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Abstract—Blind equalization is one challenging problem the approach of independent component analysis (ICA),lwhic
for multiple-input multiple-output systems, to which indepen- ytilizes the measure of non-Gaussianity to achieve bl
dent component analysis (ICA) is applicable. However direct genaration. However there is some residual order and phase

application of ICA could yield low convergence speed and poor Lo . . ..
performance. In this paper we propose two semi-blind ICA-based ambiguity in the result of ICA which requires the training-

algorithms, which incorporate information both from the training ~ based methods to be concatenated.
and unknown sequences. During each iterative/adaptive stephé Instead of considering the training and blind information
training information is utilized to supervise the unconstrained separately, the idea of so-called semi-blind has receivetod

blind ICA-based measure. Simulation results show that the ; ; P ;
two proposed semi-blind approaches can outperform both the attention recently [9]. By incorporating information bdtom

training-based and conventional ICA method. Furthermore we the tralnlng' and unknown sequence, semi-blind gpprogo’ees a

report a special case of MIMO systems which does not require able to achieve better performance than both training and bl

the algorithm of source separation, whose proof is also provided. methods. Furthermore it can also overcome the shortconfing o
blind methods which typically require quite a large amount o
data to converge. In [10] a semi-blind method using the prior

l. INTRODUCTION information of constant modulus was proposed for single-

input single-output systems. Semi-blind approaches favi®|

, X . 4 systems with space-time block coding can be found in [11],

come an area of intense development in the wireless indus ] which utilize the redundant information of space time

Since multiple transmitted sequences are sharing the Sali§ing and hence are not applicable to general MIMO systems.
radio resources, MIMO systems are operated in the presénce q, ihis paper we consider semi-blind spatial equalization

co-channel interference as well as inters_,ymbol interfeeemo for general MIMO systems. By using ICA, a cost function
fully explore the performance gain promised by MIMO, robu

Multiple-input multiple-output (MIMO) has recently be-

b yield the desired equalizer is constructed to measure the

tetctrk]]nlques.for spatial and temporal equalization are redui non-Gaussianity of the output of the spatial equalizer.nThe
at the receier. a training based cost function is incorporated to supervise

In this paper, we concentrate on how to achieve Spa‘iﬁ'e ICA cost function and to find the desired solution more

equalization and assume that the frequency selective MI ickly and accurately. Two algorithms are proposed toesolv

channels have been reduced to multiple flat fading channgis, - hined measure, the semi-blind iterative and adaptiv
As proved in [1] second order sta}tistics (SOS) are SUﬁiCieQFgorithm. The iterative ’method has a fast convergencedspee
Fo de-convolute frequency selective MIMO channels .to %hd better performance. The adaptive algorithm can aved th
Instantaneous mixture. Recall that methods using high ¥omputation of the matrix inverse and also be able to track
der statistics (HOS) have slow convergence speed and high, varying systems. Simulation shows that both proposed

comp_utat_mngl complexny. .SO a reasonable strategy of .MIMQemi—blind algorithms can achieve better performance than
equalization is to first achieve the temporal equalizatign B,o e training and conventional ICA method. Also we
using SOS. And in the second step, the spatial equalizatig, report a special case of MIMO systems which does not

is completed by utili_zing HOS. While a Iqt of work has_ beerPequire the algorithm of source separation with a formabpro
done for deconvolution [2], [3], research in the area of 'g‘batprovided

equalization for MIMO systems is still ongoing.
When channel information is not available at the receiver,
training based methods [4] are traditionally proposed to Il. DATA MODEL

achieve reliable detection. As the training will consumbei Consider a discrete-time System model with> 1 transmit
time or frequency resources, these training based metheds ghtennas ands > M receive antennas. We assume that the
bandwidth inefficient, and hence blind approaches whicly ondhannel is time invariant during one data block and frequenc
rely on the statistics of observations become preferabterd f|at fading. LetN denote the length of one block. During the
estingly the data model of blind spatial equalization foM@  time interval[t; + nT, ¢; + (n + 1)T], the kth receive antenna

systems is the same as the one in a classical area, knowReggive a symbol which is denoted agn). Hence we obtain
blind source separation [5]-[8]. Specially we are intexdsh

