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ABSTRACT
The constant modulus algorithm (CMA) is arguably the
most widespread iterative method for blind equalization of
digital communication channels. The present contribution
studies a recently proposed technique aiming at avoiding the
shortcomings of conventional gradient-descent implementa-
tions. This technique is based on the computation of the
step size leading to the absolute minimum of the CM crite-
rion along the search direction. For the CM as well as other
equalization criteria, this optimal step size can be calculated
algebraically at each iteration by finding the roots of a low-
degree polynomial. After developing the resulting optimal
step-size CMA (OS-CMA), the algorithm is compared to its
conventional constant step-size counterpart and more recent
alternative CM-based methods. The optimal step size seems
to improve the conditioning of the equalization problem as in
prewhitening (e.g., via a prior QR decomposition of the data
matrix), although it becomes more costly for long equalizers.
The additional exploitation of the i.i.d. assumption through
prewhitening can further improve performance, an outcome
that had not been clearly interpreted in former works.

1. INTRODUCTION

An important problem in digital communications is the re-
covery of the data symbols transmitted through a distorting
medium. The constant modulus (CM) criterion is proba-
bly the most widespread blind channel equalization princi-
ple [1]. The CM criterion generally presents local extrema
— often associated with different equalization delays — in
the equalizer parameter space [2]. This shortcoming renders
the performance of gradient-based implementations, such as
the well-known constant modulus algorithm (CMA), very
dependent on the equalizer impulse response initialization.
Even when the absolute minimum is found, convergence can
be severely slowed down for initial equalizer settings with
trajectories in the vicinity of saddle points [3, 4]. Also, the
constant value of the step-size parameter (or adaption coeffi-
cient) must be carefully selected to ensure a stable operation
while balancing convergence rate and final accuracy (misad-
justment or excess mean square error). The stochastic gra-
dient CMA (SG-CMA) drops the expectation operator and
approximates the gradient of the criterion by a one-sample
estimate, much in the LMS fashion. This rough approxima-
tion generally leads to slow convergence and poor misadjust-
ment, even if the step size is carefully selected.

Block (or fixed-window) methods obtain a more precise
gradient estimate from a batch of channel output samples,
improving convergence speed and accuracy [5]. Tracking ca-
pabilities are preserved as long as the channel remains sta-
tionary over the observation window. The block-gradient
CMA (simply denoted as CMA hereafter) is particularly
suited to burst-mode transmission systems. Unfortunately,
the multimodal nature of the CM criterion sustains the neg-
ative impact of local extrema in block implementations. The

* Royal Academy of Engineering Research Fellow.

block CMA method of [5] is based on a preliminary QR de-
composition of the data matrix, followed by power iterations
on an equivalent kurtosis minimization criterion. An ap-
propriate choice of the step size ensures the monotonic con-
vergence of this algorithm (referred to as QR-CMA herein),
although global convergence is not guaranteed. The recur-
sive least squares CMA (RLS-CMA) [6], which operates on a
sample-by-sample basis, also proves notably faster and more
robust than the SG-CMA. The derivation of the RLS-CMA
relies on an approximation to the CM cost function in sta-
tionary or slowly varying environments, where block imple-
mentations may actually prove more efficient in exploiting
the available information (the received signal burst). More-
over, the problems posed by local extrema are not explic-
itly addressed by the RLS approach. Another attempt to
improve convergence is based on an adaptive control tuner
that adjusts the second derivative of the equalizer tap esti-
mates [7]. This accelerating adaptive filtering CMA (AAF-
CMA) presents enhanced convergence rate and tracking ca-
pabilities relative to the SG-CMA, and is able to avoid shal-
low local extrema.

A recently proposed methodology to avoid the short-
comings derived from the multimodality of the CM criterion
consists of performing consecutive one-dimensional absolute
minimizations of the cost function. This technique, known as
exact line search or steepest descent, is generally considered
inefficient [8]. However, it was first observed in [9] that the
value of the adaption coefficient that leads to the absolute
minimum of most blind cost functions along a given search
direction can be computed algebraically. It was conjectured
that the use of this algebraic optimal step size could not
only accelerate convergence but also avoid local extrema in
some cases. The present contribution carries out the theoret-
ical development and experimental evaluation of the optimal
step-size CMA (OS-CMA) derived from this idea, which was
briefly presented in [10] under a different name. The OS-
CMA is then compared to other CM-based implementations
such as the CMA, the QR-CMA, the RLS-CMA and the
AAF-CMA.

2. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbols {sn} are transmitted at a known
baud-rate 1/T through a time dispersive channel with im-
pulse response h(t). The channel is assumed linear and
time-invariant (at least over the observation window), with
a stable, causal and possibly non-minimum phase transfer
function, and comprises the transmitter pulse-shaping and
receiver front-end filters. Assuming perfect synchroniza-
tion and carrier-residual elimination, baud-spaced sampling
yields the discrete-time channel output

xn =
∑

k

hksn−k + vn (1)

in which xn = x(nT ), x(t) denoting the continuous-time
baseband received signal. Similar definitions hold for hk



and the additive noise vn. Eqn. (1) represents the so-called
single-input single-output (SISO) signal model. This model
applies to scenarios where diversity in the form of time over-
sampling or multiple receive sensors is not available. The
interest in the SISO model lies in its ‘hardness’: in gen-
eral, FIR channels cannot be perfectly equalized using FIR
filters. By contrast, in multichannel configurations, giving
rise to multiple-output models (SIMO, MIMO), FIR chan-
nels accept zero-forcing FIR equalizers under relatively mild
length-and-zero conditions [11]. The results presented in this
paper are easily transposable to multichannel models [10,13].

To recover the original data symbols from the received
signal, a linear equalizer is employed with finite impulse re-
sponse spanning L baud periods f = [f1, f2, . . . , fL]T ∈ CL,
This filter produces the output signal yn = fHxn, where
xn = [xn, xn−1, . . . , xn−L+1]

T ∈ CL. The equalizer vector
can be blindly estimated by minimizing the CM cost func-
tion [1]:

JCM(f) = E
{(
|yn|2 − γ

)2}
(2)

where γ = E{|sn|4}/E{|sn|2} is a constellation-dependent
parameter. The CMA is a gradient-descent iterative proce-
dure to minimize the CM cost. Its update rule reads

f ′ = f − µg (3)

where g
def
= ∇JCM(f) = 4E

{
(|yn|2 − 1)y∗nxn} is the gradient

vector at point f , and µ represents the step-size parameter.
In the sequel, we assume that a block of length Nd baud
periods xn is observed at the channel output, from which
N = (Nd − L + 1) vectors xn can be constructed.

3. OPTIMAL STEP-SIZE CMA

3.1 Steepest-Descent Minimization

Steepest-descent minimization consist of finding the absolute
minimum of the cost function along the line defined by the
search direction (typically the gradient) [8]:

µopt = arg min
µ

JCM(f − µg). (4)

In general, exact line search algorithms are unattractive be-
cause of their relatively high complexity. Even in the one-
dimensional case, function minimization must usually be per-
formed using costly numerical methods. However, it was
originally observed in [9] that the CM cost JCM(f − µg) is a
low-degree rational function in the step size µ. Consequently,
it is possible to find the optimal step size µopt in closed form
among the roots of a simple polynomial in µ. Exact line min-
imization of function (2) can thus be performed at relatively
low complexity.

3.2 Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the deriva-
tive of JCM(f −µg) with respect to µ is the 3rd-degree poly-
nomial

p(µ) = d3µ
3 + d2µ

2 + d1µ + d0 (5)

with real-valued coefficients given by

d3 = 2E{a2
n}, d2 = 3E{anbn}

d1 = E{2ancn + b2
n}, d0 = E{bncn}

(6)

where an = |gn|2, bn = −2IRe(yng∗n), and cn = (|yn|2 − γ),
with gn = gHxn.

Alternatively, the coefficients of the OS-CMA polynomial
can be obtained as a function of the sensor-output statistics
as:

d3 = Cgggg, d2 = −3IRe(Cgggf )
d1 = 2Cffgg + IRe(Cfgfg)− γCgg, d0 = IRe(γCfg − Cfffg)

(7)

where

Cabcd
def
= E{aHxxHbcHxxHd} =

∑
ijkl

E{x̃ix̃
∗
j x̃kx̃∗l }a∗i bjc

∗
kdl

and Cab
def
= aHRx̃b, with Rx̃ = E{xxH} denoting the

sensor-output covariance matrix. This second procedure
needs to compute in advance the sensor-output covari-
ance matrix Rx̃ and 4th-order moments E{x̃ix̃

∗
j x̃kx̃∗l }, 1 6

i, j, k, l 6 L. Coefficients (6)–(7) are derived in the Ap-
pendix.

