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ABSTRACT
Determining similarity measures between two images is a
interesting problem for image registration or change detec-
tion. Bivariate gamma distributions are good candidates for
radar images since their marginals are known to be univari-
ate gamma distributions. This paper addresses the problem
of estimating the parameters of these bivariate gamma dis-
tributions by using the maximum likelihood method and the
method of moments. The performances of both estimators
are compared. Asymptotic expressions for the estimation
variances are also derived.

1. INTRODUCTION

The univariate gamma distribution is uniquely defined in
many statistical textbooks. However, extensions defining
multivariate gamma distributions (MGDs) are more contro-
versial. For instance, a full chapter of [1] is devoted to this
problem (see also references therein). Most journal authors
assume that a vectorX = (X1, . . . ,Xd) is distributed accord-
ing to an MGD if the marginal distributions ofXi are uni-
variate gamma distributions. However, the family of distri-
butions satisfying this condition is very large. In order to
reduce the size of the family of MGDs, S. Bar Lev and P.
Bernardoff recently defined MGDs by the form of their mo-
ment generating function (or Laplace transform) [2], [3]. The
main contribution of this paper is to study estimators for the
parameters of bivariate gamma distributions (BGDs) defined
in [2], [3]. These distributions are interesting for image reg-
istration as discussed below.
Given two remote sensing images of the same sceneI , the
reference, andJ, the secondary image, the registration prob-
lem can be defined as follows: determine a geometric trans-
formationT which maximizes the correlation coefficient be-
tween imageI and the result of the transformationT ◦ J. A
fine modeling of the geometric deformation is required for
the estimation of the coordinates of every pixel of the refer-
ence image inside the secondary image. The geometric de-
formation is modeled by local rigid displacements [4].
The key element of the image registration problem, is the es-
timation of the correlation coefficient between the images.
This is usually done with an estimation window in the neigh-
borhood of each pixel. In order to estimate the local rigid dis-
placements with a good geometric resolution one needs the
smallest estimation window. However, this leads to estima-
tions which may not be robust enough. In order to perform
high quality estimations with a small number of samples,
we propose to introduce a priori knowledge about the image
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statistics. In the case of power radar images, it is well known
that the pixels follow a gamma distribution [5]. Therefore,
MGDs seem good candidates for the robust estimation of the
correlation coefficient between radar images.
This paper is organized as follows. Section 2 recalls some
important results on MGDs. Section 3 studies two estima-
tors of the unknown parameters of a BGD. These estimators
are based on the classical maximum likelihood method and
method of moments. Simulation results illustrating the per-
formance of both estimators are presented in Section 4. Con-
clusions are finally reported in Section 5.

2. MULTIVARIATE GAMMA DISTRIBUTIONS

2.1 Definitions

A polynomialP(z) with respect toz = (z1, . . . ,zd) is affineif
the one variable polynomialzj 7→P(z) can be writtenAzj +B
(for any j = 1, . . . ,d), whereAandBare polynomials with re-
spect to thezi ’s with i 6= j. A random vectorX= (X1, . . . ,Xd)
is distributed according to an MGD onRd

+ with shape param-
eterq and scale parameterP (denoted asX ∼ Γ(q,P)) if its
moment generating function or Laplace transform is defined
as follows [3]:

ψγq,P(z) = E
(

e−∑d
i=1 Xizi

)
= [P(z)]−q, (1)

whereq≥ 0 andP is an affine polynomial. It is important to
note the following points:
• the affine polynomialP has to satisfy appropriate condi-

tions includingP(0) = 1. In the general case, determin-
ing necessary and sufficient conditions on the pair(q,P)
such thatΓ(q,P) exist is a difficult problem. The reader
is invited to look at [3] for more details,

• by settingzj = 0 for j 6= i in (1), we obtain the Laplace
transform ofXi , which is clearly a gamma distribution
with shape parameterq and scale parameterpi , wherepi
is the coefficient ofzi in P.

