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ABSTRACT

Spectral analysis can be applied to study base-base correla-
tion in DNA sequences. A key role is played by the mapping
between nucleotides and real/complex numbers. In this pa-
per, we present a new approach where the mapping is not
kept fixed: it is allowed to vary aiming to minimize the spec-
trum entropy, thus detecting the main hidden periodicities.
The new technique is first introduced and discussed through
a number of case studies, then extended to encompass time-
frequency analysis.

1. INTRODUCTION

Given a DNA sequence (typically taken from the genome
of an organism) the study of nucleotide correlation both at
short and long range is an important research issue in ge-
nomics (see [1], [2], and reference therein). Applications in-
clude characterization of random and non-random behavior,
gene region prediction, detection of recurrent strings or mo-
tifs and related rules, construction of models for representing
DNA structure, and so on. Spectral analysis can be a use-
ful tool to investigate the correlation behavior, and many
papers in genomic signal processing literature have been de-
voted to this issue (see [3] and its references). Anyway, when
DNA spectral analysis is considered, a number of key issues
arise, including the choice of a proper mapping between nu-
cleotides and numbers, the usefulness of a unique quantity
for representing the whole correlation properties, the need
for taking into account sequence heterogeneity, and the ne-
cessity of detecting periodicities in strong noise. To cope
with these issues a new technique, based on adaptive map-
ping and spectrum entropy minimization, is introduced and
discussed in this paper.

2. CORRELATION ANALYSIS

Let us denote the four nucleotides (basis) alphabet by: B =
{A, C, G, T}, and a DNA sequence of length N as

s = (b[n])N−1
n=0 b[n] ∈ B.

For this sequence s, let us introduce Pα as the occurrence
probability of the nucleotide α ∈ B, and Pα,β [d] at distance
d = 1, ..., N−1 as the joint probability of having a nucleotide
α followed by a nucleotide β after d positions. For simplicity,
we will suppose the DNA sequence s to be periodic with
period N , an assumption that does not significantly alter
the correlation properties of long sequences.

The two probabilities can be estimated by counting the
nucleotide occurrences. In the following, we will focus on
simple frequency count estimators:

Pα =
Nα

N
Pα,β [d] =

Nα,β [d]

N
, d = 0, 1, . . . , N − 1, (1)

where Nα is the number of nucleotides α in s and Nα,β is the
number of pairs (α, β) at distance d in s (supposed periodic).

A random sequence is composed by statistically indepen-
dent symbols, then Pα,β [d] = PαPβ for each pair (α, β) and
every distance d. As a consequence we can introduce as a
proper measure of correlation, the sixteen correlation func-
tions:

Γα,β [d] = Pα,β [d]−PαPβ (α, β) ∈ B2 d = 1, ..., N−1. (2)

Then, the sequence s is random iff Γ(α,β)[d] = 0 for each
(α, β) and every d, otherwise some correlation exists. The
sixteen correlation functions can be further arranged in a
matrix:




ΓAA[d] ΓAC [d] ΓAG[d] ΓAT [d]
ΓCA[d] ΓCC [d] ΓCG[d] ΓCT [d]
ΓGA[d] ΓGC [d] ΓGG[d] ΓGT [d]
ΓTA[d] ΓTC [d] ΓTG[d] ΓTT [d]


 d = 1, ..., N − 1

Not all the 16 functions are independent: we certainly have∑
β Γαβ [d] = 0,

∑
α Γαβ [d] = 0, and Γβα[d] = Γαβ [N − d];

non-exact, heuristic symmetries can also be invoked [1].
To study the behavior of the functions Γαβ [d] and de-

tect their periodicities, spectral analysis can be applied. For
each correlation function Γα,β [d] we can compute the Dis-
crete Fourier Transform (DFT), that will be called correla-
tion spectrum in the following:

Xα,β [k] =

N−1∑

d=0

Γα,β [d]e−j(2π k
N

d) k = 0, 1, . . . N − 1. (3)

The 16 correlation spectra Xαβ can then be used for
studying the correlation properties. Anyway, despite of this
simple approach, some problems arise.
First problem: multiple representation. First of all, there
are 16 correlation functions Γαβ (and corresponding spectra
Xαβ): it would be better, especially for automatic compu-
tations devoted for example to gene region prediction, to
merge their information and produce a single quantity that
measures the global sequence correlation properties. As an
example, the 16 spectra could be added up, to form the av-
erage quantity Xave [k] =

