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ABSTRACT

This paper presents a receiver that combines semi-blind channel
estimation with the decoding process for multiband OFDM UWB
communications. We particularly focus on reducing the number of
estimated channel coefficients by taking advantage of the sparsity
of UWB channels in the wavelet domain. The EM algorithm is used
to estimate the channel without any need to pilot symbols inside the
data frame. Channel estimation performance is enhanced by inte-
grating a thresholding/denoising scheme within the EM algorithm
leading at the same time to a reduction of the estimator complexity.
Simulation results using IEEE UWB channel models show 3 dB of
SNR improvement at a BER of10−3 compared to training sequence
based channel estimation.

1. INTRODUCTION

Ultra-Wide-Band (UWB) technology is defined as any wireless
transmission scheme that occupies a bandwidth of more than 25
% of its center frequency, or greater than 500 MHz [1]. In Febru-
ary 2002, the federal communication commission (FCC) agreed to
allocate 7500 MHz of spectrum for unlicensed use of UWB trans-
mission in the 3.1-10.6 GHz frequency band. This wide spectrum
allocation has initiated a lot of research activity from both industry
and academia.

In recent years, UWB system design has experienced a shift
from the traditional “single-band” radio that occupies the whole al-
located spectrum in favor of a “multiband” design approach [2].
“Multibanding” consists in dividing the available UWB spectrum
into several subbands, each one occupying approximately 500 MHz
(minimum bandwidth for a UWB system according to FCC de-
finition). This bandwidth reduction relaxes the requirement on
sampling rates of ADCs, consequently enhancing digital process-
ing capability. Multiband orthogonal frequency division multiplex-
ing (OFDM) [2] is a scheme which enables high data rate UWB
transmission inherits all the strength of OFDM that has already
been proven for wireless communications (ADSL, DVB, 802.11a,
802.16.a, etc.). This approach uses a conventional OFDM system
[3] combined with bit interleaved coded modulation (BICM) and
frequency hopping over different subbands for improved diversity
and multiple access.

In the multiband OFDM proposal [4], channel estimation is per-
formed using known symbols (pilots) transmitted periodically in-
side the information frame assuming that the channel is static be-
tween two pilot sequences. Thus in time varying channels one must
send more pilot patterns resulting in a significant loss in spectral
efficiency.

We propose here an alternative semi-blind method based on the
sparse wavelet domain representation of UWB channels addressed
in [5]. The proposed algorithm requires only one pilot symbol per
frame for initialization and can be used for estimating both static
and time varying UWB channels. The Expectation Maximization
(EM) [6] algorithm is used to approximate a maximum likelihood
(ML) solution of the unknown channel. In the decoder part we
used a “soft” output BCJR decoder [7] to provide the probability

of encoded bits which is exactly what the EM algorithm requires
for channel estimation. Thus, in our technique the iterative process
of the EM algorithm is naturally combined with the decoding oper-
ation of encoded data. Although joint channel estimation and soft
detection of coded OFDM has already been studied in the literature
[8] [9], the originality of our method lies in the parsimonious rep-
resentation of UWB channels in the wavelet domain for reducing
channel estimation complexity and improving its accuracy.

After presenting an overview of the multiband OFDM system in
section 2, we introduce the wavelet domain problem formulation in
section 3. Section 4 describes the proposed joint channel estimation
and decoding algorithm and shows how the number of estimated pa-
rameters can be reduced through the iterations. Section 5 illustrates
via simulations the performance of the proposed method in realistic
UWB channel environments and section 6 concludes the paper.

Notational conventions are as follows :IM represents anM×M
identity matrix; (.)T , (.)H and (.)∗ denote vector transpose, Her-
mitian transpose and conjugation, respectively.

