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Abstract— Blind equalization is one challenging problem
for multiple-input multiple-output systems, to which indepen-
dent component analysis (ICA) is applicable. However direct
application of ICA could yield low convergence speed and poor
performance. In this paper we propose two semi-blind ICA-based
algorithms, which incorporate information both from the training
and unknown sequences. During each iterative/adaptive step, the
training information is utilized to supervise the unconstrained
blind ICA-based measure. Simulation results show that the
two proposed semi-blind approaches can outperform both the
training-based and conventional ICA method. Furthermore we
report a special case of MIMO systems which does not require
the algorithm of source separation, whose proof is also provided.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) has recently be-
come an area of intense development in the wireless industry.
Since multiple transmitted sequences are sharing the same
radio resources, MIMO systems are operated in the presence of
co-channel interference as well as intersymbol interference. To
fully explore the performance gain promised by MIMO, robust
techniques for spatial and temporal equalization are required
at the receiver.

In this paper, we concentrate on how to achieve spatial
equalization and assume that the frequency selective MIMO
channels have been reduced to multiple flat fading channels.
As proved in [1] second order statistics (SOS) are sufficient
to de-convolute frequency selective MIMO channels to an
instantaneous mixture. Recall that methods using high or-
der statistics (HOS) have slow convergence speed and high
computational complexity. So a reasonable strategy of MIMO
equalization is to first achieve the temporal equalization by
using SOS. And in the second step, the spatial equalization
is completed by utilizing HOS. While a lot of work has been
done for deconvolution [2], [3], research in the area of spatial
equalization for MIMO systems is still ongoing.

When channel information is not available at the receiver,
training based methods [4] are traditionally proposed to
achieve reliable detection. As the training will consume either
time or frequency resources, these training based methods are
bandwidth inefficient, and hence blind approaches which only
rely on the statistics of observations become preferable. Inter-
estingly the data model of blind spatial equalization for MIMO
systems is the same as the one in a classical area, known as
blind source separation [5]–[8]. Specially we are interested in

This work was supported by the UK Engineering and Physical Sciences
Research Council under grant number EP/C004132/1.

the approach of independent component analysis (ICA), which
utilizes the measure of non-Gaussianity to achieve blind source
separation. However there is some residual order and phase
ambiguity in the result of ICA which requires the training-
based methods to be concatenated.

Instead of considering the training and blind information
separately, the idea of so-called semi-blind has received alot of
attention recently [9]. By incorporating information bothfrom
the training and unknown sequence, semi-blind approaches are
able to achieve better performance than both training and blind
methods. Furthermore it can also overcome the shortcoming of
blind methods which typically require quite a large amount of
data to converge. In [10] a semi-blind method using the prior
information of constant modulus was proposed for single-
input single-output systems. Semi-blind approaches for MIMO
systems with space-time block coding can be found in [11],
[12] which utilize the redundant information of space time
coding and hence are not applicable to general MIMO systems.

In this paper we consider semi-blind spatial equalization
for general MIMO systems. By using ICA, a cost function
to yield the desired equalizer is constructed to measure the
non-Gaussianity of the output of the spatial equalizer. Then
a training based cost function is incorporated to supervise
the ICA cost function and to find the desired solution more
quickly and accurately. Two algorithms are proposed to solve
the combined measure, the semi-blind iterative and adaptive
algorithm. The iterative method has a fast convergence speed
and better performance. The adaptive algorithm can avoid the
computation of the matrix inverse and also be able to track
time varying systems. Simulation shows that both proposed
semi-blind algorithms can achieve better performance than
the pure training and conventional ICA method. Also we
will report a special case of MIMO systems which does not
require the algorithm of source separation with a formal proof
provided.

II. DATA MODEL

Consider a discrete-time system model withM > 1 transmit
antennas andK ≥ M receive antennas. We assume that the
channel is time invariant during one data block and frequency
flat fading. LetN denote the length of one block. During the
time interval[ti + nT, ti + (n + 1)T ], thekth receive antenna
receive a symbol which is denoted asrk(n). Hence we obtain

rk(n) =

M
∑

m=1

hk,msm(n) + wk(n), (1)
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where sm(n), n = 1, . . . , N, is the nth symbol transmitted
from themth antenna,hk,m denotes the coefficient of the flat
fading path from themth transmit antenna to thekth receive
antenna.

