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ABSTRACT

This paper presents two simplified algorithms to implement
adaptive Volterra filters. The central idea of the proposed
approach is the use of sparse adaptive filters to reduce the number
of coefficients to be adapted, which is the major drawback of
adaptive Volterra filters. Such filters are obtained by removing
some coefficients and then recreating them through an
interpolating scheme. A second interpolated structure exploits also
the block-size structure of the Volterra filter for coefficient
reduction. Numerical simulation results are shown to ratify the
good MSE behavior of the proposed structures.

1. INTRODUCTION

The use of a linear adaptive approach to deal with nonlinear
filtering problems is common practice. This is due to the fact that
simple and well-established tools for such filters are widely
available. In contrast to these problems, nonlinear adaptive filters
lead to better results, despite its higher computational complexity.
However, due to the significant increase of the processing capacity
of the modern digital signal processors (DSPs), the
implementation of nonlinear adaptive structures is now feasible. In
this context, Volterra adaptive filters have become an interesting
tool for nonlinear applications, such as active control [1], acoustic
echo canceling [2], identification and reduction of distortions of
loudspeaker systems [3], and satellite-channel equalization [4].
Nevertheless, adaptive Volterra filters present a serious drawback:
the total number of coefficients increases exponentially with the
required memory size, restraining in certain cases its application.
Some alternative approaches have been proposed to overcome
such a drawback. Frequency domain Volterra filters [5], Volterra
delay filters [6], and simplified Volterra filters [7] are examples of
structures presenting a lower complexity.

The present paper proposes two reduced-complexity
structures for implementing adaptive Volterra filters. The main
idea of the proposed approach is to use a sparse adaptive Volterra
filter along with an interpolator filter, such that this set behaves
(almost) as a full adaptive filter. This interpolated approach has
been applied successfully to linear filters [8], [9]. Here, we use
either this technique on all or just on higher order blocks, which
require a larger number of coefficients. This procedure gives rise
to the fully and partially interpolated adaptive Volterra filters,
respectively. Simulation results including linear adaptive, standard
Volterra, and simplified Volterra [7] filters as well as the proposed
structures are shown for performance comparison purposes.

2. VOLTERRA FILTER

The input-output relationship of a causal and discrete Volterra
filter is given by [10]
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where ( )x n  and ( )y n  represent the input and output signals,

respectively, 1( , , )…p ph m m  denotes the pth-order coefficient, N

is the memory size, and P  is the filter order. From (1), this filter
can be seen as the composition of a first order linear block,
represented by 1h , followed by nonlinear blocks 2 3, , ,… Ph h h . By

denoting the output of a pth-order block as ( )py n , we can rewrite

(1) as [1]
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Such decomposition is interesting for implementation
purposes, permitting to establish strategies for complexity
reduction. Thus, we can manipulate the whole filter or just the
coefficient-demanding blocks.

The output of the first-order (linear) block of the Volterra
filter can be expressed as

T
1 1 1( ) ( )=y n nh x ,                                  (4)

where 1( )nx  denotes the first order input vector and 1h  is the

coefficient vector. For the second-order block, the input-output
relationship is given by

T
2 2 2( ) ( )=y n nh x ,                                  (5)

where
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By generalizing for the remaining blocks, we obtain the
pth-order block output given by

T( ) ( )=p p py n nh x .                                (8)

By defining the Volterra input and coefficient vectors as
T T T T

V 1 2( ) [ ( ), ( ), , ( )]= … Pn n n nx x x x                    (9)



and
T T T T

V 1 2[ , , , ]= … Ph h h h ,                        (10)

the Volterra filter input-output relationship (1) can now be
rewritten as

T
V V( ) ( )=y n nh x .                                (11)

The computational burden of Volterra filters increases
exponentially when the memory size is increased. We can note
from (6) and (7), that the second-order block presents one
coefficient for each of the second-order cross products of the input
signal samples, resulting in a larger coefficient number than that
required by the first-order block. For higher order blocks, this fact
becomes more critical, since the coefficient number needed is
proportional to the pth-order combinations of the input signal
samples, with p representing the block order. Thus, depending on
the memory size, the use of Volterra filters may be unfeasible. For
complex adaptive algorithms, such as RLS [11] and affine
projection [12], the use of Volterra filters becomes even more
restricted. By denoting as ( )pD N  the coefficient number for each

pth-order block of a Volterra filter with memory size given by N ,
we get [1]
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Then, the total number of coefficients V ( , )D N P  of a

Volterra filter, with order P  and a memory size N , is given by
the sum of coefficients of all the involved blocks, resulting in
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3. FULLY INTERPOLATED ADAPTIVE VOLTERRA
FILTER

By reducing the memory size of a Volterra filter using sparse
filters, we can achieve a substantial reduction in the coefficient
number. The filter sparsity is a function of the interpolation factor,
denoted by L . Thus, for instance, the sparse first-order input
vector 1s ( )nx  is obtained by removing ( 1)−L  samples from each

L consecutive ones of the original input vector [8], resulting in

{ }T
1s s( ) ( )  ( )  ( 2 )    [ ( 1) ]n x n x n L x n L x n N L= − − − −x " ,   (14)

with sN  denoting the memory size of the sparse filter, given by

s
1

1
N

N
L

−⎢ ⎥= +⎢ ⎥⎣ ⎦
,                               (15)

where ⋅⎢ ⎥⎣ ⎦  represents the truncation operation.

