
FULLY AND PARTIALLY INTERPOLATED ADAPTIVE VOLTERRA FILTERS

Eduardo L. O. Batista, Orlando J. Tobias, and Rui Seara

LINSE – Circuits and Signal Processing Laboratory
Department of Electrical Engineering
Federal University of Santa Catarina

88040-900 – Florianópolis – SC – Brazil
E-mails: {dudu, orlando, seara}@linse.ufsc.br

ABSTRACT

This paper presents two simplified algorithms to implement
adaptive Volterra filters. The central idea of the proposed
approach is the use of sparse adaptive filters to reduce the number
of coefficients to be adapted, which is the major drawback of
adaptive Volterra filters. Such filters are obtained by removing
some coefficients and then recreating them through an
interpolating scheme. A second interpolated structure exploits also
the block-size structure of the Volterra filter for coefficient
reduction. Numerical simulation results are shown to ratify the
good MSE behavior of the proposed structures.

1. INTRODUCTION

The use of a linear adaptive approach to deal with nonlinear
filtering problems is common practice. This is due to the fact that
simple and well-established tools for such filters are widely
available. In contrast to these problems, nonlinear adaptive filters
lead to better results, despite its higher computational complexity.
However, due to the significant increase of the processing capacity
of the modern digital signal processors (DSPs), the
implementation of nonlinear adaptive structures is now feasible. In
this context, Volterra adaptive filters have become an interesting
tool for nonlinear applications, such as active control [1], acoustic
echo canceling [2], identification and reduction of distortions of
loudspeaker systems [3], and satellite-channel equalization [4].
Nevertheless, adaptive Volterra filters present a serious drawback:
the total number of coefficients increases exponentially with the
required memory size, restraining in certain cases its application.
Some alternative approaches have been proposed to overcome
such a drawback. Frequency domain Volterra filters [5], Volterra
delay filters [6], and simplified Volterra filters [7] are examples of
structures presenting a lower complexity.

The present paper proposes two reduced-complexity
structures for implementing adaptive Volterra filters. The main
idea of the proposed approach is to use a sparse adaptive Volterra
filter along with an interpolator filter, such that this set behaves
(almost) as a full adaptive filter. This interpolated approach has
been applied successfully to linear filters [8], [9]. Here, we use
either this technique on all or just on higher order blocks, which
require a larger number of coefficients. This procedure gives rise
to the fully and partially interpolated adaptive Volterra filters,
respectively. Simulation results including linear adaptive, standard
Volterra, and simplified Volterra [7] filters as well as the proposed
structures are shown for performance comparison purposes.

2. VOLTERRA FILTER

The input-output relationship of a causal and discrete Volterra
filter is given by [10]

1 1 2 1

1 1

1 1 1

1 1 1 2 1 2 1 2
0 0

1 1

1 1
0

() () () (,) () ()...

 (, ,) () () ,
P P

N N N

m m m m

N N

P P P
m m m

y n h m x n m h m m x n m x n m

h m m x n m x n m
−

− − −

= = =

− −

= =

= − + − −

+ − −

∑ ∑ ∑

∑ ∑

(1)

where ()x n and ()y n represent the input and output signals,

respectively, 1(, ,)…p ph m m denotes the pth-order coefficient, N

is the memory size, and P is the filter order. From (1), this filter
can be seen as the composition of a first order linear block,
represented by 1h , followed by nonlinear blocks 2 3, , ,… Ph h h . By

denoting the output of a pth-order block as ()py n , we can rewrite

(1) as [1]

1

() ()
=

= ∑
P

p
p

y n y n , (2)

with ()py n given by

1 2 1 1

1 1 1

1 2
0 1

() (, , ,) ().
−

− − −

= = = =
= × −∑ ∑ ∑ ∏…

p p

pN N N

p p p k
m m m m m k

y n h m m m x n m (3)

Such decomposition is interesting for implementation
purposes, permitting to establish strategies for complexity
reduction. Thus, we can manipulate the whole filter or just the
coefficient-demanding blocks.