∑
αβ ωα,βXαβ [k], where ωα,β are

some proper weights.
Second problem: detection of periodicities. Real genome se-
quences contain a lot of “noise”, which is the consequence of
genome evolution and its process of duplication, mutation,
and so on. Therefore, we often have to detect periodicities
buried in strong background noise.
Third problem: sequence heterogeneity. Usually, correlation
functions and the corresponding spectra are computed on
an entire DNA sequence: they represent an average on the
sequence and they do not show where the correlation really
exists. Many sequences, in fact, show different behaviors
in different regions, that is they are nonstationary. Gene
regions represent a typical example, since they usually show
stronger correlation properties than non-coding regions.
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Figure 1: Classical frequency spectrum obtained from the
Caenova sequence with the 4-PSK mapping.

3. MAPPING NUCLEOTIDES INTO NUMBERS

Instead of working on the 16 correlation functions and spec-
tra, an effective approach consists in viewing the DNA se-
quence as a symbolic sequence over a quaternary alphabet
and in analyzing it as a whole, first by translating it into
a proper numeric sequence, and then by applying spectral
analysis. A key point for DNA spectral analysis is then the
numeric representation of the four nucleotides, which induces
the mapping of DNA sequences into numeric ones.

A number of mathematical representations have been
proposed in the literature and fundamental work on this sub-
ject was made by Anastassiou ([3]) and Cristea ([4]). The
most popular representations are:

1. Binary indicator sequences (A=1000, C=0100, G=0010,
T=0001) [1].

2. 3-D tetrahedron representation [3], [4].
3. 4-PSK complex assignment (A = 1 + i, G = −1 + i,

C = −1− i, T = 1− i) [4].
4. 4-PAM real assignment (A = −3, G = −1, C = +1,

T = +3), or similar shifted versions (A = 0, G = 1,
C = 2, T = 3) [5].

Binary indicator sequences map a DNA sequence into
four binary sequences. One can show that spectral analysis
performed on these four sequences is essentially identical to
the approach presented in Section 2, leading to the sixteen
cross-spectra Xαβ [k].

The 3-D tetrahedron has certainly a number of excellent
properties, but it requires the mapping to be vectorial, forc-
ing frequency analysis of the resulting discrete-time signal to
be multidimensional (a strong complication). So, let us con-
centrate on the one-to-one mapping of the four nucleotides
into four real or complex numbers, as done in representations
3 and 4 above.

4. THE ROLE OF LABELING

In this paper, a labeling l will be a one-to-one mapping be-
tween the nucleotide alphabet and the set of complex num-
bers:

l : B → C
α → α

(4)

Somewhere, we will also use the symbol lα to denote α =
l(α). Given the mapping l, the DNA sequence s = (b[n])N−1

n=0
is translated into a unique numeric signal

x[n] = b[0]δ[0] + b[1]δ[n− 1] + . . . + b[N − 1]δ[N − 1], (5)

whose spectral properties can be directly investigated. Given

Figure 2: Classical frequency spectrum obtained from the
Caenova sequence with the 4-PAM mapping.

x[n], we can compute its DFT by:

X[k] =

N−1∑
n=0

b[n]e−j(2π k
N

n), k = 0, 1, . . . N − 1

and its power spectrum: Px[k] = |X[k]|2. It is well know that
Px[k] is equal to

Px[k] =

N−1∑
m=0

r[m]e−j2π k
N

m, (6)

i.e., it is the DFT of the autocorrelation function:

r[m] =
∑

n

b[n]b
∗
[n−m].

Clearly, r[m] and Px[k] strongly depend on the label-
ing l. It is also important to recognize that l establishes a
bridge between Px[k] and the 16 correlation spectra Xαβ [k].
In fact, by invoking the definition of Nαβ we note that the
autocorrelation function can also be computed as

r[m] =
∑

αβ

lαl∗βNαβ [m].