A BGD corresponds to the particular cased = 2 and is de-
fined by its Laplace transform

ψ(z1,z2) = (1+ p1z1 + p2z2 + p12z1z2)
−q , (2)

with the following conditions

p1 > 0, p2 > 0, p1p2− p12 > 0. (3)

In the bi-dimensional case, the conditions (3) ensure that (2)
is the Laplace transform of a probability distribution defined
on [0,∞[2. Note again that (2) implies that the marginal dis-
tributions ofX1 andX2 are gamma distributions, i.e.X1 ∼
Γ(q, p1) andX2 ∼ Γ(q, p2).
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2.2 Bivariate Gamma pdf

Obtaining tractable expressions for the probability density
function (pdf) of a MGD defined by (1) is a challenging prob-
lem. However, in the bivariate case, the problem is much
simpler. Straightforward computations allow us to obtain the
following density (see [1, p. 436] for a similar result)

f2D(x) = exp

(
− p2x1 + p1x2

p12

)
xq−1

1 xq−1
2

pq
12Γ(q)

fq(cx1x2)IR2
+
(x),

where IR2
+
(x) is the indicator function defined on[0,∞[2

(IR2
+
(x) = 1 if x1 > 0,x2 > 0 andIR2

+
(x) = 0 otherwise),

c = p1p2−p12
p2

12
and fq(z) is defined as follows

fq(z) =
∞

∑
k=0

zk

k!Γ(q+k)
.

Note that fq(z) is related to the confluent hypergeometric
function (see [1, p. 462]).

2.3 BGD Moments

The Taylor series expansion of the Laplace transformψ can
be written:

ψ(z1,z2) = ∑
k,l≥0

(−1)k+l

k!l !
E[Xk

1Xl
2]z

k
1zl

2.

The moments of a BGD can be obtained by differentiating
this expression with respect toz1 andz2. For instance, the
mean and variance ofXi (denotedE[Xi ] and var(Xi) respec-
tively) can be expressed as follows

E[Xi ] = qpi , var(Xi) = qp2
i ,

for i = 1,2. Similarly, the covariance cov(X1,X2) and corre-
lation coefficientr(X1,X2) of a BGD can be easily computed:

cov(X1,X2) = E[X1X2]−E[X1]E[X2] = q(p1p2− p12),

r(X1,X2) =
cov(X1,X2)√

var(X1)
√

var(X2)
=

p1p2− p12

p1p2
.

It is important to note that for a known value ofq, a BGD
is fully characterized byθ = (E[X1],E[X2], r(X1,X2)) (since
θ and (p1, p2, p12) are related by a one-to-one transforma-
tion). Note also that the conditions (3) ensure that the co-
variance and correlation coefficient of the couple(X1,X2) are
both positive.

3. PARAMETER ESTIMATION

The following notations are used in the rest of the paper

m1 = E[X1], m2 = E[X2], r = r(X1,X2),

inducingθ = (m1,m2, r). This section addresses the problem
of estimating the unknown parameter vectorθ from n vec-
tors X = (X1, . . . ,Xn), whereXi = (Xi

1,X
i
2) is distributed

according to a BGD with parameter vectorθ . Note that the
parameterq is assumed to be known here, as in most practical
applications. However, this assumption could be relaxed.

3.1 Maximum Likelihood Method

3.1.1 Principles

The maximum likelihood (ML) method can be applied in the
bivariate case (d = 2) since a closed-form expression of the
density is available. In this particular case, after removing the
terms which do not depend onθ , the log-likelihood function
can be written

l(X;θ) =−nqlog(m1m2)−
nqX1

m1(1− r)
− nqX2

m2(1− r)

−nqlog(1− r)+
n

∑
i=1

log fq(cXi
1Xi

2), (4)

wherec = rq2

m1m2(1−r)2 , andX1 = 1
n ∑n

i=1Xi
1, X2 = 1

n ∑n
i=1Xi

2

are the sample means ofX1 andX2. By differentiating the
log-likelihood with respect toθ and by noting thatf ′q(z) =
fq+1(z), the following set of equations is obtained

nqX1

1− r
−nqm1−

r
(1− r)2

q2

m2
∆ = 0,

nqX2

1− r
−nqm2−

r
(1− r)2

q2

m1
∆ = 0,

nqX1

(1− r)m1
+

nqX2

(1− r)m2
−nq− 1+ r

(1− r)2

q2

m1m2
∆ = 0,

where

∆ =

(
n

∑
i=1

Xi
1Xi

2
fq+1(cXi

1Xi
2)

fq(cXi
1Xi

2)

)
.

The maximum likelihood estimators (MLEs) ofm1 andm2
are then easily obtained

m̂1ML = X1, m̂2ML = X2.

The MLE of r is obtained by computing the rootr ∈]0,1[ of

g(r) = r−1+
q

nX1X2

(
n

∑
i=1

Xi
1Xi

2
fq+1(ĉXi

1Xi
2)

fq(ĉXi
1Xi

2)

)
= 0, (5)

where

ĉ =
r

(1− r)2

q2

X1X2
.