The output of the first-order (linear) block of the Volterra
filter can be expressed as

T
1 1 1() ()=y n nh x , (4)

where 1()nx denotes the first order input vector and 1h is the

coefficient vector. For the second-order block, the input-output
relationship is given by

T
2 2 2() ()=y n nh x , (5)

where
2

2

2 2 T

() [() () (1) () (1)

 (1) (1)] ,

= − − +

− − +

n x n x n x n x n x n N

x n x n N

x
 (6)

2 2 2 2

T
2 2

[(0,0) (0,1) (0, 1)

(1,1) (1, 1)] .

= −

− −

h h h N

h h N N

h
 (7)

By generalizing for the remaining blocks, we obtain the
pth-order block output given by

T() ()=p p py n nh x . (8)

By defining the Volterra input and coefficient vectors as
T T T T

V 1 2() [(), (), , ()]= … Pn n n nx x x x (9)

and
T T T T

V 1 2[, , ,]= … Ph h h h , (10)

the Volterra filter input-output relationship (1) can now be
rewritten as

T
V V() ()=y n nh x . (11)

The computational burden of Volterra filters increases
exponentially when the memory size is increased. We can note
from (6) and (7), that the second-order block presents one
coefficient for each of the second-order cross products of the input
signal samples, resulting in a larger coefficient number than that
required by the first-order block. For higher order blocks, this fact
becomes more critical, since the coefficient number needed is
proportional to the pth-order combinations of the input signal
samples, with p representing the block order. Thus, depending on
the memory size, the use of Volterra filters may be unfeasible. For
complex adaptive algorithms, such as RLS [11] and affine
projection [12], the use of Volterra filters becomes even more
restricted. By denoting as ()pD N the coefficient number for each

pth-order block of a Volterra filter with memory size given by N ,
we get [1]

(1)!
()

(1)! !

+ −=
−p

N p
D N

N p
. (12)

Then, the total number of coefficients V (,)D N P of a

Volterra filter, with order P and a memory size N , is given by
the sum of coefficients of all the involved blocks, resulting in

V
()!

(,) 1
! !

+= −N P
D N P

N P
. (13)

3. FULLY INTERPOLATED ADAPTIVE VOLTERRA
FILTER

By reducing the memory size of a Volterra filter using sparse
filters, we can achieve a substantial reduction in the coefficient
number. The filter sparsity is a function of the interpolation factor,
denoted by L . Thus, for instance, the sparse first-order input
vector 1s ()nx is obtained by removing (1)−L samples from each

L consecutive ones of the original input vector [8], resulting in

{ }T
1s s() () () (2) [(1)]n x n x n L x n L x n N L= − − − −x , (14)

with sN denoting the memory size of the sparse filter, given by

s
1

1
N

N
L

−⎢ ⎥= +⎢ ⎥⎣ ⎦
, (15)

where ⋅⎢ ⎥⎣ ⎦ represents the truncation operation.

The corresponding sparse first-order coefficient vector is
expressed as

T
1s 1 1 1 1 s{ (0) () (2) [(1)]}h h h L h L h N L= − . (16)

The remaining higher-order input and coefficient vectors are
obtained from the first-order ones as presented in Section 2.

However, by using a sparse filter we are considering a
suboptimal structure with significant loss of performance. An
input-signal interpolator filter is then used to reduce the effect of
the removed samples. This procedure leads to the interpolated
Volterra filter, depicted in Fig. 1. In this figure Vih is the sparse

Volterra filter and I denotes the impulse response of the
interpolator filter, represented by an M-coefficient FIR filter,

defined by T
0 1 1[]−= Mi i iI . The input signal and its interpolated

version are represented by ()x n and i ()x n , respectively, where
1

i
0

() ()
M

j
j

x n i x n j
−

=
= −∑ . (17)

The signal ()z n is a measurement noise, uncorrelated with any
other signal in the system. The sparse filter output signal and the
error signal are represented by ()y n and ()e n , respectively (see
Fig. 1). Hence, the first-order input vector for the
sparse-interpolated Volterra filter is given by

T
1i i i i i s() { () () (2) [(1)]} .n x n x n L x n L x n N L= − − − −x (18)

By generating the higher-order input vectors from (18), the overall
interpolated input vector denoted by Vi ()nx is constructed in the

same way as (9).

hViI
+_

Σ
y n() e n()

d n z n()+ ()

x n() x n()i

Fig. 1. Block diagram of the interpolated Volterra filter.