Then
Px[k] =

∑

αβ

lαl∗β
∑
m

Nαβ [m]e−j2π k
N

m. (7)

Now, by using the definition (3) of Xαβ [k] and its con-
nection with the pair number Nαβ [k] established by (1) and
(2), we obtain that

Px[k] = c1

∑

αβ

lαl∗βXαβ [k] + c2δ[k] c1, c2 ∈ R. (8)

As a consequence, apart from a multiplicative constant and
an additive term at zero-frequency, the spectrum Px[k] is a
weighted sum of the 16 correlation spectra Xαβ [k] via the
four values lA, lC , lG, lT . This is a very simple but basic
result, (i) clarifying that the symbolic sequence approach ef-
fectively solves the first problem discussed before, providing
a unique representation and (ii) making evidence to the fun-
damental role played by the mapping.

As an example, in Fig. 1 and Fig. 2 we show the fre-
quency spectra of a DNA sequence corresponding to a gene
area of the Caenova, obtained with 4-PSK and 4-PAM map-
ping, respectively. The two spectra differs in a dramatic way,
pointing out the strong dependence on the chosen mapping
highlighted by Eq. (8).
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4.1 Problems with classical mapping

A key question naturally arises: how do we choose the label-
ing l? In the literature, this problem is faced by considering
two issues [3], [4]:
1. The mapping should respect the physical properties of

the four basic molecules, A, C, G and T. That is, we
would like the mapping to reflect the possible bounds of
the molecules, and in general any physical property that
we think can be of interest.

2. The mapping should not privilege any basis. This means
it should ideally be symmetric so that the geometric dis-
tance between the transformed nucleotides be the same.
As an example, the aforementioned 4-PSK mapping [4]

can be seen as a projection on the complex plane of a tetrahe-
dron whose vertices are the four nucleotides, and is certainly
a very good candidate for symbolic DNA spectral analysis.
Anyway, due to its key role highlighted by Eq. (8), the map-
ping can produce misleading effects. As an example, we now
introduce and discuss a few examples, showing some critical
aspects that must be taken into account when studying DNA
sequences (and any other symbolic sequence in general). The
first two cases come from ad hoc built sequences, while the
third is a real DNA sequence.
Critical case 1 - Two periodicities corrupted by noise. Let us
consider the following discrete-time signal

x[n] = sin

(
2π

3
n

)
+ sin

(
2π

6
n

)
. (9)

This is a periodic signal, with a period of 6 samples, that
takes three values only:

√
3, 0,−√3. Its spectrum conse-

quently shows two peaks at frequencies 1/3 and 1/6 with
equal amplitude. Now, let us suppose to build a DNA
sequence s by associating the nucleotide symbols to the
discrete-time signal. The sequence s will be periodic with
the same period of x[n], that is N = 6 symbols. Such opera-
tion can be considered as an inverse mapping, since it links
the discrete-time signal to the sequence. As an example, we
choose the following association: A =

√
3, C = 0, G = −√3.

Therefore the DNA sequence s is given by s = CACCCG....
Let us now suppose to perform a spectral analysis of this
DNA sequence s by using the 4-PSK mapping. The corre-
sponding spectrum Px[k] is reported in Fig. 3. We notice
that the two expected peaks are represented, but the one at
f1 = 1/6 has a very small amplitude. Also, apart from the
zero frequency peak, there is an extra peak at f = 1/2.

Since noise is widely present in DNA sequences, let us
now investigate the effect of its presence. Given s, we pro-
duce a noisy version in this way:
1. For every nucleotide we generate a random number z

uniformly distributed in the range 0 ≤ z ≤ 1. If z ≤ h,
where h is a given threshold, we go to step 2, otherwise
we do nothing and proceed to the next nucleotide.

2. We replace the selected nucleotide with a random nu-
cleotide extracted with a uniform probability P = 1/4.
Hence, on the average hN nucleotides will be totally ran-

dom in the noisy sequence. This procedure has been applied
to the sequence s by using a threshold h = 0.2.

The spectrum obtained for the noisy DNA sequence by
using the 4-PSK mapping is reported in Fig. 4. Unfortu-
nately we spot one peak only! We in fact see the peak at
f2, while the peak at f1 has disappeared. The reason is that
the 4-PSK mapping produces a frequency spectrum that has
a very low peak at f1, that easily sinks in the background
noise once we add it. Also, extra peaks at f = 0 and f = 1/2
carry a misleading and useless information.
Critical case 2 - Sinusoid in the sequence domain. Consider
this DNA sequence, with period Np = 20 nucleotides:

s = CCCCCAAAAACCCCCGGGGG...
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Figure 3: 4-PSK spectrum of the sequence s discussed in
Critical case 1.
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Figure 4: 4-PSK spectrum of the noised sequence s discussed
in Critical case 1.
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Figure 5: 4-PSK spectrum of the sequence s discussed in
Critical case 2.

