 

2 1w w−  is  ( )( ) ( ) ( )0 2 1 1 2 13 5 | 2 5 |x w w x w w− + − . 

4. GEOMETRIC ALGORITHM FOR THE SVM 

An iterative, geometric algorithm for solving the linearly 
separable SVM problem has been presented recently in [5]. 
This algorithm  is adapted here, with the mathematical tool-
box for RCHs presented above, to solve the non-separable 
SVM problem and can be described by the following three 
steps: 
1. Initialization:  

a. Set 1 1 11 1λ µ µ≡ − ⎢ ⎥⎣ ⎦ , 1 11m µ≡ ⎢ ⎥⎣ ⎦ , 

2 2 21 1λ µ µ≡ − ⎢ ⎥⎣ ⎦ , 2 21m µ≡ ⎢ ⎥⎣ ⎦  and secure that 

1 11 Iµ ≥  and 2 21 Iµ ≥ . 

b. Set the vectors 1w  and 2w  to be the centroids of 
the corresponding convex hulls, i.e., set 

11ia I= , 1i I∈  and 21ia I= , 2i I∈ . 
2. Stopping condition: Find the vector 

{ }
{ }

1 1

2 2

1 1 1

2 2 2

, 0, , , 1

, 0, , , 1
r i i i ii I i I

r
r i i i ii I i I

z b x b b
z

z b x b b

λ µ

λ µ
∈ ∈

∈ ∈

⎧ = ∈ =⎪= ⎨
= ∈ =⎪⎩

∑ ∑
∑ ∑

 (actually the coefficients ib ) such that 

( ) ( )
( ) ( )( )

1 1 1 2 2 2
1 2

, , ,
arg min ,

r r
r r r

z R X z R X
z m z m z

µ µ∈ ∈
=  where 

 ( )
( )

( )

1 2 1 2
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2 1 2 1
2 2 2

1 2

,
, R ,

,
, R ,

r
r

r
r

r

z w w w
z X

w w
m z

z w w w
z X

w w

µ

µ

⎧ − −
∈⎪ −⎪= ⎨

− −⎪ ∈⎪ −⎩

. 

The quantity ( )rm z  actually represents the distance 
of one of the closest points ( 1w  or 2w ) from the clos-
est projection of the RCH of the other class, onto the 
line defined by the points 1w  and 2w . 

If the ε -optimality condition 
( )1 2 rw w m z ε− − <  holds, then the vector 

1 2w w w= −  and ( )2 2
1 21 2c w w= −  defines the 

ε -solution; otherwise go to step 3. 
3. Adaptation: If ( )1 1 1,r rz z R X µ= ∈ , set 2 2

neww w=  

and compute ( )
1 1 1 1 11new

rw q z q w= + − , where 

1 2 1 1
1 2

1 1

,
min 1, r

r

w w w z
q

w z

⎛ ⎞− −
⎜=
⎜ −⎝ ⎠

, which means 

( )1 11new
i i ia q b q a= + − , 1i I∈ ; otherwise, set 

1 1
neww w=  and compute ( )

2 2 21new
rw qz q w= + − , 

where 2 1 2 2
2 2

2 2

,
min 1, r

r

w w w z
q

w z

⎛ ⎞− −
⎜=
⎜ −⎝ ⎠

, which 

means ( )2 21new
i i ia q b q a= + − , 2i I∈ . Continue with 

step 2. 
 

The quantities to be calculated involve minimum projec-
tions of the RCHs onto 1 2w w w= −  or inner products of the 
RCH points presenting such minimum projections. There-
fore, the calculations are done efficiently after the applica-
tion of the mathematical background presented above. 

This algorithm has almost the same complexity as the 
Schlesinger – Kozinec one (the extra cost is the sort in each 
step to find the least 11 µ⎡ ⎤⎢ ⎥  and 21 µ⎡ ⎤⎢ ⎥  inner products, 

plus the cost to evaluate the inner product ,r rz z ) and the 

same caching scheme can be used, with only ( )1 2O I I+  

storage requirements. 

5. RESULTS 

Some representative results are included, concerning 
only non-separable cases, since the separable cases work in 
exactly the same way as the initial algorithm. The results 
were compared with the SMO algorithm for the training 
total run time and the number of kernel evaluations and 
summarized in Table I. The test cases were run in an Intel 
Pentium 4 PC. 
• Linear non-separable case: A 2-dimensional sample 

space of 390 (Class A) and 395 (Class B) randomly 



generated samples was used. Each sample attribute 
ranged from -0.5 to 0.5 and the margin was -0.1 (nega-
tive margin indicates the overlapping between classes). 

• Non-linear non-separable case: A 2-dimensional sam-
ple space of 390 (Class A) and 395 (Class B) randomly 
generated samples were used, based on the checkers’ 
board pattern. Each sample attribute ranged from -4 to 
4 and the margin was -0.2. The kernel used was RBF 
with 1.8σ = . 

 
 

 
Fig.   1.   Classification results for the non-linear non-separable case for 
SMO (a) and RCH-SK (b) algorithms.  

 
The resulting separating surfaces, (shown in Fig.   1 only 

for the non-linear case), were very close for both methods 
((a) SMO and (b) RCH-SK proposed here). The bold solid 
line represents the separating hypersurface (value 0), the 
thin solid lines correspond to values -0.5 and 0.5 and the 
dashed thin lines to the values -1.0 and 1.0 respectively. 
The circled patterns correspond to support vectors. The 
computational time requirements (along with the parame-
ters used for each method) are shown in Table I, from 
which the advantages of our new method are apparent. 
Method Kernel Time 

(sec) 
Kernel 
evalutions 

Parameters 

SMO Linear 885.6 19459278 C=50,  tol=0.001  
RCH-
SK 

Linear 156.7 5453801 1 2 0.006µ µ= = , 

0.0001ε =  
SMO RBF 641.5 10264378 C=10,  tol=0.001  
RCH-
SK 

RBF 
179.5 3699596 1 2 0.03µ µ= = , 

0.07ε =  
Table I : Comparative results for the SMO algorithm with the algorithm 
presented in this work (RCH-SK). 

6. CONCLUSION 

A new geometric algorithm for implementing a SVM 
classifier has been presented. The algorithm computes the 
minimum distance between the RCHs of the two classes. It 
is the first time in the literature that such an algorithm is 
presented for the non-separable classification task. Also, the 
paper presented the proofs of new results concerning RCHs 
and projections on a direction. These theorems were neces-
sary for the development of the new algorithm. 
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