M
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where s,,,(n),n = 1,..., N, is the nth symbol transmitted A. ICA based criterion

from themth antennahy, ., denotes the coefficient of the flat  Recall thats,, (n) in (4) can be treated as a linear com-

fading path from thenth transmit antenna to theth receive pination of the original symbols. The basic idea of ICA is

antenna. that a linear combination of multiple variables should beeno
To make ICA applicable, we assume that the multiple trangayssian than the original variables, unless the outputseof

mitted sequences are independent to each othersaid) filter are the same as the original ones. So the aim of ICA

is a random variable with equal probability chosen from thgqorithms is to find a measure of so-called non-Gaussianity
constellation which is known at the receiver. Also assumg [7], [13] one such criterion is proposed as

that the noise is a white process, havii§wy(n)w; (j)} =

020;.:0, j, whered; ; is the Kronecker delta function. J(gm) = E{f(|3m(n)*)}, (5)
Lets(n) = [s1(n) --- sM(n)]T denote the vector i/  where f(-) is the nonquadratic function defined in [7]. Many
transmitted symbols at theth time interval. Stacking oveK  classical measures of non-Gaussianity can fit into this rgéne
receive antennas, we obtain framework. For example, standard fourth order cumulant is
one classical measure of non-Gaussianity, which is defised a
r(n) = Hs(n) + w(n), @ e
wherer(n) = [ri(n) - rx(n)]", HistheK x M block- (Sm(n)_) HUsm (@) = 2B 8m(m)l") | “Sm(n_)) i
stationary channel matrix with it5 jth element equal ta; ;  Following from the fact thaty(n) has been prewhitened,
andw(n) is constructed fromw (n) similarly to r(n). we can obtain
As a common strategy for most ICA algorithms, the re- K(3m(n)) = E{|4m(n)[*} — 2. (6)
ceived symbols are first prewhitened ) ) ) )
So for kurtosis, the nonquadratic function can be written as
y(n) = Pr(n), ®)

flx) =a? 2. )
whereP is a K x K prewhitening matrix. One choice of the . L .
prewhitening matrix i — UA~/2UH  whereU andA are ?gstf}indciisc;;e@m can be found by minimizing the following
obtained from the eigenvalue decomposition of the covaean '
matrix of the observationgZ{r(n)r(n)?} = UAU*. As Jrca(gm) = E{f(|3m(n)]*)} = E{f(Igmy(n)[*)}, (8)
pointed out in [7], the strategy of prewhitening is to reducgii, the constraing# g, = 1.

the number of parameters to be estimated and the degregincef(,) is not a quadratic function, there is no closed

of freedom of the mixing matrix. In fact the power of th&sm solution of (8). Instead, many numerical methods have
prewhitening process can be demonstrated from the fol@WiBeen proposed to approximate the desired solution, such as

claim: the Newton method in [13]. However most of these algorithms

Claim 1 @ Consider a MIMO system with two antennas lequire a long data block to acquire the high order stasistic
each endl = K = 2 and the transmitted symbols belong tQs " accurately as possible, which may cause the delay of

the BPSK constellation. The original transmitted symba@ls ¢ yetection or may be not possible due to a fast fading channel.
be separated by only using a prewhitening filter whose O“t’#ﬁrthermore, as pointed out in many papers, such as [5], [7],

contain only order and phase ambiguity. there will be order ambiguity as well as phase ambiguity Whic

This means that in some communication scenarios, th&, not he solved by only using blind ICA algorithms. So
prewhitening filter itself can accomplish blind source sapa training symbols are inevitably required in order to achiev
tion and hence there is no need for another source separafigfiect detection.

algorithm concatenated to the prewhitening filter. The proo
of the claim 1 is given in the Appendix. B. Training based criterion