To make ICA applicable, we assume that the multiple trans-
mitted sequences are independent to each other andsm(n)
is a random variable with equal probability chosen from the
constellation which is known at the receiver. Also assume
that the noise is a white process, havingE{wk(n)w∗

i (j)} =
σ2δk,iδn,j , whereδi,j is the Kronecker delta function.

Let s(n) =
[

s1(n) · · · sM (n)
]T

denote the vector ofM
transmitted symbols at thenth time interval. Stacking overK
receive antennas, we obtain

r(n) = Hs(n) + w(n), (2)

wherer(n) =
[

r1(n) · · · rK(n)
]T

, H is theK×M block-
stationary channel matrix with itsi, jth element equal tohi,j

andw(n) is constructed fromwk(n) similarly to r(n).
As a common strategy for most ICA algorithms, the re-

ceived symbols are first prewhitened

y(n) = Pr(n), (3)

whereP is a K ×K prewhitening matrix. One choice of the
prewhitening matrix isP = UΛ−1/2UH , whereU andΛ are
obtained from the eigenvalue decomposition of the covariance
matrix of the observationsE{r(n)r(n)H} = UΛUH . As
pointed out in [7], the strategy of prewhitening is to reduce
the number of parameters to be estimated and the degree
of freedom of the mixing matrix. In fact the power of the
prewhitening process can be demonstrated from the following
claim:

Claim 1 : Consider a MIMO system with two antennas at
each endM = K = 2 and the transmitted symbols belong to
the BPSK constellation. The original transmitted symbols can
be separated by only using a prewhitening filter whose output
contain only order and phase ambiguity.

This means that in some communication scenarios, the
prewhitening filter itself can accomplish blind source separa-
tion and hence there is no need for another source separation
algorithm concatenated to the prewhitening filter. The proof
of the claim 1 is given in the Appendix.

III. SEMI-BLIND ICA CRITERION

The aim of the spatial equalizer is to suppress both co-
channel interference and additive noise, and recover the
transmitted symbols as accurately as possible. Letgm ,
[

g1,m · · · gK,m

]T
denote the coefficients of the equalizer

for the symbols from themth transmit antenna. Hence we
obtain

ŝm(n) = gH
my(n) = gH

mPHs(n), (4)

which should be equal to thesm(n) ideally. Although we
initially neglect additive noise for clarity in developingthe
algorithm, we later assess its performance in environments
with additive noise.

A lot of criteria have been proposed to estimate the coeffi-
cients of the equalizer. In this paper, we will concentrate on
two types, the ICA-based and training-based criteria.

A. ICA based criterion

Recall thatŝm(n) in (4) can be treated as a linear com-
bination of the original symbols. The basic idea of ICA is
that a linear combination of multiple variables should be more
gaussian than the original variables, unless the outputs ofthe
filter are the same as the original ones. So the aim of ICA
algorithms is to find a measure of so-called non-Gaussianity.
In [7], [13] one such criterion is proposed as

J(gm) = E{f(|ŝm(n)|2)}, (5)

wheref(·) is the nonquadratic function defined in [7]. Many
classical measures of non-Gaussianity can fit into this general
framework. For example, standard fourth order cumulant is
one classical measure of non-Gaussianity, which is defined as

K(ŝm(n)) = E{|ŝm(n)|4} − 2E{|ŝm(n)|2} − |E{(ŝm(n))2}|2.

Following from the fact thaty(n) has been prewhitened,
we can obtain

K(ŝm(n)) = E{|ŝm(n)|4} − 2. (6)

So for kurtosis, the nonquadratic function can be written as

f(x) = x2 − 2. (7)

So the desiredgm can be found by minimizing the following
cost function,

JICA(gm) = E{f(|ŝm(n)|2)} = E{f(|gH
my(n)|2)}, (8)

with the constraintgH
mgm = 1.