2. MULTIBAND OFDM SYSTEM OVERVIEW

In a multiband OFDM system, the whole UWB spectrum is divided
into 14 smaller non-overlapping subbands each one occupying 528
MHZ of bandwidth [2]. The three lower bands are used for standard
and mandatory operation whereas the rest of the bands are reserved
for optional use or future expansions. Information is transmitted
using OFDM modulation over one of the subbands in a particular
time-slot. The transmitter architecture for the multiband OFDM
system is very similar to that of a conventional wireless OFDM sys-
tem. The main difference is that multiband OFDM system uses a
time-frequency code (TFC) to select the center frequency of dif-
ferent subbands which is used not only to provide frequency di-
versity but also to distinguish between multiple users (see figure
1). As shown in figure 2, after channel coding, a block of bits is
interleaved and mapped to QPSK symbols. Different puncturing
patterns of a 1/3 convolutional mother code combined with time
and/or frequency repetition, generate ten data rates from 55 Mbps
to 480 Mbps. One OFDM symbol has a duration of 312.5 ns and
a bandwidth of 528 MHz. A 128 point IFFT is used along with
a cyclic prefix (CP) length of 60.6 ns to modulate 122 subcarriers
among which 100 subcarriers are allocated to data, 12 subcarriers
are used for frame synchronization and 10 subcarriers provide 9.5
ns of guard interval for switching between subbands. Here, we con-
sider multiband OFDM in its mandatory modeie. employing 3 first
subbands of 528 MHz with center frequencies at 3.432, 3.960 and
4.448 GHz. More details about multiband OFDM system parame-
ters and its advantages for UWB transmission can be found in [2]
[4].
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3. OBSERVATION MODEL AND WAVELET DOMAIN
PROBLEM FORMULATION

3.1 Traditional data modeling for OFDM channel estimation

Let’s consider the multiband OFDM transmission of figure 2 us-
ing N subcarriers among whichK are allocated to data. At the
receiver, assuming a CP longer than the channel maximum delay
spread and perfect synchronization, OFDM converts a frequency
selective channel intoK parallel flat fading subchannels [3]. Hence,
the observation model corresponding to each subband can be writ-
ten in frequency domain as:

yi = diag(si)hi +ni i = 1,2,3 (1)

whereK × 1 vectorsyi ,si ,hi andni denotes respectively the ob-
servation, the unknown QPSK symbols, the channel frequency re-
sponse and a zero mean white complex Gaussian noise with vari-
anceσ2 regarding to data subcarriers andi is the corresponding
subband index. Major part of previous work in OFDM semi-blind
channel estimation [8] [9] were based on a data model similar to (1)
and proposed to estimate directly the channel frequency response
(hi) which requires the estimation of 3×K different channel coef-
ficients for the 3 subbands.

3.2 Wavelet domain data modeling and motivations

Instead of working with the above observation model for estimating
independently the channel for each subband, we propose to derive
from (1) an equivalent observation model in which the channel cor-
responding to all 3 subband is involved (see figure 1):

Y = diag(S)H+n (2)

where YT = [y1
T ,y2

T ,y3
T ], ST = [s1

T ,s2
T ,s3

T ] and HT =

[h1
T ,h2

T ,h3
T ] are 1×M (M = 3K) vectors of observation, sent

QPSK symbols and total channel frequency response over 3 sub-
bands. In the above data data model, the channel is assumed to
be constant over 3 OFDM symbol period which is not a restrictive
supposition due to the slow time variability of UWB channels.

Wavelet transform is known for its ability to provideparsimo-
nious expansion for a large family of signals. In [5] we showed
that orthogonal discrete wavelet transform (ODWT) provides a very
sparse representation (a few large coefficients and many small ones)
of UWB channel impulse response. This observation is the key to
our approach since it suggests to express the UWB channel impulse
response in terms of its wavelet coefficients. More clearly, in our
model, we are estimating the wavelet coefficients of the channel im-
pulse response, taken over the 1.584 GHz bandwidth, even if in the
transmitter it is practically used by slices of 528 MHz bandwidth.
Estimating the channel over a wider bandwidth is important to have
a good sparsity in the wavelet domain.

Let FM,L be the truncated FFT matrix constructed from the
3N×3N complete FFT matrix by keeping theM rows correspond-
ing to data tones and the firstL columns whereL is the length of
the total channel impulse response over 3 subbands. Let defineW
as theL×L inverse ODWT matrix. We can writeH = FM,LWθ
whereθ is the vector of wavelet coefficients. Observation model
(2) is rewritten as:

Y = diag(S)FM,LWθ +n

= diag(S)Tθ +n (3)

whereT = FM,LW. Equation (3) is the starting point of our EM
based channel estimation algorithm.

4. REDUCED COMPLEXITY EM ALGORITHM FOR
JOINT CHANNEL ESTIMATION AND DECODING

This section presents the EM based algorithm for multiband OFDM
channel estimation. We start with the reasons for using the EM al-
gorithm then derive the iterative channel update formula. We show

how the number of estimated coefficients can be significantly re-
duced at each iteration of the EM algorithm thanks to the wavelet
domain sparse representation of the UWB channel. Finally we de-
scribe the employed decoding method along with the reasons it is
combined with the channel estimation process.

