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ABSTRACT
In this article a nonlinear orthogonal noise cancelling fil-
ter parameters selection strategy is proposed to maximize
noise cancelling quality to computation complexity ratio.
Presented approach leads to the orthogonal realization of
the nonlinear noise cancelling filter of Volterra-Wiener class
which structure changes due to higher-order statistics of the
filtered signals.

1. INTRODUCTION

Using the results presented in [1][2], during the noise reduc-
tion filtering the following multi-dimensional Fourier series
expansion of the original signal (x0) is obtained
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are the generalized (multi-dimensional) Fourier [3][4](i.e.
Schur-type) coefficients. The coefficients (2) can be in-
terpreted as the orthogonal reprezentation of the random
variable x0 in the subspace S spanned by the orthonormal
elements {ri1
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one hand, on the other - as the coefficients in the orthog-
onal realization of the multi-dimensional nonlinear noise-
cancelling filter [2] (figure 1, figure 2).

The least-square error of the original signal estimation is
equal
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Figure 1: General structure of the nonlinear orthogonal
noise-cancelling filter.
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Figure 2: The nonlinear orthogonal noise-cancelling filter
(N = 1,M = 2).

Considering (1) it is easy to notice, there are two para-
meters which present filter complexity: the filter order (filter
memory) and degree of the filter nonlinearity. Increasing one
of them entails quick growth a computing complexity needed
to estimate (x̂0. The number of the elementary section in the



estimation block of the noise cancelling filter is
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Figure 3 presents how quick rises the value of (4) when
N or M is changing. The number of the elementary sections

Figure 3: The number of elementary sections KN,M in the
estimation block

in the decorelation block of the noise cancelling filter is

Lns
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2
(5)

The realization of the decorelation block is more labori-
ous. The key is to select such the values of N and M, that
the minimal number of computed ON basis elements allow
to determine the ’good’ estimate (achieving the desire value
of the error (3)).

It is possible to change N or M, or both of them at one
time. Real system should be efficient. This aim can be
achieve by adaptive filter parameters selection using some
strategy.

2. THE CRITERION OF THE NOISE-CANCELLING
FILTER PARAMETERS SELECTION STRATEGY

The aim of increasing degree of filter nonlinearity or its order
is a improvement of the noise cancelling quality (minimizing
(3)).

To judge the proper values of N and M the objective mea-
sure is needed, which shows the relative improvement of the
noise cancelling quality. It should describe a change of the
estimation error causes by extension of filter structure (in-
creasing the number of elementary sections in the decorela-
tion block). The following cost function is defined
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where N1,N2 are the filter orders, M1,M2 are the filter nonlin-
earity degrees. The value Lns

N,M (4) describes the number of
elementary sections in the decorelation block for filter of or-
der N and nonlinearity degree of M. xR is defined in (3). The

equation (6) is interpreted as a relative change of the number
of elementary sections in the decorelation block to relative
improvement of a noise cancelling quality (change value of
the estimation error) when the parameters N,M are changing.
Because the denominator is always negative the sign minus
is used. This cost function allows to judge efficiency of the
selected filter structure and the filter complexity needed to
improved the estimate x̂0.

3. THE STRATEGY OF ESTIMATION
IMPROVEMENT BY SELECTION OF FILTER

PARAMETERS

The pattern of one loop of filtering process is presented in
figure 4.
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Figure 4: One loop of the filtering process

After filtering by a filter Fa(N,M), the estimation error is

computed xR{M}
N . If its value is small enough the filter struc-

ture is unchanged. If the error is too big the filter parameters
are changing according to some strategy. The block ’Filter
structure changing’ represents proposed in this article strat-
egy of selecting filter parameters.

Assuming value of the cost function (6) determines the
possible values of the parameters N and M.

The dominator of (6) is the control element, which de-
pends on the Schur coefficients xρ . Adding a new non-zero
valued coefficient decreases the value of (3). It is equivalent
to changing the filter order or/and its nonlinearity degree.
It causes the increasing of filter complexity (especially the
decorelation block).