The corresponding sparse first-order coefficient vector is
expressed as

T
1s 1 1 1 1 s{ (0)  ( )  (2 )    [( 1) ]}h h h L h L h N L= −" .        (16)

The remaining higher-order input and coefficient vectors are
obtained from the first-order ones as presented in Section 2.

However, by using a sparse filter we are considering a
suboptimal structure with significant loss of performance. An
input-signal interpolator filter is then used to reduce the effect of
the removed samples. This procedure leads to the interpolated
Volterra filter, depicted in Fig. 1. In this figure Vih  is the sparse

Volterra filter and I  denotes the impulse response of the
interpolator filter, represented by an M-coefficient FIR filter,

defined by T
0 1 1[ ]−= " Mi i iI . The input signal and its interpolated

version are represented by ( )x n  and i ( )x n , respectively, where
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The signal ( )z n  is a measurement noise, uncorrelated with any
other signal in the system. The sparse filter output signal and the
error signal are represented by ( )y n  and ( )e n , respectively (see
Fig. 1). Hence, the first-order input vector for the
sparse-interpolated Volterra filter is given by

T
1i i i i i s( ) { ( )  ( )  ( 2 )    [ ( 1) ]} .n x n x n L x n L x n N L= − − − −x "   (18)

By generating the higher-order input vectors from (18), the overall
interpolated input vector denoted by Vi ( )nx  is constructed in the

same way as (9).
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Fig. 1. Block diagram of the interpolated Volterra filter.

The entire structure of the interpolated Volterra filter can be
viewed as a full Volterra filter with coefficient constraints.
Considering it on the adaptive context, we have a constrained
Volterra filter with the need to adapt only the coefficients from the
sparse one, which is very interesting because of the Volterra
complexity drawback. The adaptive algorithm then performs the
adjustment of the coefficients towards the optimum value. Thus,
the coefficient update equation for the adaptive LMS interpolated
Volterra filter is given by

Vi Vi Vi( 1) ( ) 2 ( ) ( )+ = + µn n e n nh h x ,                  (19)

where Vi ( )nh  is the coefficient vector corresponding to the

interpolated input vector Vi ( )nx . Table 1 compares the number of

coefficients to be adapted by both the standard and the
interpolated approaches, highlighting the complexity difference
between these structures.

Table 1. Number of coefficients:
standard versus interpolated implementation

N P L sN V ( , )D N P V s( , )D N P Reduction
(%)

3 2 2 2 9 5 44.44%
10 2 2 5 65 20 69.23%
25 2 2 13 350 104 70.29%
15 3 2 8 815 164 79.88%
30 3 2 15 5455 815 85.06%
30 3 4 8 5455 164 96.99%

It is well known that the interpolated filters do not have good
performance for modeling plants with weak correlation between
its coefficients [8], [9]. For this case, a better solution is the use of
partially interpolated Volterra filters, which are described in the
next section.

4. PARTIALLY INTERPOLATED ADAPTIVE
VOLTERRA FILTER

A second structure for implementing adaptive Volterra filters is
obtained by using the interpolated approach only on higher order
blocks. Fig. 2 depicts a second-order partially interpolated
Volterra filter. In this figure, 1h  and 2ih  represent the first-order

and the sparse second-order blocks, respectively, with 1( )y n  and

2( )y n  as their corresponding outputs.
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Fig. 2. Block diagram of a second-order partially
interpolated Volterra filter.

For the structure of Fig. 2, the filter coefficients are updated
by using the LMS algorithm. Thus,
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where 1( )nx  and 2i ( )nx  are the first-order input vector and the

second-order sparse input vector, respectively.
The total number of coefficients for this filter is obtained by

adding the coefficients of each block according to (12). Note that
the interpolated blocks have their memory size reduced as stated
by (15). In Table 2, the coefficient number to be adapted is
compared considering each structure. It can be noted that the
computational savings of the partially interpolated structure are
close to the one achieved for the fully interpolated filter.

Table 2. Number of coefficients for 2=L
Coefficient Number

Memory Order
Volterra Fully Interp. Part. Interp.