Consider the case where there kg N > N; > M, known

) i SEMI'B_LIND ICA. CRI_TERION symbols at the head of each data block. Hence from (4) we
The aim of the spatial equalizer is to suppress both cgptain

channel interference and additive noise, and recover the Z,, —g"T, 9)
transmitted symbols as accurately as possible. g,gt = . " R
[g1,m - gK,m]T denote the coefficients of the equalize}’vhere Z = [$m(N=Ni+1) .- 55(N)] and T =

for the symbols from thenth transmit antenna. Hence wel PHS(N — N +1) PH.S.(N)]' Since bothZ and T
obtain are known, the desired coefficients of the filter can be esti-

m(n) = glly(n) = g PHs(n), (4) mated by minimizing the following cost function

which should be equal to the,,(n) ideally. Although we  Ztraiming(&m) = (& T = Zn)(gn T — Zn)".  (10)
initially neglect additive noise for clarity in developintpe Training based estimation algorithms typically have the ad
algorithm, we later assess its performance in environmen@ntages that there is no ambiguity and only small time delay
with additive noise. However, training methods only incorporate the informatio

A lot of criteria have been proposed to estimate the coeffit the training sequence and completely ignore the stedisti
cients of the equalizer. In this paper, we will concentrate an the unknown part which might be helpful to improve the
two types, the ICA-based and training-based criteria. system performance.
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C. Semi-blind ICA cost fuction Note that our current semi-blind scheme requires at least

Since a ideal solution should be able to minimize both ICAS Mmany training symbols as the number of receive antennas

and training based criteria, it is desirable to combinedttam V¢ = K. The advantage of the I-ICA is its fast convergence
criteria as speed due to the property of the Newton method. However,

during each iteration, the inverse of a matrix with dimensio
Jsemi(gm) = E{f(|g2y(n)|*)}+a(glT-Z,,) (g T-Z,,)", K x K has to be computed, which will cause extra com-
(11) putational complexity. Furthermore, I-ICA is not suitatite
where o is a scalar weight coefficient that determines thghe time-varying scenario as it assumes the block-statjona
contribution of the blind and training components of thetcofading-channel.
function. One difficulty remaining is that how to solve the
semi-blind criterion in (11) which still does not have a des

form solution. In the following section, we will propose twoB: Semi-blind adaptive ICA algorithm

algorithms to solve this nonquadratic criterion. The basic idea of the adaptive semi-blind ICA algorithm is
to continually adapt the coefficients of the spatial eqealiz
IV. SEMI-BLIND ICA ALGORITHMS as new observations become available. So for the semi-blind

. : . . .adaptive ICA algorithm, the semi-blind cost function can be
In this section, we will propose two algorithms. One is

using the Newton method to solve the minimization iterdyive written as
which is named as I-ICA. The other is using the steepest  j (g (n)) = L5 flgm)Py()?) +  (@7)
decent method and find the optimal adaptively, which is named "

as A-ICA. (g (M"'T — Zn)(gm ()" T — Zyn)",
wheren = N; + 1,...,N. Note that here we assume the
A. Semi-blind iterative ICA algorithm channel is constant during one block. If the channel is time

Given the existence of the first order and second ordat Y 9 & forgetting factor should be introduced to adjust

derivatives of the nonquadratic functio-), the desired the cost function. To find the desired solution of (17), many
. q AT classical adaptive methods could be applied. We choose the
solution ofg,,, should satisfy the following equation

steepest decent method to avoid the inverse of the matrix in

semi(@m) _ 12) @4
0gm ’ So during each time interval, the coefficients of the eqealiz
where is updated as
aJsemz(gm,(n))
ajsemi m 1 al * m 1) = m — U 18
cotlEn) (LS gy () Py )y () ) (13) gn(n+1) = gn(n) —p—3 -8 (18)
" +a(TTHg,, — TZ,)"1* wherey is the step size parameter which controls the conver-

gence speed of the adaptive algorithm and
and f'(-) is the first order derivative of the functiofi-). So J Lo
the optimal solution to minimize (11) should be the root of semi(8m (1)) — {ﬁ Z{f/(|gm(n)Hy(j)|2)y(j)y(j)H (19)
j=1

(12), which can be found by using the Newton method. Igm(n)

