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ABSTRACT

A robust space-time-frequency signal extraction algo-
rithm has been developed with an application to brain com-
puter interface (BCI). The algorithm is based on extending
time-frequency masking methods to accommodate the spa-
tial domain. The space-time-frequency masks are then clus-
tered in order to extract the desired source. Then the motion
of the extracted source it tracked over the scalp. Finally, the
trials are classified based on their directionality and locations
over the scalp. The proposed method outperforms traditional
systems by exploiting the motion of the sources.

1. INTRODUCTION

A brain computer interface (BCI) is a system which allows
the user to interact with a computer using brain signals only.
BCIs can be divided into two main categories; invasive and
non-invasive. The former uses intracranial electrodes or sub-
dural implanted deep inside or on the surface or the brain,
whereas the latter uses surface electrodes placed over the
scalp. Here, we will focus on non-invasive BCIs. Current
BCIs use one of a number of extractable EEG signals, such as
rhythmicities [1] in the data or a particular component, such
as slow cortical potentials (SCP) [2], or evoked potentials
(EPs) [3]. EPs such as P300 are time-locked events which
are, generally, extracted by averaging many trials of the same
event.

The authors in [4] demonstrated that there is a causal
relationship between spatially neighboring channels of the
EEGs. Further works in [5] [6] showed that this can be used
to distinguish between left and right finger movements from
the EEG.

In this paper we demonstrate that in addition to the time
and frequency information of the EEG signals, the spatial and
directional information provide crucial indicators of intended
left or right finger movement. A block diagram of the pro-
posed system is shown in Fig. 1. In the first section the EEGs
are converted into the time-frequency (TF) domain, then the
TF representation of each electrode is arranged into a ma-
trix where each element represents the x-y coordinates of the
electrode. In the next block a space-time-frequency mask is
created and the components within the mask are clustered.
The cluster centres are one of the features used by the classi-
fier. The other significant feature is the directionality of the
moving reconstructed source signal which is deduced from
its cross correlation with the raw EEGs.
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Figure 1: Block diagram of space-time-frequency based
atom extraction and classification algorithm.

2. METHODS

In this section we show that cortical regions can be sepa-
rated by assuming that the EEG sources are disjoint in space,
time, and frequency. Section 2.1 explains the method for ex-
tracting the space-time-frequency distribution (STFD) from
the EEGs. Then section 2.2 describes the clustering tech-
nique for extracting the atoms from the space-time-frequency
distributions. Section 2.3 explains the reconstruction ofthe
signals from the clustered STFD. In section 2.4 we describe
the motion characterisation algorithm which forms one of the
features used in the classification algorithm described in sec-
tion 2.5.

2.1 Space-Time-Frequency Analysis

The time frequency distribution (TFD) of each electrode is
constructed using short term Fourier Transform (STFT) de-



fined by

Fs j(t, f ) =
1√
2π ∑

τ
w(t − τ)s j(t)e

−iωτ (1)

wherew(·) is a window function ands j(t) is the j− th elec-
trode. The time-frequency plot for each electrode is arranged
into a four dimensional matrix such as

P(x,y,t, f ) , Fs j j = 1, . . . ,N (2)

wherex andy are the spatial coordinations of the elec-
trodes,t is the time index, andf is the frequency index. The
first two dimensions,x andy are sufficiently large so that all
the electrodes can be arranged as they are defined by the 10-
20 electrode placement system. For example, 11×11 matrix
is sufficient for a 64 electrode EEG. The electrode Cz would
be located at coordinates (6,6). The parameterN is the num-
ber of electrodes.

A space-time-frequency mask is constructed from the
STFD plot based on the following criterion,

M(x,y,t, f ) =

{

1, 20log(P(x,y,t, f )) > u
0, othetwise (3)

whereu is a threshold, which is empirically chosen to be
0.25max(Fs j ).