This is achieved by using a Newton-Raphson procedure ini-
tialized by the standard empirical correlation coefficient de-
fined in (9). It is possible to show that the function (5) has
a unique root in[0,1[ providedr̂Mo defined in (9) belongs in
[0,1[. The convergence of the Newton-Raphson procedure is
practically obtained after few iterations.

3.1.2 Performance

The asymptotic properties of the ML estimatorŝm1ML and
m̂1ML can be derived from the univariate gamma distributions
Γ(q, p1) andΓ(q, p2). These estimators are obviously unbi-
ased, convergent and efficient. However, the performance
of r̂ML is more difficult to derive. Of course, the MLE is
known to be asymptotically unbiased and asymptotically ef-
ficient, under mild regularity conditions. Thus, the mean
square error of the estimates can be approximated for large
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data records by the Cramer-Rao lower bound (CRLB). For
unbiased estimators, the CRLB is obtained by inverting the
Fisher information matrix. The computation of this matrix
requires to determine the negative expectations of second-
order derivatives (with respect tom1, m2 andr) of l(X;θ) in
(4). Closed-form expressions for the expectations are diffi-
cult to obtain because of the term logfq. In such situation, it
is very usual to approximate the expectations by using Monte
Carlo methods. This will provide interesting approximations
of the ML mean square errors (MSEs) (see simulation results
of section 4).

3.2 Method of Moments

3.2.1 Principles

This section briefly recalls the principle of the method of mo-
ments. Consider a functionh(.) : RM → RL and the statistic
sn of sizeL defined as:

sn =
1
n

n

∑
i=1

h(Xi), (6)

whereh(.) is usually chosen such thatsn is composed of
empirical moments. Denote as:

f(θ) = E[sn] = E[h(X1)].

The moment estimator ofθ is constructed as follows:

θ̂Mo = g(sn),

whereg(f(θ)) = θ . By considering the function

h(X) = (X1,X2,X
2
1 ,X2

2 ,X1X2),

the following result is obtained

f(θ) = [m1,m2,m
2
1(1+q−1),m2

2(1+q−1),m1m2(1+ rq−1)].

The unknown parameters(m1,m2, r) can then be expressed
as functions off(θ) = ( f1, f2, f3, f4, f5). For instance, the
following relations are obtained

m1 = f1, m2 = f2, r =
f5− f1 f2√

( f3− f 2
1 )( f4− f 2

2 )
, (7)

yielding the standard estimators:

m̂1Mo = X1, m̂2Mo = X2, (8)

r̂Mo =
∑n

i=1(X
i
1−X1)(Xi

2−X2)√
∑n

i=1(X
i
1−X1)2

√
∑n

i=1(X
i
2−X2)2

. (9)

3.2.2 Performance

The asymptotic performance of the estimatorθ̂Mo can be de-
rived by imitating the results of [6] derived in the context
of time series analysis. A key point of these proofs is the
assumptionsn

a.s.→ s = f(θ) which is verified herein by apply-
ing the strong law of large numbers to (6). As a result, the
asymptotic mean square error ofθ̂Mo can be derived:

lim
n→∞

nE[(θ̂Mo−θ)2] = G(θ)Σ(θ)G(θ)t , (10)

whereG(θ) is the Jacobian matrix of the vectorg(·) at point
s = f(θ) and

Σ(θ) = lim
n→∞

nE[(sn−s)(sn−s)T ].

In the previous example, according to (7),g : R5 → R3 is
defined as follows

g(x) =

x1,x2,
x5−x1x2√

(x3−x2
1)(x4−x2

2)

 .

The partial derivatives ofg1 and g2 with respect toxi , i =

1, ...,5 are trivial. By denotingγ =
√

(x3−x2
1)(x4−x2

2),
those ofg3 can be expressed as

∂g3

∂x1
=−x2

γ
+

x1(x4−x2
2)(x5−x1x2)
γ3 ,

∂g3

∂x2
=−x1

γ
+

x2(x3−x2
1)(x5−x1x2)
γ3 ,

∂g3

∂x3
=

(x1x2−x5)(x4−x2
2)

2γ3 ,

∂g3

∂x4
=

(x1x2−x5)(x3−x2
1)

2γ3 ,
∂g3

∂x5
=

1
γ
.