4.1 EM principle and application to wavelet domain channel
estimation

Our first step consists in decomposing the white Gaussian noise in
(3) into the sum of two different Gaussian noises, as proposed in
[10]:

n = αdiag(S)n1 +n2 (4)

whereα (α2 < σ2) is a positive parameter andn1 andn2 are inde-
pendent noises such thatn1 ∼ N (0,IM) andn2 ∼ N (0,σ2IM −

α2diag(S)diag(S)H). Since QPSK is a constant envelope modula-
tion, n2 ∼ N (0,(σ2−α2)IM). The idea behind the above noise
decomposition is that it allows the introduction of the hidden vector
z ( see (5) ) which provides us a direct relation between the true and
estimated wavelet coefficients corrupted by additive white Gaussian
noise. Usingn1 andn2, we can rewrite the observation model (3)
as: {

z = Tθ +αn1
Y = diag(S)z+n2

(5)

The general problem is to jointly estimate/updateθ and detect the
information symbolsS while taking advantage of anya priori on
them. SinceS andz are unknown, we have an observation model
with missing data and hidden variables where the ML solution of
θ has no close form. In such situations, the EM algorithm [6] is
usually used to maximize the expectation of the likelihood function
over all possible missing and hidden variables.

Let x = {Y,S,z} be thecomplete data setin the EM algo-
rithm terminology. Note that the observation setY determines only
a subset of the spaceχ of whichx is an outcome. We searchθ that
maximizes thecomplete log-likelihoodlogp(x|θ). After initializa-
tion, the EM algorithm alternates between the following two steps
(until some stopping criterion) to produce a sequence of estimates
{θ (t), t = 0,1, . . . , tmax}.

• Expectation step(E-step): The conditional expectation of the
complete log-likelihood given the observed vector and the cur-
rent estimateθ (t) is calculated. This quantity is called theaux-
iliary or Q-function:

Q
(
θ ,θ (t)) = ES,z

[
logp(Y,S,z|θ)

∣∣∣Y,θ (t)
]

(6)

• Maximization step (M-step): The estimated parameter is up-
dated by the maximization of theQ-function:

θ (t+1) = argmax
θ

{
Q

(
θ ,θ (t))} (7)

Next, we derive the channel update formula by applying the EM
principle to our channel estimation problem using the data model
(5).

4.1.1 E-step: Computation of the Q-function

The complete likelihood is p(Y,S,z|θ) =
p(Y|S,z,θ) p(S|z,θ) p(z|θ). According to (5), conditioned
on z, Y is independent ofθ . Furthermore,S which results from
coding and interleaving of bit sequence is independent ofz and
θ . Sinceαn1 is a white complex Gaussian noise vector such that

αn1 ∼ (πα2)
−M

exp(−‖n1‖
2/α2), the complete log-likelihood
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can be simplified to:

logp(Y,S,z|θ) = log
[
p(Y|S,z)p(S)p(z|θ)

]

= logp(z|θ)+cst.

= −
‖z−Tθ‖2

α2 +cst.

= −
θHTHTθ −2θHTHz

α2 +cst. (8)

where cst. stands for constant terms that do not depend onθ . Ac-
cording to (6) we have:

Q
(
θ ,θ (t)) = ES,z

[
−

θHTHTθ −2θHTHz

α2 +cst.
∣∣∣Y,θ (t)

]

= −
θHTHTθ −2θHTH

ES,z[z|Y,θ (t)]

α2 +cst.

= −
‖z̃(t) −Tθ‖2

α2 +cst. (9)

where z̃(t) = ES,z[z|Y,θ (t)]. It is clear from (9) that the E-step
involves only the computation of the following conditional expec-
tation:

z̃(t) = ES,z[z|Y,θ (t)]

= ∑
S∈Ψ

∫

z∈ζ
z p(z,S|Y,θ (t))dz

= ∑
S∈Ψ

(∫

z∈ζ
z p(z|Y,θ (t))dz

)