Having obtained its coefficients through any of the above
equivalent procedures, the roots of polynomial (5) can be
extracted as explained in Sec. 3.3. The optimal step size
corresponds to the root attaining the lowest value of the
cost function, thus accomplishing the global minimization of
JCM in the gradient direction. Once µopt has been deter-
mined, the filter taps are updated as in (3), and the process
is repeated with the new filter and gradient vectors, until
convergence. This algorithm is referred to as optimal step-
size CMA (OS-CMA). Specifically, we call OS-CMA-1 the
method resulting from coefficient computation (6), and OS-
CMA-2 that obtained from (7). Note that both methods are
equivalent in equalization performance and convergence rate
measured in terms of iterations. The only difference lies in
their computational cost in number of operations (Sec. 3.5).

To improve numerical conditioning in the determina-
tion of µopt, gradient vector g should be normalized before-
hand. Since the relevant parameter is the search direction
g̃ = g/‖g‖, this normalization does not cause any adverse
effects. Accordingly, vector g is substituted by g̃ when com-
puting the polynomial coefficients (6)–(7) and in the update
rule (3).

3.3 Root Extraction

Standard analytical procedures such as Cardano’s formula,
or more efficient iterative methods [12], are readily available
for obtaining the roots of 3rd-degree polynomial (5); an effi-
cient MATLAB implementation, valid for polynomials with
real or complex coefficients, is given in [13]. Concerning the
nature of the roots, two options are possible: either all three
roots are real, or one is real and the other two form a com-
plex conjugate pair. If all three roots are real valued, we
check which of the three real roots provides the lowest value
of JCM(f −µg). In our experiments, when one root was real
and the other two formed a complex conjugate pair, the real
root typically provided the lowest value of the cost function.
Even when the real root did not yield the lowest JCM, it gen-
erally produced better output mean square error (MSE) than
the complex roots. Hence, the real root should be preferred.

3.4 Preliminary Convergence Analysis

By design of steepest-descent methods, gradient vectors at
consecutive iterations are orthogonal, which, depending on
the initialization and the shape of the cost-function surface,
may slow down convergence [8]. In the OS-CMA, gradi-
ent orthogonality is mathematically represented by relation
IRe(gHg′) = 0, with g′ = ∇JCM(f ′). In our experiments, the
OS-CMA always converged in less iterations than its con-
stant step-size counterpart [13]. Likewise, fast convergece
and improved stability have been independently reported
in [10]. In addition, the frequency of misconvergence to local
extrema is diminished with the use of the optimal step-size
strategy, as empirically demonstrated in [13] and briefly in
Section 4.

3.5 Computational Complexity

The computational load of the OS-CMA is mainly due to the
calculation of the polynomial coefficients (6) or (7). Mathe-



Table 1: Computational cost in number of flops for several
CM-based algorithms (single-input case). L: number of taps
in equalizer vector; N : number of data vectors in observed
signal burst.

initialization per iteration

SG-CMA — 2(L + 1)
CMA — 2N(L + 1)
OS-CMA-1 — N(6L + 15)

OS-CMA-2 N
[(L+3

4

)
+

(L+1
2

)]
6L4 + 3L2 + 2L

QR-CMA 4L2N 2(L + 2)N
RLS-CMA — L(4L + 7)
AAF-CMA — 6L

matical expectations are in practice approximated by sample
averaging across the observed signal burst. The computa-
tional cost of these averages in (6) is of order O(NL) per
iteration, for data blocks composed of N sensor vectors xn.
The cost per iteration of the alternative procedure (7) is ap-
proximately of order O(L4). However, the second procedure
needs to compute in advance the sensor-output 4th-order
statistics, E{x̃ix̃

∗
j x̃kx̃∗l }, 1 6 i, j, k, l 6 L, incurring in an

additional cost of O(NL4) operations. Depending on the
number of iterations for convergence and the relative values
of N and L, this initial load may render the second method
more costly.