_ Let_ 1 denote the_lr_1dex of the |terat_|on step._ So during each gm(n)}Y* + a(TT g, (n) — TZn)"}*.
iteration, the coefficients of the spatial equalizer areated

as As can be seen from (18) the matrix inverse is no longer

8 (gm) -1 required compared to the iteration step in (14). Hence A-ICA
Sea’m - ) (14) is more computationally efficient than I-ICA. For fast time-
Em varying systems, the choice of the step size parameter could
where be critical to ensure the fast and steady convergence speed,
0T (gm) 1N low steady-state error and good tracking performance. One
%igm =< > {F (1gly(m)[*)y(n)y(n)"} (15)technique to find the optimal choice of the step size was
&m n=1 proposed in [10], where the original cost-function gf, is
1 N " . ) " " treated as a function ofi and then a method of steepest
tw > {F (glym)P)lgiy(m)*y(n)y(n)"} + «TT,  descent is used adaptively to find the optimal choiceuof
n=1 More parameter estimation techniques, such as the Kalman
and J’, (gn) = (2ecmilBn) y+ Note that (14) requires the filter and the recursive least-squares method, can be found
semi\8m . O8m : - - in [14], [15]. Due to the space limitation, we will report the
computation of the inverse of & x K matrix, which has been ’ o the sp » We P
assumed to be invertable result for the optimization of the step size in the future. In
The initialization of the Iiterative semi-blind ICA algdhin fact, since the channel is assumed to be constant over a, block
is achieved by only using the training information the proposed semi-blind algorithm with a constant choice of
1 is ready to outperform both the training and conventional
gn(0) = (TTH)"'TZ,". (16) ICA algorithms.

€l 4 1) = (D) — (Jomi(8m) (
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V. NUMERICAL STUDY function of the length of the training sequence, with fixed
. . . SNR. As can be seen from the figure, the performance of
Consider a MIMO system withM = 4 transmit antennas both the compared scheme and semi-blind algorithms can be

and K = 4 receive antennas. Both training and mformannggroved by increasing training information. One inteiregt
S

symbols are chosen from a QPSK constellation. The eleme ervation from Fig. 3 is that the performance gain of the
of the channels and noise matrices were zero-mean, CirCl{ r

. . i ) ining method with increased training information is muc
complex Gaussian random variables, with variances Chmserfatrger than that of the proposed algorithms, which means
achieve the desired SNR. '

Th di . d adati lqorith that semi-blind methods are less sensitive to the training
€ two proposed lterative and adaptive algorithms afg, ation. This is due to the fact that their performance

referred as “HC.A" and “A-ICA”. The Prf’posed algorithms ith very few training symbols is already very close to the
are compared \_N|_th the least-square trgl_nlng-based metﬁo_d MSE bound, which is consistent to Fig. 1.
termed “LS training”, where the coefficients of the equalize
are estimated during the training period and remain the same
during the data period. For the another compared scheme,
termed as “LS-ICA’, the least-square training-based nettho  In this paper, we have studied how to achieve spatial
first used during the training period to estimate the coeffits equalization for MIMO systems. We proposed two semi-
of the equalizer. Then during the data period, a pure blindl ICblind ICA-based algorithms, which incorporate informatio
method [7] is used to update the equalizer which is initediz both from the training and unknown sequences. During each
by the results from the training period. Also we show thiterative/adaptive step, the training information wadized
MMSE bound with perfect knowledge of the channel, wher® supervise the unconstrained blind ICA-based measure. Th
gn = [HH? + 02I)"'He,, ande,, is an all zero vector performance of the algorithm was also demonstrated through
except itsmth element equal to 1. simulation results.

We first show the performance of the methods as a function
of SNR. The block length is chosen & = 200 and the o
number of training symbols igV; = 4. As can be seen
from Fig.1, the proposed semi-blind algorithm can achieve
better performance than the both lease-square basedtraini
methods. The reason for this performance gain is that, the
semi-blind methods jointly incorporate the informationtire
known training sequence and the statistics property of the;
unknown sequence whereas the LS-ICA scheme separatels
utilizes two kinds of information during each of the two &
periods and the LS training scheme completely ignores the ®°
existence of the blind information. Hence for the semi-lin

VI. CONCLUSION

Rate

—>—— LS training

LS-ICA

algorithm, there is more information available during each i;l.cci |
iteration/adaption step to improve its performance thath bo —&— MMSE bound

of the two compared schemes. Since the performance of LS, ‘ ‘ ‘ ‘

ICA is very close to the LS training scheme, we will only 0 ° Yooaw B » ®

show the performance of LS training scheme in the sequel.