The entire structure of the interpolated Volterra filter can be
viewed as a full Volterra filter with coefficient constraints.
Considering it on the adaptive context, we have a constrained
Volterra filter with the need to adapt only the coefficients from the
sparse one, which is very interesting because of the Volterra
complexity drawback. The adaptive algorithm then performs the
adjustment of the coefficients towards the optimum value. Thus,
the coefficient update equation for the adaptive LMS interpolated
Volterra filter is given by

Vi Vi Vi(1) () 2 () ()+ = + µn n e n nh h x , (19)

where Vi ()nh is the coefficient vector corresponding to the

interpolated input vector Vi ()nx . Table 1 compares the number of

coefficients to be adapted by both the standard and the
interpolated approaches, highlighting the complexity difference
between these structures.

Table 1. Number of coefficients:
standard versus interpolated implementation

N P L sN V (,)D N P V s(,)D N P Reduction
(%)

3 2 2 2 9 5 44.44%
10 2 2 5 65 20 69.23%
25 2 2 13 350 104 70.29%
15 3 2 8 815 164 79.88%
30 3 2 15 5455 815 85.06%
30 3 4 8 5455 164 96.99%

It is well known that the interpolated filters do not have good
performance for modeling plants with weak correlation between
its coefficients [8], [9]. For this case, a better solution is the use of
partially interpolated Volterra filters, which are described in the
next section.

4. PARTIALLY INTERPOLATED ADAPTIVE
VOLTERRA FILTER

A second structure for implementing adaptive Volterra filters is
obtained by using the interpolated approach only on higher order
blocks. Fig. 2 depicts a second-order partially interpolated
Volterra filter. In this figure, 1h and 2ih represent the first-order

and the sparse second-order blocks, respectively, with 1()y n and

2()y n as their corresponding outputs.

hI

h1

+

+

y n()
+_

Σ
e n()

d n z n()+ ()

x n()i

Σ

y n()
2

y n()
1x n()

()n

2i()n

Fig. 2. Block diagram of a second-order partially
interpolated Volterra filter.

For the structure of Fig. 2, the filter coefficients are updated
by using the LMS algorithm. Thus,

1 1 1 1

2i 2i 2 2i

(1) () 2 () (),

(1) () 2 () (),

+ = + µ
+ = + µ

n n e n n

n n e n n

h h x

h h x
 (20)

where 1()nx and 2i ()nx are the first-order input vector and the

second-order sparse input vector, respectively.
The total number of coefficients for this filter is obtained by

adding the coefficients of each block according to (12). Note that
the interpolated blocks have their memory size reduced as stated
by (15). In Table 2, the coefficient number to be adapted is
compared considering each structure. It can be noted that the
computational savings of the partially interpolated structure are
close to the one achieved for the fully interpolated filter.

Table 2. Number of coefficients for 2=L
Coefficient Number

Memory Order
Volterra Fully Interp. Part. Interp.

3 2 9 5 6
10 2 65 20 25
25 2 350 104 116
50 2 1325 350 375
10 3 285 55 60
25 3 3275 559 571

5. SIMULATION RESULTS

To illustrate the behavior of the proposed approaches, some
numerical simulations are presented by considering a system
identification problem. The proposed structures are compared with
standard Volterra and FIR linear filters for MSE performance. In
Examples 1 and 2, such structures are also compared with the
simplified implementations from [7]. The latter consists of sparse
second-order Volterra filters obtained by setting to zero the
coefficients far from the main diagonal [7], resulting in the
following input-output relation for the second-order block. Thus,

1

2 2
0 0

() (,) () ()
− −

= =
= + − − −∑ ∑

K N k

k m

y n h m m k x n m x n m k , (21)

where 2()y n is the second-order block output signal, ()x n

denotes the input signal, 2(,)+h m m k represents the second-order

coefficients, and N is the memory size. In (21), we also have the
K factor that determines the amount of coefficients to be set to
zero. By choosing 1= −K N we have the standard Volterra filter.
The step-size values are related to maxµ , maximum allowable

value for which the adaptive algorithm converges. For the
proposed approaches, an interpolation factor 2=L is used. The

interpolator impulse response is given by T[0.25 0.5 0.25]=I and

the variance of ()z n is 2 0.001σ =z .