Since f(·) is not a quadratic function, there is no closed
form solution of (8). Instead, many numerical methods have
been proposed to approximate the desired solution, such as
the Newton method in [13]. However most of these algorithms
require a long data block to acquire the high order statistics
as accurately as possible, which may cause the delay of
detection or may be not possible due to a fast fading channel.
Furthermore, as pointed out in many papers, such as [5], [7],
there will be order ambiguity as well as phase ambiguity which
can not be solved by only using blind ICA algorithms. So
training symbols are inevitably required in order to achieve
correct detection.

B. Training based criterion

Consider the case where there areNt, N ≥ Nt ≥ M, known
symbols at the head of each data block. Hence from (4) we
obtain

Zm = gH
mT, (9)

where Z =
[

ŝm(N − Nt + 1) · · · ŝm(N)
]

and T =
[

PHs(N − Nt + 1) · · · PHs(N)
]

. Since bothZ and T

are known, the desired coefficients of the filter can be esti-
mated by minimizing the following cost function

Jtraining(gm) = (gH
mT − Zm)(gH

mT − Zm)H . (10)

Training based estimation algorithms typically have the ad-
vantages that there is no ambiguity and only small time delay.
However, training methods only incorporate the information
in the training sequence and completely ignore the statistics
in the unknown part which might be helpful to improve the
system performance.
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C. Semi-blind ICA cost fuction

Since a ideal solution should be able to minimize both ICA
and training based criteria, it is desirable to combine these two
criteria as

Jsemi(gm) = E{f(|gH
my(n)|2)}+α(gH

mT−Zm)(gH
mT−Zm)H ,

(11)
where α is a scalar weight coefficient that determines the
contribution of the blind and training components of the cost
function. One difficulty remaining is that how to solve the
semi-blind criterion in (11) which still does not have a close-
form solution. In the following section, we will propose two
algorithms to solve this nonquadratic criterion.

IV. SEMI-BLIND ICA A LGORITHMS

In this section, we will propose two algorithms. One is
using the Newton method to solve the minimization iteratively,
which is named as I-ICA. The other is using the steepest
decent method and find the optimal adaptively, which is named
as A-ICA.

A. Semi-blind iterative ICA algorithm

Given the existence of the first order and second order
derivatives of the nonquadratic function,f(·), the desired
solution ofgm should satisfy the following equation

∂Jsemi(gm)

∂gm
= 0, (12)

where

∂Jsemi(gm)

∂gm
= {

1

N

N
∑

n=1

{f ′(|gH
my(n)|2)y(n)y(n)Hgm}∗ (13)

+α(TTHgm − TZm)H}∗

andf ′(·) is the first order derivative of the functionf(·). So
the optimal solution to minimize (11) should be the root of
(12), which can be found by using the Newton method.

Let i denote the index of the iteration step. So during each
iteration, the coefficients of the spatial equalizer are updated
as

gm(i + 1) = gm(i) − (J ′

semi(gm))

(

∂J ′

semi(gm)

∂gm

)

−1

(14)

where

∂J ′

semi(gm)

∂gm
=

1

N

N
∑

n=1

{f ′(|gH
my(n)|2)y(n)y(n)H} (15)

+
1

N

N
∑

n=1

{f ′(|gH
my(n)|2)|gH

my(n)|2y(n)y(n)H} + αTTH ,

and J ′

semi(gm) = (∂Jsemi(gm)
∂gm

)∗. Note that (14) requires the
computation of the inverse of aK×K matrix, which has been
assumed to be invertable.

The initialization of the iterative semi-blind ICA algorithm
is achieved by only using the training information

gm(0) = (TTH)−1TZm

H . (16)

Note that our current semi-blind scheme requires at least
as many training symbols as the number of receive antennas
Nt ≥ K. The advantage of the I-ICA is its fast convergence
speed due to the property of the Newton method. However,
during each iteration, the inverse of a matrix with dimension
K × K has to be computed, which will cause extra com-
putational complexity. Furthermore, I-ICA is not suitablefor
the time-varying scenario as it assumes the block-stationary
fading-channel.