As an example, this sequence can be obtained by sam-
pling and quantizing a simple real sinusoid. We clearly ex-
pect the spectrum of the sequence to identify the main pe-
riodicity at f = 1/Np = 1/20. Beside this strong frequency
component, when we map the sequence to the discrete-time
signal we do not get the original real sinusoid, and there-
fore we expect to have low amplitude harmonics, located at
frequencies that are multiples of f = 1/20. In Fig. 5 we
show the frequency spectrum of s obtained via the 4-PSK
mapping. As it can be seen the component at f = 1/20 is
not the strongest one! The frequency with the taller peak
is located at f = 1/10. There is also a DC component at
f = 0, and some harmonics at f > 1/10. Anybody looking
at this spectrum without knowing the original sequence s,
would not be able to catch the key fact that it represents a
slowly varying periodic sequence of period fp. The conclu-
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sion that we draw from this case is that the 4-PSK mapping
(and in general a classical mapping) may not represent the
frequency spectrum suggested by intuition. On the contrary
it may generate a representation that is misleading.

5. MINIMUM ENTROPY MAPPING
SPECTRUM

Given these examples, what mapping should we use? What
is the “best” labeling? This question is better reformu-
lated in the following way: what is the frequency spectrum
of a symbolic sequence? In transforming it into a numeric
discrete-time sequence we have to pay attention not to alter
its frequency content. As seen, a wrong mapping can hide
peaks that corresponds to real periodicities of the DNA se-
quence. Also, if we find out that we are adding extra peaks
to the spectrum because of the chosen mapping, then we
are generating useless and possibly dangerous information
about the sequence itself. Is there a mapping that uses the
minimum amount of information needed, thus eliminating
the extra information added by standard mappings? To an-
swer this question, we propose a method that chooses the
mapping minimizing the entropy of the frequency spectrum.

5.1 Algorithm description

For simplicity, we will consider real mappings only. Let
lA, lC , lG, lT be the four real numbers corresponding to the
image of the mapping l. Given the spectrum Px[k; l] (where
the dependence on the mapping l has been highlighted) let
us introduce its Shannon entropy H, given by

H [Px[k; l]] = −
N/2∑

k=0

Px[k; l] log [Px[k; l]] . (10)

We now define the Minimum Entropy Mapping (MEM)
spectrum of a DNA sequence s as the spectrum obtained
when the mapping l satisfies the minimum conditions

lA, lC , lG, lT = arg min
lA,lC ,lG,lT∈R

H [Px[k; l]] . (11)

To solve the minimization, we impose two constraints.
Since the DC component does not contain useful informa-
tion, we impose the condition

Px[0; lA, lC , lG, lT ] = 0.

Similarly, we impose the same constraint at N/2:

Px[N/2; lA, lC , lG, lT ] = 0.

Moreover, we scale the obtained mapping l so that the signal
energy is one.

Even though the Shannon entropy in Eq. (11) is convex
with respect to the energy spectrum Px, this does not imply
that it is convex with respect to the four variables lA, lC ,
lG and lT . This means that in general the minimization
problem of Eq. (11) must be solved in a concave space.

However, the four degrees of freedom in the minimiza-
tion problem, are reduced to two, thanks to the imposed
constraints. Therefore, for the remaining two free variables
we can easily use an exhaustive search algorithm. Since we
normalize the spectrum to have unit energy, we can span
the free mapping variables, say for example lA and lC , on
a bounded space. This means that scaled versions of the
same spectrum will have the same entropy H. Given this
fact, we can search for the solution in a limited interval of
the free variables, because we are actually searching all the
possible scaled versions of the corresponding discrete-time
signal, which in our formulation are hence equivalent. As an
example, we have decided to limit the variables lA and lC to
the interval− 1

2
≤ lA, lC ≤ 1

2
.
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Figure 6: MEM spectrum of the sequence s discussed in
Critical case 1.
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Figure 7: MEM spectrum of the noised sequence s discussed
in Critical case 1.