The elements ofΣ(θ) can be computed from the moments
of h(X) which are obtained by derivating the Laplace trans-
form (2). This allows us to compute the asymptotic MSE (10)
thanks to the general formula valid for any integersm,n:

E[XmYn] = mm
1 mn

2
(q)m

qm

(q)n

qn

min(m,n)

∑
k=0

(−m)k(−n)k

(q)k

rk

k!
, (11)

where(a)k is the Pochhammer symbol such that(a)0 = 1 and

(a)k+1 = (a+k)(a)k = a(a+1) . . .(a+k),

for any integerk (see [7, p. 256]).

4. SIMULATION RESULTS

Many simulations have been conducted to validate the pre-
vious theoretical results. This section presents some exper-
iments obtained with a vectorX = (X1,X2) distributed ac-
cording to a BGD whose Laplace transform is (2).

4.1 Generation

The generation ofX has been performed as follows:
• simulate 2q independent multivariate Gaussian vectors of

R2 denoted asZ1, . . . ,Z2q with means(0,0) and the 2×2

covariance matrixC = (ci, j)1≤i, j≤2 with ci, j = r
|i− j|

2 ,

• compute thekth component ofX = (X1,X2) as Xk =
mk
2q ∑1≤i≤2q(Zi

k)
2, whereZi

k is thekth component ofZi .

By computing the Laplace transform ofX, it can be shown
that the two previous steps allow us to generate random
vectorsX = (X1,X2) distributed according to a BGD. The
marginal distributions ofX1 and X2 are univariate gamma
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distributionsΓ(q,m1/q) andΓ(q,m2/q). Moreover, the co-
variance ofX can be computed as follows:

E(X1X2) =
m1m2

4q2

2q

∑
i=1

2q

∑
j=1

E[(Zi
1)

2(Z j
2)

2]. (12)

The independence between vectorsZ1, . . . ,Z2q yields

E[(Zi
1)

2(Z j
2)

2] = E[(Zi
1)

2]E[(Z j
2)

2] = 1, ∀ i 6= j.

Moreover,

E[(Zi
1)

2(Zi
2)

2]=2E(Zi
1Zi

2)E(Zi
1Zi

2)+E[(Zi
1)

2]E[(Zi
2)

2],
=2r +1,

for 1 ≤ i ≤ 2q. By replacing these two last expressions in
(12), the covariance of(X1,X2) and the corresponding corre-
lation coefficient can be finally expressed as:

cov(X1,X2) =
m1m2 r

q
,

cov(X1,X2)√
Var(X1)Var(X2)

= r.

4.2 Estimation Performance

The first simulations compare the performance of the method
of moments with the ML method as a function ofn. Note that
the possible values ofn corresponds to the numbers of pix-
els of squared windows of size(2p+ 1)× (2p+ 1), where
p∈N. These values are appropriate to the image registration
problem. The number of Monte Carlo runs is 1000 for all fig-
ures presented in this section. The other parameters for this
example arem1 = 400,m2 = 800 andq = 1. Figures 1 and
2 show the mean square errors (MSEs) of the estimated cor-
relation coefficient (obtained from 1000 Monte Carlo runs)
for two different correlation structures (r = 0.2 andr = 0.8).
The circle curves correspond to the estimator of moments
whereas the triangle curves correspond to the MLE. These
figures show the interest of the ML method, which is much
more efficient for this problem than the method of moments.
The figures also show that the difference between the two
methods is more significant for large values of the correla-
tion coefficientr.
The theoretical asymptotic MSEs of the ML and moment es-
timators are also depicted on Figs. 1 and 2 (continuous lines).
The theoretical MSEs are clearly in good agreement with the
estimated MSEs, even for small values ofn. This is partic-
ularly true for large values ofr. Finally, these figures show
that “reliable” estimates ofr can be obtained for values ofn
larger than 9×9.

5. CONCLUSIONS

This paper studied maximum likelihood and moment estima-
tors for the parameters of bivariate gamma distributions. The
asymptotic performance of these estimators was also investi-
gated. The maximum likelihood estimator has to be preferred
to the moment estimator when using bivariate gamma dis-
tributions. These results are potentially very interesting for
image registration and/or change detection. The interested
reader is invited to consult [8] for more details.
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Figure 1: log MSEs versus log(n) for parameterr (r = 0.2).

Figure 2: log MSEs versus log(n) for parameterr (r = 0.8).
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