︸ ︷︷ ︸
z̆(t)

p(S|Y,θ (t)) (10)

where the last equation results from the independence betweenS
and z belonging respectively to the setsΨ and ζ which contain
all of their possible values. Note that each entry ofS takes one
(unknown) discrete value out of four complex points inside the
QPSK constellation whereas components ofz are continuous vari-
ables. Since bothp(Y|z) and p(z|θ (t)) are Gaussian densities,
p(z|Y,θ (t)) ∝ p(Y|z)p(z|θ (t)) is also Gaussian. By standard ma-
nipulation of Gaussian densities we have:

z̆(t) = Tθ (t) +
α2

σ2 diag(S∗)
(
Y−diag(S)Tθ (t)

)
(11)

where(.)∗ denotes the conjugation. By using (11) in (10) and after
some simplifications we get:

z̃(t) = (1−
α2

σ2 )Tθ (t) +
α2

σ2 diag(S∗)Y (12)

wherediag(S∗) = ∑S∈Ψ diag(S∗) p(S|Y,θ (t)). The E-step is com-
pleted by inserting̃z(t) into Q(θ ,θ (t)), equation (9).

4.1.2 M-step: Derivation of the Parameter Update Formula

In this step the estimate of parameterθ is updated via the maxi-
mization of the auxiliary function. Using (9) in (7) leads to a least
square (LS) problem the solution of which is [11]:

θ (t+1) = argmax
θ

{
−

‖z̃(t) −Tθ‖2

α2

}
(13)

=
(
THT

)−1
TH z̃(t) (14)

Recall from section 3 thatT = FM,LW. By assuming that all
subcarriers of the multiband OFDM system are allocated to data

(K=N), T becomes orthogonal (THT = IL) and we get the follow-
ing update formula forθ :

θ (t+1) = TH z̃(t) (15)

= (1−
α2

σ2 )θ (t) +
α2

σ2TH diag(S∗)Y (16)

wherez̃(t) is replaced from (12).

4.1.3 Reducing Channel Estimation Complexity via Wavelet
Sparseness Property

Equation (13) shows thatθ (t+1) coincides with the ML solution of
z̃(t) = Tθ +αn1. Left multiplying both sides byTH and recalling
(15) getθ (t+1) = θ + αn

′
. Due to the orthogonality ofT, αn

′
is

also an array of independent zero mean white Normal noise with
varianceα2. Thus,θ (t+1) can be interpreted as avirtual observa-
tion vector which is equal to the unknown parameterθ corrupted
by “white” Gaussian noise. The noise decorrelation is a crucial re-
quirement since it opens the issue to process wavelet coefficients
independently of each other. As mentioned before, wavelet trans-
form allows parsimonious representation for UWB channels [5] so
it is reasonable to assume that only a few “large” components of
θ (t+1) really contain information about the unknown parameterθ
and should be kept, while the “small” coefficients are probably at-
tributed to the noise and should be shrunk or replaced by zero. The
extraction of those “significant” coefficients can be naturally done
by thresholding each ODWT coefficient [12]. Letθ j denote an arbi-

trary element of the complex vectorθ (t+1). The hard thresholding
function is defined as:

δλ (θ j ) =

{
θ j |θ j | > λ
0 |θ j | ≤ λ (17)

whereλ is the threshold level. Among several approaches for the
choice of a particular threshold, we adopt the simpleMinimaxpro-
cedure [12] which suggest to setλ = α . In order to reduce the
channel estimation computational load, we propose to discard at
each iteration, the elements ofθ (t+1) that fall belowα . The above
procedure can be modeled as:

θ̃
(t+1)

= Ωθ (t+1), T̃ = TΩT (18)

where the selection matrixΩ gathers iñθ
(t+1)

the components of
θ (t+1) that must be kept and̃T is constructed fromT by keeping
the rows corresponding to kept indexes. At the beginning (t = 0), Ω
is initialized with an identity matrix and the EM algorithm estimates
all coefficients. After each M-step, the number of unknown para-
meters to be estimated in the next iteration is reduced by replacing

θ (t+1) andT by θ̃
(t+1)

andT̃ in the update formula (16).