B. Semi-blind adaptive ICA algorithm

The basic idea of the adaptive semi-blind ICA algorithm is
to continually adapt the coefficients of the spatial equalizer
as new observations become available. So for the semi-blind
adaptive ICA algorithm, the semi-blind cost function can be
written as

Jsemi(gm(n)) = 1
n

∑n
j=1 f(|gm(n)Hy(j)|2) + (17)

α(gm(n)HT − Zm)(gm(n)HT − Zm)H ,

where n = Nt + 1, . . . , N . Note that here we assume the
channel is constant during one block. If the channel is time
varying, a forgetting factor should be introduced to adjust
the cost function. To find the desired solution of (17), many
classical adaptive methods could be applied. We choose the
steepest decent method to avoid the inverse of the matrix in
(14).

So during each time interval, the coefficients of the equalizer
is updated as

gm(n + 1) = gm(n) − µ
∂Jsemi(gm(n))

∂gm(n)
, (18)

whereµ is the step size parameter which controls the conver-
gence speed of the adaptive algorithm and

∂Jsemi(gm(n))

∂gm(n)
= {

1

n

n
∑

j=1

{f ′(|gm(n)Hy(j)|2)y(j)y(j)H (19)

gm(n)}∗ + α(TTHgm(n) − TZm)H}∗.

As can be seen from (18) the matrix inverse is no longer
required compared to the iteration step in (14). Hence A-ICA
is more computationally efficient than I-ICA. For fast time-
varying systems, the choice of the step size parameter could
be critical to ensure the fast and steady convergence speed,a
low steady-state error and good tracking performance. One
technique to find the optimal choice of the step size was
proposed in [10], where the original cost-function ofgm is
treated as a function ofµ and then a method of steepest
descent is used adaptively to find the optimal choice ofµ.
More parameter estimation techniques, such as the Kalman
filter and the recursive least-squares method, can be found
in [14], [15]. Due to the space limitation, we will report the
result for the optimization of the step size in the future. In
fact, since the channel is assumed to be constant over a block,
the proposed semi-blind algorithm with a constant choice of
µ is ready to outperform both the training and conventional
ICA algorithms.
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V. NUMERICAL STUDY

Consider a MIMO system withM = 4 transmit antennas
and K = 4 receive antennas. Both training and information
symbols are chosen from a QPSK constellation. The elements
of the channels and noise matrices were zero-mean, circular
complex Gaussian random variables, with variances chosen to
achieve the desired SNR.

The two proposed iterative and adaptive algorithms are
referred as “I-ICA” and “A-ICA”. The proposed algorithms
are compared with the least-square training-based method [4],
termed “LS training”, where the coefficients of the equalizer
are estimated during the training period and remain the same
during the data period. For the another compared scheme,
termed as “LS-ICA”, the least-square training-based method is
first used during the training period to estimate the coefficients
of the equalizer. Then during the data period, a pure blind ICA
method [7] is used to update the equalizer which is initialized
by the results from the training period. Also we show the
MMSE bound with perfect knowledge of the channel, where
gm = [HHH + σ2I]−1Hem and em is an all zero vector
except itsmth element equal to 1.

We first show the performance of the methods as a function
of SNR. The block length is chosen asN = 200 and the
number of training symbols isNt = 4. As can be seen
from Fig.1, the proposed semi-blind algorithm can achieve
better performance than the both lease-square based training
methods. The reason for this performance gain is that, the
semi-blind methods jointly incorporate the information inthe
known training sequence and the statistics property of the
unknown sequence whereas the LS-ICA scheme separately
utilizes two kinds of information during each of the two
periods and the LS training scheme completely ignores the
existence of the blind information. Hence for the semi-blind
algorithm, there is more information available during each
iteration/adaption step to improve its performance than both
of the two compared schemes. Since the performance of LS-
ICA is very close to the LS training scheme, we will only
show the performance of LS training scheme in the sequel.
As can be seen from Fig. 1, the adaptive semi-blind algorithm
can outperform the iterative method, which is due to the
instability of the Newton method. Recall that the Newton
method can be treated as an adaptive method with constant
step size

(

∂J ′

semi
(gm)

∂gm

)

which might not be optimal in some
circumstances and therefore cause violation.