When one or few coefficients xρ are added it is not nec-
essary to compute the whole ON basis anew, but only its new
element. The filter Fa(N1,M1) has Lns

N1,M1
= KN1,M1(KN1,M1 +

1)/2 elements in the decorelation block, where KN,M is de-
scribed in (5). The value of cost function (6) after adding a
new coefficient xρnew (it means adding KN1,M1 +1 elementary



sections to the decorelation block) is
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Using (7) and considering presented discussion the following
strategy for filter structure selection is proposed

Strategy 3.1 If KN1,M1 is the number the coefficients xρ for
the filter Fa(N1,M1), then increasing KN1,M1 by one (adding
the new coefficient xρnew) , which is effective in a new filter
Fa(N2,M2), follows when and only when

Fa(N1,M1) → Fa(N2,M2) ⇔ FK(N1,M1;N2,M2) =

=
2
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’The partial actualization’ by a coefficient xρnew can be
done by changing N or/and M. This allows to check the dif-
ferent combinations of N and M. The choice for testing the
new Schur coefficient depends on the maximal value of KN,M .
Using proposed strategy 3.1 the following rules are proposed:
• for determining M increase the parameter N up to reach

maximal value KN,M ; it means the linear, bi-linear, tri-
linear,... elements of ON basis are checked, and choosing
is one for which xρnew meets (3.1)

Selection the values of N i M is stopped when the desire value
of (3) is reached.
Figure 5 presents the process of adding a new coefficient
xρnew to the filter structure.
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Figure 5: Process of updating the filter structure

Using proposed strategy it is possible to determine the
xρ to eliminate these which only insignificant minimize the

value of (3). It is impossible to determine one way of the
parameters selection. Every configuration corrupted signal -
reference signal is specific and requires the individual deci-
sion process.
It is easy to notice it is not important if the next Schur coef-
ficient xρ is higher order or higher degree. In both cases the
new column of elementary sections is added to the decorela-
tion block.

It should be notice, the new coefficient xρnew can not be
the neighbor of already existing one [1]. If the last deter-
mined xρ came from the filter eg: N = 2,M = 3 the new
xρnew can come from the filter eg: N = 5,M = 10.

4. SIMULATIONS

To present proposed strategy in first simulation a telecom-
munication signal (MSK modulation) was used (figure 6).
Corrupting signal had nonsymmetric probability density

Figure 6: IQ graph of original MSK signal

function, and was lowpass. Bandwidths of both signals over-
lap. Figure 7 presents the IQ graph of corrupted signal. It
is impossible to demodulate the original signal because of
noise. Figure 8 presents demodulated signal after filtering.

Figure 7: IQ graph of corrupted MSK signal

The filter of parameters M = 3 and N = 10 was used. Im-
provement of S/N ratio is about 14dB.

The decorelation block had 40755 elementary sections
and the estimation block had 284 elementary sections. Using
criterion (3.1) and choosing δ = 100, for every instant of
time the number of the estimation block elementary sections
was established, presented in figure 9. It can be seen how the



Figure 8: IQ graph of MSK signal after filtering
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Figure 9: The number of the estimation block elementary
sections for strategy 3.1

structure of the filter is changing during the time.
In the second simulation speech signal was used 10.
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Figure 10: Original speech signal

In this case calculated improvement of the S/N ratio is
about MNQ = 12dB (see 11 and 12) . Optimized filter
is worse then the original one but only for about 2dB. Pre-
sented simulation required 11634 ∗ 103 hyperbolic rotations
for original filter and 837∗ 103 for optimized filter. It means
that proposed selection of the filters parameters allowed to
degrease the computing complexity 13.9 times and only 2dB
of quality improvement was lost.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

time [s]

am
pl

itu
de

Figure 11: Corrupted speech signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

am
pl

itu
de

Figure 12: Speech signal after filtering

5. CONCLUSION

Presented results allows to draw the following conclusions:
• The structure of presented filters makes possible their re-

building very easy. Using proposed strategy of filter pa-
rameter selection the filter complexity can be adopted to
filtered signals.

• The value of the estimation error can be controlled by
selecting filter structure during filtering process.
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