3 2 9 5 6
10 2 65 20 25
25 2 350 104 116
50 2 1325 350 375
10 3 285 55 60
25 3 3275 559 571

5. SIMULATION RESULTS

To illustrate the behavior of the proposed approaches, some
numerical simulations are presented by considering a system
identification problem. The proposed structures are compared with
standard Volterra and FIR linear filters for MSE performance. In
Examples 1 and 2, such structures are also compared with the
simplified implementations from [7]. The latter consists of sparse
second-order Volterra filters obtained by setting to zero the
coefficients far from the main diagonal [7], resulting in the
following input-output relation for the second-order block. Thus,
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where 2( )y n  is the second-order block output signal, ( )x n

denotes the input signal, 2( , )+h m m k  represents the second-order

coefficients, and N  is the memory size. In (21), we also have the
K  factor that determines the amount of coefficients to be set to
zero. By choosing 1= −K N  we have the standard Volterra filter.
The step-size values are related to maxµ , maximum allowable

value for which the adaptive algorithm converges. For the
proposed approaches, an interpolation factor 2=L  is used. The

interpolator impulse response is given by T[0.25 0.5 0.25]=I  and

the variance of ( )z n  is 2 0.001σ =z .

Example 1: For this example, the plant is the length-11 vector
T[ 0.05 0.10 0.00 0.15 0.32 0.40 0.32 0.15 0.00 0.10 0.05]− − − −

(linear filter), followed by a memoryless nonlinearity. The desired

signal is obtained by 2
f f( ) ( ) 0.3 ( )= +d n y n y n , where f ( )y n  is the

linear filter output. The input signal is white, Gaussian with unit
variance. The step-size value is max0.2µ = µ , with maxµ  obtained

from max 1/{3tr[ ]}µ = R  [11], where R  is the autocorrelation

matrix of the input vector. Fig. 3 shows the MSE curves obtained
by Monte Carlo simulation (average of 200 independent runs),
considering the linear filter (11 coefficients and max 0.03µ = ),

standard Volterra filter (77 coefficients and max 0.0033µ = ), fully

interpolated Volterra filter (27 coefficients and max 0.05µ = ), and

partially interpolated one (32 coefficients and max 0.04µ = ). From

this figure we can verify that the partially interpolated structure
has a minimum MSE performance close to the standard Volterra
implementation. In Fig. 4, the partially interpolated Volterra filter
is compared with three different simplified Volterra filter [7]
implementations, with 2=K  (32 coefficients and max 0.006µ = ),

3=K  (41 coefficients and max 0.005µ = ) and 4=K  (49

coefficients and max 0.0046µ = ). For these cases, the proposed

structure presents a better performance with a smaller coefficient
number.
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Fig. 3. Example 1. MSE evolution (average of 200 runs).
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Fig. 4. Example 1. MSE evolution (average of 200 runs).

Example 2: In this example, we use a similar plant to the one from
Example 1, but now the linear part is given
by    [0.40 0.20 0.10 0.15 0.05 0.10 0.00 0.20 0.30 0.25− − − −

T0.02] .−  It can be noted that such a plant has coefficients with

low cross-correlation, impairing the use of an interpolated
solution. The step-size values used are the same as in Example 1,
unless for the simplified Volterra filter implementations, which



use 7=K  (67 coefficients and max0.2 0.001µ = µ = ) and 9=K

(74 coefficients and max0.2 0.00068µ = µ = ). Figs. 5 and 6

illustrate the Monte Carlo simulation (average of 200 runs)
results. As expected, we can note that the interpolated approach
exhibits a worse performance than the linear one, due to the
characteristics of the plant used. The partially interpolated
structure has slightly better performance than the linear one,
according to the conjectures made in Section 4. By comparing the
simplified Volterra results with those obtained by the proposed
structures shown in Fig. 6, we note that the partially interpolated
approach with 32 coefficients has a performance close to the
simplified implementation with 67 coefficients.
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Fig. 5. Example 2. MSE evolution (average of 200 runs).
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Fig. 7. Example 3. MSE evolution (average of 200 runs).

Example 3: In this example, the plant output is given by

f( ) 2 tanh[2 ( )]=d n y n , where f ( )y n  is the output of a linear FIR

filter with coefficients given by T[0.10 0.30 0.32 0.30 0.10] . The
adaptive Volterra filters now have first- and third-order blocks and
a memory size equal to 5. The input signal is white, Gaussian with

variance 2 0.5σ =x . The step-size values are: 0.0067µ =  for the

linear filter (5 coefficients), 0.0005µ =  for the standard Volterra

filter (40 coefficients), and 0.00015µ =  for the partially
interpolated (15 coefficients). Fig. 7 shows the obtained MSE
curves. Again, we confirm a satisfactory performance for the
partially interpolated Volterra filter.

6. CONCLUSIONS

In this paper, simplified structures for the implementation of
adaptive Volterra filters are considered. The use of an interpolated
approach permits the implementation of suboptimal solutions
leading to significant reductions in the required computational
burden. In addition, a satisfactory MSE performance is verified for
the proposed structures.
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