Example 1: For this example, the plant is the length-11 vector
T[0.05 0.10 0.00 0.15 0.32 0.40 0.32 0.15 0.00 0.10 0.05]− − − −

(linear filter), followed by a memoryless nonlinearity. The desired

signal is obtained by 2
f f() () 0.3 ()= +d n y n y n , where f ()y n is the

linear filter output. The input signal is white, Gaussian with unit
variance. The step-size value is max0.2µ = µ , with maxµ obtained

from max 1/{3tr[]}µ = R [11], where R is the autocorrelation

matrix of the input vector. Fig. 3 shows the MSE curves obtained
by Monte Carlo simulation (average of 200 independent runs),
considering the linear filter (11 coefficients and max 0.03µ =),

standard Volterra filter (77 coefficients and max 0.0033µ =), fully

interpolated Volterra filter (27 coefficients and max 0.05µ =), and

partially interpolated one (32 coefficients and max 0.04µ =). From

this figure we can verify that the partially interpolated structure
has a minimum MSE performance close to the standard Volterra
implementation. In Fig. 4, the partially interpolated Volterra filter
is compared with three different simplified Volterra filter [7]
implementations, with 2=K (32 coefficients and max 0.006µ =),

3=K (41 coefficients and max 0.005µ =) and 4=K (49

coefficients and max 0.0046µ =). For these cases, the proposed

structure presents a better performance with a smaller coefficient
number.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-4

10
-3

10
-2

10
-1

10
0

iteration number

M
S

E
linear (L)
Volterra (V)
interpolated (proposed) (VI)
part. interpolated (proposed) (VPI)

L

V

VI

VPI

Fig. 3. Example 1. MSE evolution (average of 200 runs).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-3

10
-2

10
-1

10
0

iteration number

M
S

E

simplified [7] with 32 coef. (S32)
simplified [7] with 41 coef. (S41)
simplified [7] with 49 coef. (S49)
part. interpolated (proposed) with 32 coef. (VPI)

S32

S41

S49
VPI

Fig. 4. Example 1. MSE evolution (average of 200 runs).

Example 2: In this example, we use a similar plant to the one from
Example 1, but now the linear part is given
by [0.40 0.20 0.10 0.15 0.05 0.10 0.00 0.20 0.30 0.25− − − −

T0.02] .− It can be noted that such a plant has coefficients with

low cross-correlation, impairing the use of an interpolated
solution. The step-size values used are the same as in Example 1,
unless for the simplified Volterra filter implementations, which

use 7=K (67 coefficients and max0.2 0.001µ = µ =) and 9=K

(74 coefficients and max0.2 0.00068µ = µ =). Figs. 5 and 6

illustrate the Monte Carlo simulation (average of 200 runs)
results. As expected, we can note that the interpolated approach
exhibits a worse performance than the linear one, due to the
characteristics of the plant used. The partially interpolated
structure has slightly better performance than the linear one,
according to the conjectures made in Section 4. By comparing the
simplified Volterra results with those obtained by the proposed
structures shown in Fig. 6, we note that the partially interpolated
approach with 32 coefficients has a performance close to the
simplified implementation with 67 coefficients.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

iteration number

M
S

E

linear (L)
Volterra (V)
interpolated (proposed) (VI)
part. interpolated (proposed) (VPI)

L

V

VI

VPI

Fig. 5. Example 2. MSE evolution (average of 200 runs).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-4

10
-3

10
-2

10
-1

10
0

iteration number

M
S

E

Volterra (V)
simplified [7] with 67 coef. (S67)
simplified [7] with 74 coef. (S74)
part. interpolated (proposed) with 32 coef. (VPI)

V

S67

S74

VPI

Fig. 6. Example 2. MSE evolution (average of 200 runs).