As can be seen from Fig. 1, the adaptive semi-blind algorith'ﬁﬂ- 1. Symbol error rate performance for the semi-blind athors and the
can outperform the iterative method, which is due to tHEMPared schemes versus SNR.
instability of the Newton method. Recall that the Newton

method can be treated as an adaptive method with constant

step size(WZ which might not be optimal in some APPENDIX

circumstances and therefore cause violation. Proof for Claim 1: Recall that the data model can be
Recall that the advantage of the proposed iterative methadtten as

is its fast convergence speed, which could be vital for time y(n) = Pr(n) = PHs(n), (20)

varying systems. Hence in Fig. 2 we show the performance . . ) .
of the proposed algorithms as a function of the number &€ Proof for Claim 1 is separated into two steps. First we

symbols used, while keeping SNR fixed. Since we assume fifgve that for2 x 2 systems, the matriPH always has the
first four symbols used as the training, we only provide tH@!lowing structure

performance wheV > 4. As expected, the iterative method a b

has very fast convergence speed &idsymbols are enough PH = {—b a] : (21)
to ensure its convergence although A-ICA can eventually

outperform the iterative algorithm. 1To simplify the development of the proof, we only study the eliss

Since the performance of semi-blind algorithms is depefgal—value data _model here. For BPSK sigr_]als, the assumpfidheoreal-
dent how much training information is available. we ShovaIL_Je system will not damage the generality of the proof asc@plex
ent on ho uc g ’ Y¥d|ng channel can be separated into two independent comfzmreand Q

the performance of the proposed algorithms in Fig. 3 asceannels.
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Symbol Error Rate

I-ICA
—F— A-ICA
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Fig. 2. Symbol error rate performance for the adaptive andatiter

algorithms versus the number of symbols used.

—=—— LS training

I-ICA
——%— A-ICA

10dB

15dB

Symbol Error Rate

10° I I I I I

Number of training symbols available

Fig. 3.  Symbol error rate performance for the training and daind
algorithms versus the number of training symbols used.

_ UA-VIUT : 18]
Recall thatP = UA U+ and the eigenvalue decomposi-

tion of the observation covariance matrix is

HH” = E{r(n)r(n)’} = UAUT. (22)

Hence the singular value decomposition of the channel matyig)

can be written as

H = UAY?VT, (23)

whereV is the right singular vector of the channel matrix.

Hence we obtain
M
PH = UA'PUTUAYPVT = Y ", v, (24)
m=1

whereU = [uy uy | andV = [vy V).

Recall that bothU andV are unitary matrices. Hence for
a2 x 2 system, both two matrices should have the structufel

as

_ a1 —ag _ by —by
U_LQ al}, V_L)2 bl]' (25)

So we can find that the structure BH will be

airby + asby  a1by — azb; _la b (26)
(lgbl 7(11[)2 Clel +a2b2 - —b al|’

In the second step, we will prove that PH has the
structure given as in (21), the BPSK symbs(s) are ready
to be detected frony(n) with only order ambiguity. As the
event ofa = b is a small probability event, we only consider
the case where # b.

If a < b, from (20) and (26) we know that the sign
of the first element ofy(n) is determined by the second
element ofs(n). And for the second element of(n), the
first element ofs(n) becomes dominating component. Hence

PH =

the hard decision o 0

1 (1)] y(n) should be equal te(n) with

a scale ambiguity.
If @ < b, the result is similar and the hard decisionydf:)
should be the same a$n) with a scale ambiguity.
Summarizing these two steps, we conclude that the orig-
inal transmitted symbols can be separated by only using a
prewhitening filter whose output contain only order and phas
ambiguity.
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