Table 1 provides the figures for the OS-CMA compu-
tational cost in terms of the number of real floating point
operations or flops (a flop represents a multiplication or a di-
vision followed by an addition or a subtraction). Also shown
are the values for other CM-based methods. Only dominant
terms in the relevant parameters (L, N) are retained in the
flop-count calculations. Real-valued signals and filters are as-
sumed, although analogous values can similarly be obtained
for the complex-valued scenario. The cost of extracting the
roots of the step-size polynomial does not depend on (L, N)
and can thus be considered negligible (see Section 3.3).

3.6 Variants

The algebraic optimal step-size technique can also be applied
to other blind equalization criteria. The kurtosis maximiza-
tion (KM, also known as Shalvi-Weinstein) criterion [14] can
be globally minimized along a given direction by rooting a
polynomial degree 5 in µ (details are omitted due to the lack
of space). This would give rise to the OS-KMA, with a com-
putational cost per iteration similar to that of the OS-CMA.
The optimal step-size technique remains applicable if the re-
ceived data are prewhitened, e.g., using a QR decomposition
of the data matrix, as in the QR-CMA method of [5]. Ac-
cordingly, we refer to the optimal step-size KM algorithm
with prewhitening as OS-QR-KMA. Prewhitening improves
conditioning and may lead to faster convergence under the
i.i.d. input assumption.

4. EXPERIMENTAL RESULTS

The following experiments evaluate the comparative perfor-
mance of the OS-CMA. Bursts of Nd = 200 baud periods
are observed at the output of a baud-spaced order-4 channel
(M = 4) excited by an i.i.d. BPSK source (γ = 1) and cor-
rupted by AWGN with 10-dB SNR. To test robustness to the
channel configuration, the channel impulse response coeffi-
cients are randomly drawn from a zero-mean unit-variance
real-valued Gaussian distribution before processing each of
500 independent signal bursts. The typical center-tap filter
serves as equalizer tap vector initialization. Iterations are
stopped when ‖f ′ − f‖/‖f‖ < 0.1µ/

√
N , where ‖ · ‖ denotes

the Euclidean norm, and µ is the constant step size cho-

sen for the conventional CMA. To limit complexity, a higher
bound of 500L iterations is set. The final equalizer vector is
scaled to provide the lowest MSE value among all possible
extraction delays. The same signal bursts, channel impulse
response, and termination test are used for all methods un-
der study. Regarding the methods’ parameters, an adaption
coefficient µ = 10−4 is chosen in a bid to prevent divergence
of the conventional block CMA. The QR-CMA operates with
the optimal value of [5, Secs. 4–5] (α = 2/3). The RLS-CMA
is run with the typical forgetting factor λ = 0.99 and inverse
covariance matrix initialized at the identity (δ = 1). The val-
ues m1 = 0.15, κ = 100, µ = 0.5 are used for the AAF-CMA,
as suggested in [7]. In the latter two methods, which oper-
ate on a sample-by-sample basis, the received signal block is
re-used as many times as required.

The average output MSE after convergence as a function
of the equalizer length L is shown in Fig. 1, where the same
500 signal bursts are used at each value of L. Also plot-
ted as a reference is the performance of the minimum MSE
(MMSE) equalizer with optimum delay. Since the optimum-
delay MMSE equalizer typically lies close to the CM-cost
global extrema [4], the distance to the MMSE-bound curve
provides an indication of global convergence. The average
overall computational complexity (flops) for convergence in
the same experiment appears in Fig. 2. The complexity of
the OS-QR-KMA is very close to that of the OS-CMA (with
a small extra cost due to prewhitening) and has not been
plotted for the sake of clarity.