0 50000 100000
10

-2

10
-1

10
0

10
1

iteration number

M
S

E

linear (L)
Volterra (V)
part. interpolated (proposed) (VPI)

L

V
VPI

Fig. 7. Example 3. MSE evolution (average of 200 runs).

Example 3: In this example, the plant output is given by

f() 2 tanh[2 ()]=d n y n , where f ()y n is the output of a linear FIR

filter with coefficients given by T[0.10 0.30 0.32 0.30 0.10] . The
adaptive Volterra filters now have first- and third-order blocks and
a memory size equal to 5. The input signal is white, Gaussian with

variance 2 0.5σ =x . The step-size values are: 0.0067µ = for the

linear filter (5 coefficients), 0.0005µ = for the standard Volterra

filter (40 coefficients), and 0.00015µ = for the partially
interpolated (15 coefficients). Fig. 7 shows the obtained MSE
curves. Again, we confirm a satisfactory performance for the
partially interpolated Volterra filter.

6. CONCLUSIONS

In this paper, simplified structures for the implementation of
adaptive Volterra filters are considered. The use of an interpolated
approach permits the implementation of suboptimal solutions
leading to significant reductions in the required computational
burden. In addition, a satisfactory MSE performance is verified for
the proposed structures.

REFERENCES

[1] L. Tan and J. Jiang, “Adaptive Volterra filters for active
control of nonlinear noise processes,” IEEE Trans. on Signal
Processing, vol. 49, no. 8, pp. 1667-1676, Aug. 2001.

[2] A. Stenger, L. Trautmann, and R. Rabenstein, “Nonlinear
acoustic echo cancellation with second order adaptive
Volterra filters,” IEEE Int. Conf. Acoustics, Speech, Signal
Process., Phoenix, USA, vol. 2, Mar. 1999, pp. 15-19.

[3] M. Tsujikawa, T. Shiozaki, Y. Kajikawa, and Y. Nomura,
“Identification and elimination of second-order nonlinear
distortion of loudspeaker systems using Volterra filters,”
IEEE Int. Symp. on Circ. and Systems, Geneva, Switzerland,
vol. 5, May 2000, pp. 28-31.

[4] A. Gutierrez and W. E. Ryan, “Performance of adaptive
Volterra equalizers on nonlinear satellite channels,” IEEE
Int. Conf. on Communications, Seattle, USA, vol. 1,
June 1995, pp. 19-22.

[5] M. J. Reed and M. O. J. Hawksford, “Efficient
implementation of the Volterra filter,” IEE Proc.-Vis. Image
Signal Processing, vol. 147, no. 2, pp. 109-114, Apr. 2000.

[6] L. Tan and J. Jiang, “System modeling using a second-order
Volterra delay filter,” IEEE 39th Midwest Symp. on Circuits
and Systems, Ames, USA, vol. 3, Aug. 1996, pp. 18-21.

[7] A. Fermo, A. Carini, and G. L. Sicuranza, “Simplified
Volterra filters for acoustic echo cancellation in GSM
receivers,” X European Signal Proc. Conf., Tampere,
Finland, Sep. 2000.

[8] Y. Neuvo, C. Y. Dong, and S. K. Mitra, “Interpolated finite
impulse response digital filters,” IEEE Trans. Acoustics,
Speech, Signal Process., vol. 32, pp. 563-570, Jun. 1984.

[9] O. J. Tobias and R. Seara, “Analytical model for the mean
weight behavior of adaptive interpolated-FIR filters using the
constrained filtered LMS algorithm,” Proc. IEEE Adaptive
Systems for Signal Processing, Communications, and
Control Symposium, Lake Louise, Canada, Oct. 2000,
pp. 272-277.

[10] V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal
Processing Magazine, vol. 8, pp. 10-26, July 1991.

[11] B. Farhang-Boroujeny, Adaptive Filters Theory and
Applications, John Wiley & Sons Ltd., 1999.

[12] M. Rupp, “A family of filter algorithms with decorrelating
properties,” IEEE Trans. on Signal Processing, vol. 46,
no. 3, pp. 771-774, Mar. 1998.

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Rui Seara
	Orlando Tobias
	Eduardo Batista