2.2 Clustering

In order to extract the atoms from the STFD, the regions of
activity (atoms) in space-time-frequency must be identified
and isolated from the background EEG. We used the kmean
clustering algorithm [7] to identify and separate the active
regions in the STFD maskM(x,y,t, f ). Since the number of
clusters,k, is unknown we first estimate the optimum number
of clusters by using the GAP statistic method [8]. The cluster
compactness is given by

hk =
k

∑
r=1

nr

∑
i∈Cr

||qr
i −mr||2 (4)

whereqr
i are the points within the cluster,k ∈ {1, . . . ,K}

is the number of clusters andK is the maximum number
of clusters,Cr are points within clusterr, mr is the cluster
centre, i.e. the mean. Traditionally the optimal number of
clusters is chosen by finding maxkopt (hk − hk−1), known as
the L-Curve method. However the problem with this method
is that the difference between(hk −hk−1) is not normalised,
which may give an incorrect estimate of the optimal num-
ber of clusters. The solution to this problem was proposed
by the authors in [8] by comparing the clusters to a refer-
ence datasetri = 1, . . . ,B, whereB is the total number of
reference datasets. The reference dataset is formed by scal-
ing a uniformly distributed random dataset by the range of
the principal components of the clusters. Then the reference
dataset is clustered andhkb is evaluated, whereb = 1, . . . ,B.
The Gap statistic is computed as

Gap(k) =
1
B

B

∑
b=1

loghkb − loghk. (5)

Wherehkb andhk are the cluster compactness of the reference
datasets and EEG data, respectively. The optimum number of
clusters is then defined as the smallestk which satisfies

Gap(k) ≥ Gap(k +1)− sk+1, (6)

where

sk =

√

1+
1
B

σk (7)

whereσk is the standard deviation of{loghkb}b=1,...,B.

2.3 Reconstruction

Each of the atoms are reconstructed by choosing the data
points from the mask that belongs to each cluster. LetMc
denote the mask with one cluster selected. The STFD for the
cluster is given by

Pc = Mc ·P c = 1, . . . ,kopt (8)

where the space-time-frequency indices have been omitted,
(·) is the elementwise multiplication. Next the time series
signal is reconstructed by computing the inverse short-time
Fourier transform (ISTFT) ofPc(x,y,t, f ) defined as

Ak(t) =
1
p

p

∑
l=1

1
2π ∑

ω
∑
τ

w(t − τ)Pc(x,y,t,ω)eiωτ . (9)

WhereAk(t) k = 1, . . . ,kopt is the reconstructed atom,p is
the number of electrodes that fall within spatial coordinates
of atomk.

2.4 Motion Characterisation

In this section we quantify motion of the sources in order
to determine whether there is left or right finger movement.
We find the extracted atom’s,Ak(t), cross correlation with
the raw EEGs over an overlapping window of lengthL, and
with an overlapO. Then the absolute maximum value for
each window of cross correlation is used as the location of
the atom, given by

ρk(t) = max
j

(|E{Ak(t)s j(t)}|) (10)

and the location (coordinates) is deduced by the indexj. For
example, if the maximum cross correlation occurred in elec-
trodeCz at t = 1 then inC3 at t = 2, the transition would
be from coordinatesρk(1) = {6,6} to ρk(2) = {4,6}. Since
the atom is disjoint in time space and frequency, there should
be only one peak in the cross correlation function for each
window. Finally the average direction is given by

dk =
1
T ∑

t
ρk(t) (11)

wheredk is the direction for atomk, andT is the number of
cross correlation windows.

2.5 Classificaiton

We use an SVM as our classifier, due to its generalization
and its established empirical performance [9]. The goal of
an SVM is to find an optimal separating hyperplane (OSH)



for a given feature set. The OSH is found by solving the
following constrained optimisation problem,

minz,b,γi=1,...,l

(1
2||z||2 +C ∑l

i=1 γi
)

s.t. qi(z ·gi −b)+ γi ≥ 0 i = 1, . . . , l (12)

where ||z||2 = zT z is the squared Euclidean norm and(·)
is the dot product. The parameterz determines the ori-
entation of the separating hyperplane,γi is the i-th posi-
tive slack parameter,gi is a vector containing the features
gi = [mx1(i),my1(i),dxk1

(i),dyk1
(i), . . . ,mxkopt (i),mykopt (i),

dxkopt (i),dykopt (i)]
T , wheremx1(i) andmy1(i) are thex andy

components of the cluster centres,dxk1
(i) anddyk1

(i) are the
x andy components of the directional vector. Here,l is the
number of training vectors andqi ∈ {±1} are the output tar-
gets. The non negative parameterC is the (misclassification)
penalty term, and can be considered as the regularization pa-
rameter and is selected by the user. A largerC is equivalent
to assigning a higher penalty to the training errors. The pa-
rameterC is usually set to a high value to avoid any training
error. SVs are the points from the dataset that fall closest to
the separating hyperplane. Any vectorgi that corresponds
to a non-zeroαi is a support vector (SV) of the optimal hy-
perplane. It is desirable to have the number of SVs small to
have a more compact and parsimonious classifier. The OSH
(generally nonlinear) is then computed by solving (12) using
Karush-Kuhn-Tucker conditions [10] as a decision surface of
the form

f (g) = sgn

(

Ls

∑
i=1

qiαiK(gs
i ,g)+ b

)