5.2 Results

The new method has been applied to both ad hoc created
and experimental data, and the results prove the effective-
ness of the new approach. The application to ad hoc case
studies is fundamental, since it allows to directly verify that
the MEM spectrum can extract the information that was ar-
tificially put in the data. The application of the method to
experimental data allows to generate DNA spectra that are
less noisy and in general more reliable than with a standard
mapping. Let us review the results of the new technique for
the critical cases discussed before.
Critical case 1. In Fig. 6 we report the MEM spectrum for
the sequence s of Critical case 1, when no noise is added.
We see that it correctly represents the two known periodic-
ities, and that no other information is present. Also, both
peaks have the same height. The MEM spectrum for the
noised version of the same sequence is shown in Fig. 7. We
immediately notice that the spectrum shows the two peaks
at f1 = 1/6 and f2 = 1/3, that correctly correspond to the
periodicities of N1 = 6 and N2 = 3 nucleotides used to de-
sign the sequence. Also, some background uniform noise is
present. The advantages with respect to the 4-PSK spec-
trum, previously shown in Fig. 3 and Fig. 4, are evident.
Critical case 2 - Sinusoid in the sequence domain. The MEM
spectrum for the DNA sequence of Critical case 2 is reported
in Fig. 8. We see that the new technique detects the funda-
mental frequency fp, that is granted the strongest intensity.
Also the higher harmonics are represented, but with a much
lower amplitude, in accordance with the expected results.
Experimental data: Caenova sequence. In Fig. 9 we show the
MEM spectrum of the Caenova sequence previously consid-
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Figure 8: MEM spectrum of the noised sequence s discussed
in Critical case 2.

Figure 9: MEM spectrum of the Caenova sequence.

ered in Section 4. It can be seen that the MEM spectrum
clearly identifies the peak at f = 1/3, that as known is typi-
cal of a number of gene regions [8]. A low frequency content
is also present, that could be due to long term correlations
in the data, and deserve future investigation. By comparing
the MEM spectrum against the 4-PSK and 4-PAM map-
ping spectra shown in Fig. 1 and Fig. 2, we conclude that
the MEM spectrum clearly identifies peaks in experimental
data, proving to be very robust with respect to noise.

6. TIME-FREQUENCY MINIMUM ENTROPY
SPECTRUM

DNA sequences are inherently nonstationary, as pointed out
in Section 2, Problem 3. While some regions look like noise,
others exhibit frequency peaks that represent periodicities.
This means that the frequency content of a DNA sequence
changes with position. Spectral analysis does not allow to
detect such frequency variations, that are indeed very in-
teresting and could be fundamental to understand the local
meaning of the correlation structure. To cope with sequence
heterogeneity and represent frequency variations we use the
ideas developed in time-frequency analysis [6], a field that
has been applied recently to the investigation of the proper-
ties of DNA sequences [7]. The MEM spectrum can easily
be extended to time-frequency analysis. To build a time-
frequency spectrum of a sequence we slide our MEM spec-
trum on the data, ending up with a spectrum that is a func-
tion of the analysis position n and and of the frequency k.
So, the mapping minimization is performed also as a func-
tion of the position n. A number of case studies (both ad
hoc sequences and experimental data) can be found in [9].

Figure 10: Time-frequency MEM spectrum of the Caenova
sequence.

As an example, in Fig. 10 we show the MEM position fre-
quency spectrum for the Caenova sequence previously con-
sidered, obtained with a window of 1000 bases. We see that
the local MEM spectrum shows the presence of a peak lo-
cated at f = 1/3, that has an intensity that changes with
position. The presence of other patterns in the position-
frequency plane is also brought to light.

7. CONCLUSIONS

A new technique for spectral analysis and time-frequency
analysis of DNA sequences, based on an adaptive mapping,
has been introduced. The spectrum entropy has been cho-
sen as the cost function, to detect the main periodicities.
Case studies have been discussed to show problems arising
with classical, fixed mapping and the advantage of the new
method. Future activity will focus on a wide application of
the new technique to experimental DNA sequences, for inves-
tigating correlation both at short and long range. Extension
of the MEM technique to larger entities is also under study.
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