4.2 Decoding Method and Implementation Issues

In this section we describe how the proposed channel estimation al-
gorithm is related to the decoding process via the a posteriori proba-
bility p(S|Y,θ (t)) involved in the channel update formula. Accord-
ing to the Bayes law, we havep(S|Y,θ (t)) ∝ p(Y|S,θ (t))p(S).
Since we deal with a BICM OFDM system with convolutional code,
p(S) can be derived from a soft output decoder as the product of its
corresponding bit probability assuming the interleaver adequately
breaks the correlation between encoded bits (see figure 2). Fur-
thermore, soft output decoders require as input an estimate of the
channel. Hence, the iterative channel estimation can be naturally
combined with the decoding process as shown in figure 3. Here
we use a soft demapping [13] followed by a BCJR decoder [7] to
provide directly from the observations, the encoded bits probability
needed in the EM algorithm. This decoding strategy is motivated
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by the fact that the BCJR [7] decoder minimizes the BER for QPSK
modulations [13]. Among several possible ways to practically im-
plement a joint channel estimation and decoding receiver, we adopt
the following global procedure (see figure 3):
• Iterationt = 0 :

– Initialize all probabilities of coded bits with 0.5 and derive
p(S).

– Initialize the EM algorithm by pilot symbols and estimate
the channel wavelet coefficients according to (16).

• Iterationt = 1, . . . , tmax :

– Updateθ (t) according to (16) by using the previous estimate
θ (t−1).

– Use the new estimateθ (t) to update the probability of coded
bits and derivep(S).

– Discard from the estimation process the wavelet coefficients
that are replaced by zero in (17).

Note that at the convergence (tmax), updating coded bits probability
is not necessary since we are interested to the decoded (data) bits
probability provided by the decoder. Decoded bits are obtained by
thresholding these probabilities.

5. SIMULATION RESULTS

The performance of the proposed method is evaluated according to
the parameters described in section 2. For each transmitted frame, a
different realization of the time invariant UWB channel model CM1
specified by the IEEE802.15.3a channel modeling subcommittee re-
port [14] has been drawn. The entire channel bandwidth is 1584
MHz and consists of 3 equal subbands. The information data rate
is 480 Mbps which is generated by a punctured convolutional code
with rateR= 1/2. Monte Carlo simulations are run and averaged
over the transmission of at least 10000 frame. Each frame has a pay-
load of 1 kB along with 3 pilot symbols for initializing the channel
on each subband and estimating the noise variance. Among differ-
ent wavelet families, “symmetric” wavelets providing the sparser
representation have been considered. The joint estimation-decoding
process is repeated until the square error between successive esti-
mates ofθ becomes lower than 10−5. From the second iteration,
the thresholding rule (17) withα2 = 0.5σ2 is applied to the esti-
mated coefficients.

Figure 4 depicts the mean square error (MSE) as a function of
Eb/N0 between the true and estimated channel. Comparison is done
between a pilot based estimation and the proposed method. It is ob-
served on figure 5 that the number of estimated wavelet coefficients
is reduced across the iterations. For example atEb/N0 = 2dB the
number of estimated parameters is reduced from 96 to 50 parame-
ters at the last iteration. Note that applying the EM algorithm to
traditional data models, would require the estimation of 384 coef-
ficients at each iteration. Figures 4 and 5 show that in addition to
reducing the estimation complexity, the proposed method leads to
a more precise estimate of the channel in terms of MSE thanks to
the inherent denoising of the thresholding rule. The BER perfor-
mance is illustrated in figure 6 and compared with a non iterative
pilot assisted channel estimation. As can be seen, for a BER of
10−4, our iterative algorithm outperforms the pilot based estimator
with about 0.4 dB degradation from the performance obtained with
perfect channel state information.

6. CONCLUSION

In this paper we proposed a channel estimation algorithm that in-
tegrates the advantages of wavelet based estimation. We derived
an equivalent data model for the multiband OFDM system involv-
ing the channel over all 3 subbands expressed in the wavelet do-
main. By combining a thresholding/denoising rule with the itera-
tive channel estimation, the number of estimated coefficients can
be significantly reduced while the precision is improved at the same
time. The investigated method naturally combines the EM iterations
with the decoding process. With only few iterations, this approach

outperforms pilot based design. Further work will focus on using
Bayesian wavelet thresholding rules by choosing a prior distribution
for the channel wavelet coefficients.
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Figure 1: Example of time-frequency coding for the multiband
OFDM system.

Figure 2: TX architecture of the multiband OFDM system.

Figure 3: Joint channel estimation and decoding.

Figure 4: Mean square error between the true and estimated coeffi-
cients of CM1 channel.

Figure 5: Reduction of the number of estimated parameters through
iterations.

Figure 6: BER performance of the proposed receiver over the UWB
channel CM1.
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