The OS-CMA considerably improves its conventional
constant-step counterpart and the AAF-CMA; also, it
slightly outperforms the RLS-CMA over the whole equalizer-
length range, and the QR-CMA for short equalizer lengths.
Hence, the OS-CMA ability to escape local extrema [9, 13]
seems more evident in lower-dimensional equalizer spaces.
As expected, the OS-CMA-2 is more complex than the OS-
CMA-1 for long equalizers, due to the extra complexity in-
troduced by the computation of the sensor-output 4th-order
moments before starting the iterations. The OS-CMA-1
complexity remains above that of the other non-conventional
methods in this scenario. Nevertheless, the OS-CMA ap-
pears less complex than the conventional CMA, as it con-
verges in over an order of magnitude fewer iterations. Just
like the QR-CMA, the OS-QR-KMA takes advantage of both
the constellation and the i.i.d. character of the input signal.
With the incorporation of the algebraic optimal step-size,
the OS-QR-KMA is able to outperform the QR-CMA, get-
ting closer to the MMSE bound and requiring up to an order
of magnitude less iterations, yet becoming more costly for
longer equalizers.

5. CONCLUSIONS

Global line minimization of the CM cost function can be
carried out algebraically by finding the roots of a 3rd-degree
polynomial with real coefficients. The resulting blind equal-
ization algorithm, the OS-CMA, has been studied in this
contribution, which expands the brief description of this
technique independently developed in [10]. The OS-CMA
clearly outperforms in equalization quality and cost the con-
ventional constant step-size CMA; it is also able to improve
other non-conventional methods for short equalizer lengths.
The exploitation of the i.i.d. assumption through prewhiten-
ing (e.g., based on a QR decomposition of the data matrix)
can further improve performance regardless of the criterion
employed (CM, KM); this feature has not been clearly inter-
preted in previous works [5]. The optimal step size seems
to have a conditioning effect similar to prewhitening, as
both techniques yield very similar results, the former be-
coming less costly for short equalizer settings. The optimal
step-size strategy, which is not exclusive to the CM crite-
rion [15, 16], can also be easily implemented in semi-blind
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Figure 1: Equalizer output MSE after convergence.

operation [16, 17], and its extension to multichannel config-
urations (e.g., the SIMO model) is straightforward [13]. In
consequence, this strategy arises as a promising approach to
improving the performance of blind equalizers in burst-mode
transmission systems. Further work should include a more
comprehensive performance evaluation and comparison in a
wider variety of equalization scenarios, and the search for
new variants aiming at a reduced complexity in large equal-
izer spaces.

Appendix: Coefficients of Step-Size Polynomial

Method 1: Let f ′ = f − µg. Then JCM(f ′) = E{(|f ′Hxn|2 − γ)2}.
Calling yn = fHxn and gn = gHxn, we have |f ′Hxn|2 = µ2|gn|2−
2µIRe(yng∗n) + |yn|2. Hence, JCM(f ′) = E{(anµ2 + bnµ + cn)2},
with an = |gn|2, bn = −2IRe(yng∗n) and cn = (|yn|2 − γ). Ex-
panding the square results in JCM(f ′) = µ4E{a2

n}+2µ3E{anbn}+
µ2E{b2n + 2ancn} + 2µE{bncn} + E{c2n}. Taking the derivative
with respect to µ and eliminating common constant factors, we
finally arrive at the polynomial with the coefficients shown in (6).

Method 2: JCM(f ′) = E
{(
|f ′Hx|2 − γ

)2}
= E{|f ′Hx|4} −

2γE{|f ′Hx|2} + γ2. In the first place, E{|f ′Hx|2} =

E{f ′HxxHf ′} = µ2Cgg−2µIRe(Cfg)+Cff , where Cab = aHRx̃b,

Rx̃ = E{xxH}, a, b ∈ CL. Similarly, let us denote

Cabcd = E{aHxxHbcHxxHd} =

L∑
ijkl=1

E{x̃ix̃
∗
j x̃kx̃∗l }a

∗
i bjc∗kdl

with a ,b, c, d ∈ CL, which shows the symmetry properties
Cabcd = Ccdab = Ccbad = Cadcb = C∗

badc. Then, after some
algebraic simplifications, we can express

E{|f ′Hx|4} = µ4Cgggg − 4µ3IRe(Cgggf )

+ 2µ2[2Cffgg + IRe(Cfgfg)] − 4µIRe(Cfffg) + Cffff .

Combining the previous expressions, taking the derivative with
respect to variable µ and eliminating common constant factors,
one arrives at the polynomial with the coefficients given in (7).
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