Recall that the advantage of the proposed iterative method
is its fast convergence speed, which could be vital for time
varying systems. Hence in Fig. 2 we show the performance
of the proposed algorithms as a function of the number of
symbols used, while keeping SNR fixed. Since we assume the
first four symbols used as the training, we only provide the
performance whenN > 4. As expected, the iterative method
has very fast convergence speed and20 symbols are enough
to ensure its convergence although A-ICA can eventually
outperform the iterative algorithm.

Since the performance of semi-blind algorithms is depen-
dent on how much training information is available, we show
the performance of the proposed algorithms in Fig. 3 as a

function of the length of the training sequence, with fixed
SNR. As can be seen from the figure, the performance of
both the compared scheme and semi-blind algorithms can be
improved by increasing training information. One interesting
observation from Fig. 3 is that the performance gain of the
training method with increased training information is much
larger than that of the proposed algorithms, which means
that semi-blind methods are less sensitive to the training
information. This is due to the fact that their performance
with very few training symbols is already very close to the
MMSE bound, which is consistent to Fig. 1.

VI. CONCLUSION

In this paper, we have studied how to achieve spatial
equalization for MIMO systems. We proposed two semi-
blind ICA-based algorithms, which incorporate information
both from the training and unknown sequences. During each
iterative/adaptive step, the training information was utilized
to supervise the unconstrained blind ICA-based measure. The
performance of the algorithm was also demonstrated through
simulation results.
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Fig. 1. Symbol error rate performance for the semi-blind algorithms and the
compared schemes versus SNR.

APPENDIX

Proof for Claim 1: Recall that the data model can be
written as1

y(n) = Pr(n) = PHs(n), (20)

The proof for Claim 1 is separated into two steps. First we
prove that for2 × 2 systems, the matrixPH always has the
following structure

PH =

[

a b

−b a

]

. (21)

1To simplify the development of the proof, we only study the noiseless
real-value data model here. For BPSK signals, the assumption of the real-
value system will not damage the generality of the proof as thecomplex
fading channel can be separated into two independent components, I and Q
channels.
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Recall thatP = UΛ−1/2UT and the eigenvalue decomposi-
tion of the observation covariance matrix is

HHT = E{r(n)r(n)T } = UΛUT . (22)

Hence the singular value decomposition of the channel matrix
can be written as

H = UΛ1/2VT , (23)

whereV is the right singular vector of the channel matrix.
Hence we obtain

PH = UΛ−1/2UT UΛ1/2VT =

M
∑

m=1

umvT
m, (24)

whereU =
[

u1 · · · uM

]

andV =
[

v1 · · · vM

]

.
Recall that bothU andV are unitary matrices. Hence for

a 2 × 2 system, both two matrices should have the structure
as

U =

[

a1 −a2

a2 a1

]

, V =

[

b1 −b2

b2 b1

]

. (25)

So we can find that the structure ofPH will be

PH =

[

a1b1 + a2b2 a1b2 − a2b1

a2b1 − a1b2 a1b1 + a2b2

]

=

[

a b

−b a

]

. (26)

In the second step, we will prove that ifPH has the
structure given as in (21), the BPSK symbolss(n) are ready
to be detected fromy(n) with only order ambiguity. As the
event ofa = b is a small probability event, we only consider
the case wherea 6= b.

If a < b, from (20) and (26) we know that the sign
of the first element ofy(n) is determined by the second
element ofs(n). And for the second element ofy(n), the
first element ofs(n) becomes dominating component. Hence

the hard decision of

[

0 1
1 0

]

y(n) should be equal tos(n) with

a scale ambiguity.
If a < b, the result is similar and the hard decision ofy(n)

should be the same ass(n) with a scale ambiguity.
Summarizing these two steps, we conclude that the orig-

inal transmitted symbols can be separated by only using a
prewhitening filter whose output contain only order and phase
ambiguity.
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