. (13)

In this formula sgn(·) ∈ {±1}, gs
i are SVs,K(gs

i ,g) is the
nonlinear kernel function (ifK(gs

i ,g) = gs
i ·g the SVM is lin-

ear). A Kernel for a nonlinear SVM projects the samples to
a feature space of higher dimension via a nonlinear mapping
function. Among nonlinear kernels the radial based function
(RBF) defined asK(gi,g)= exp(−|g−gi|2/(2α)), where the
adjustable parameterα governs the variance of the function,
is widely used due to having quasi-Gaussian distribution for
datasets of large samples.

3. EXPERIMENTS

3.1 Data Collection

The data was provided by King’s College Hospital and are
available from our website [11]. The EEG was collected
using 64 electrodes using Neuroscan. The electrodes were
placed using the extended 10-20 system referenced to linked
mastoids. During acquisition the electrode impedance was
kept below 5kΩ. The signal was sampled at 2kHz and low-
pass filtered with a cutoff frequency of 200Hz. An able
bodied subject was seated with arms resting on a table and
pressed a microswitch approximately every 5 seconds al-
ternating left and right fingers. The data was divided into
epochs of 4 seconds, 2 seconds before the movement and 2
seconds after the movement.

3.2 Testing the Algorithm

In our study we tested the features using 100 trials in total;50
for left finger movement and 50 for right finger movement.
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Figure 2: The cluster centres for the extracted atoms for left
finger movement.

Table 1: The performance of the classifier based on the aver-
age number of correctly classified points. Three kernels are
compared in the classification.

Kernel Average classification rate (%) (s.d.)
Overall Right Left

Gaus. RBF 75.50 (1.0) 75.16 (1.2) 69.43 (1.5)
Cubic Poly. 65.30 (1.4) 66.15 (1.0) 64.36 (1.0)
Linear 61.01 (1.3) 60.34 (1.4) 56.51 (1.0)

In order to test the overall classification rate we used 4-fold
cross-validation (CV) with no overlap, i.e. using 75% of the
data for training and 25% for testing. The CV was performed
10 times, with each time the data was chosen at random from
our trial pool. The classifier was used with three kernels, lin-
ear, RBF and cubic polynomial, for which the error is shown
in Table 1. For our dataset the value chosen for the parameter
C was 64 and for the case of the RBF kernel the parameter
α was set to 0.5. The parameterB was set to 18 reference
datasets and the maximum number of clusters,K, was set to
6. We used a Hanning window function for the STFT algo-
rithm. The window length, L, for the motion characterisation
algorithm was set to 2000 samples, and the overlap, O, was
1900 samples.

The cluster centres in the spatial domain are shown in
Fig. 2. From the figure it can be seen that the cluster centres
for the left finger movement occur on the contralateral hemi-
sphere very close toC2 electrode location, which is located
over the motor cortex. For right finger movements the loca-
tion of the cluster centre is at electrodeC3, which is associ-
ated with right finger movments as explained in [12]. Figure
3 shows the time frequency representation for the atoms of
the left finger movement trial. It shows that the clusters are
formed from the Alpha band activity. There are two clusters
for each trial because of the desynchronisation in the Alpha
band during finger movement. At this point the Alpha band
power falls below the threshold,u, and is interpreted as a
separate cluster by the kmean clustering algorithm.



Figure 3: The time-frequency representation of the extracted
atoms for a left finger trial.

The average number of support vectors calculated when
using the RBF kernel was 35.5% of the training examples.
When using the linear kernel the average number of SVs
found was 80.2% and for cubic polynomial it was 65.5%.
The training error was found by using the training data as
test data. The training error was found to be 0.5% (ave.)
and the test error was 0.7% (ave.). Since the two errors
are close together this gives an indication that overfittinghas
been avoided.

4. CONCLUSION

We have presented a new method for distinguishing between
left and right finger movements from scalp EEGs using the
features corresponding to the activity of Alpha rhythms and
directionality of the sources. The experiments herein demon-
strated that for the test dataset the signals are correctly classi-
fied by using the introduced features. Using k-mean cluster-
ing followed by the Gap statistic method enables to estimate
the number of disjoint factors, representing the brain’s active
sources, accurately. A higher classification rate is achieved
when the RBF kernel is used for the SVM.
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