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ABSTRACT 

 
In this paper, we present an algorithm for tracking the 
signal subspace recursively. It is based on an 
interpretation of the signal subspace as the solution of a 
minimization of a constrained projection approximation 
task. We show that we can apply the matrix inversion 
lemma to solve this problem recursively. Proposed 
algorithm avoids orthonormalization process after each 
update for post-processing algorithms which need 
orthonormal basis of the signal subspace. Simulation 
results in the direction of arrival (DOA) tracking context 
depict high performance of this algorithm in comparison 
with other algorithms. 
 

1. INTRODUCTION 
 
The interest in subspace-based methods stems from the 
fact that they consist of splitting the observations into a set 
of desired and a set of disturbing components, which can 
be viewed in terms of signal and noise subspaces 
respectively. Subspace-based high-resolution methods 
have been applied in numerous analyses such as the 
MUSIC, the minimum-norm, the ESPRIT, and the 
weighted subspace fitting (WSF) methods for estimating 
frequencies of sinusoids or directions of arrival (DOA) of 
plane waves impinging on an antenna array. The 
estimation of the signal subspace is commonly based on 
the traditional eigenvalue decomposition (EVD) or 
singular value decomposition (SVD). However, the main 
drawback of these decompositions is their inherent 
complexity. 

In order to overcome this difficulty, a large number of 
approaches have been introduced for fast subspace 
tracking in the context of adaptive signal processing. Most 
of these techniques can be grouped into three families. In 
the first one, classical batch methods for EVD/SVD like 
QR algorithm, Jacobi rotation, power iteration, and Lancoz 
method have been modified to fit adaptive processing [1]-
[3]. In the second family, variations and extensions of 
Bunch’s rank-one updating algorithm [4] such as subspace 
averaging [5] have been proposed. The third class of 
algorithms considers the EVD/SVD as a constrained or 

unconstrained optimization problem, for which the 
introduction of a projection approximation hypothesis 
leads to fast subspace tracking methods (see, e.g., the 
PAST [6] and NIC [7] algorithms).  

Some of these approaches add orthonormalization step 
to achieve orthonormal eigenvectors [8], which increases 
the computational load. The necessity of 
orthonormalization depends on the post-processing method 
which uses the signal subspace estimate to extract the 
desired signal information. If we are using MUSIC or 
minimum-norm method for calculating DOA’s or 
frequencies from the signal subspace, for which 
orthonormal basis of the signal subspace is required, 
orthonormalization step is crucial. 

In this paper we present a recursive algorithm for 
tracking the signal subspace spanned by the eigenvectors 
corresponding to the r largest eigenvalues, where r is the 
dimension of signal subspace. This algorithm relies on an 
interpretation of the signal subspace as the solution of an 
approximated projection based on a constrained 
optimization problem whose solution gives the 
orthonormal basis. We will derive both exact and recursive 
solutions for this problem. We call our approach as 
constrained projection approximation subspace tracking 
(CPAST). This algorithm avoids the orthonormalization 
step. Simulation results are given to compare performance 
of the CPAST algorithm with PAST and approximated 
power iteration (API) [9] algorithms in the context of 
adaptive DOA estimation.  

 
2. SIGNAL MATHEMATICAL MODEL 

 
Consider the samples x(t), recorded during the observation 
time on the n sensor outputs of an array, satisfying the 
following model: 

       )()()()( ttt nsAx += θ                                                 (1) 

where nC  ∈x  is the vector of sensor outputs, rC ∈ s  is the 
vector of complex signal amplitudes, nC  ∈n  is an additive 
noise vector, A(θ)=[a(θ1),a(θ2),…,a(θr)] rn×∈C  is the 
matrix of the steering vectors a(θj), and θj, j=1,2,…,r is the 
parameter of the jth source, for example its DOA. It is 
assumed that a(θj) is a smooth function of θj and that its 
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form is known (i.e. the array is calibrated). We assume that 
the elements of s(t) are stationary random processes, and 
the elements of n(t) are zero-mean stationary random 
processes which are uncorrelated  with the elements of s(t). 
The covariance matrix of the sensors’ outputs can be 
written in the following form: 

{ } n
HH ttE RASAxxR +== )()(  

where  { })()( ttE HssS =   is  the  signal  covariance   matrix 
assumed to be nonsingular (‘’H” denotes Hermitian 
transposition), and Rn is the noise covariance matrix. A 
large number of methods such as SVD or EVD use 
covariance matrix of data to estimate the signal subspace. 
 

3. SIGNAL SUBSPACE INTERPRETATION 
 

 Let nC  ∈x be a complex valued random vector process 
with the autocorrelation matrix { }HE xxC = which is 
assumed to be positive definite. The orthonormal 
eigenvectors and the positive eigenvalues of C are denoted 
by ui and λi (i=1,2,…,n) respectively. Equivalently, we 
have C=U∑UH with U=[u1,u2,…,un] and ∑=diag(λ1, λ2,…, 
λn). 

We consider the following minimization problem: 

   
2

)(    minimize xWWxW
W

HEJ −=                      (2) 

where W is a n×r (r≤n) full rank matrix. It can be shown 
that J(W) has a global minimum and the columns of the 
solution of the above problem are orthonormal and span 
the signal subspace (see [6]). Thus, the use of an iterative 
algorithm to minimize J(W) will always converge to an 
orthonormal basis of the signal subspace without any 
orthonormalization operations during the iteration. 
Although the capability of gradient based subspace update 
approaches is clear to us, it is not the aim of this paper to 
use these approaches. Instead, we replace the expectation 
in (2) with an exponentially weighted sum as follows: 

   
2

1
)()()()())((     minimize ∑

=

− −=
t

i

Hit ittitJ xWWxW
W

β   (3) 

and we will try to solve this problem recursively. All 
sample vectors available in the time interval 1≤i≤t are 
involved in estimating the signal at the time instant t. The 
use of the forgetting factor 0<β≤1 is intended to ensure that 
data in the distant time are downweighted in order to 
afford the tracking capability when the system operates in 
a nonstationary environment. J(W(t)) is a fourth-order 
function of elements of W(t). The key issue of the 
projection approximation subspace tracking (PAST) 
approach is to approximate WH(t)x(i) in (3), the unknown 
projection of x(i) onto the columns of W(t), by the 
expression y(i)=WH(i-1)x(i), which can be calculated for 
1≤i≤t at the time instant t.  This results in a modified cost 
function: 
 

               
2

1
)()()())(( ∑

=

− −=′
t

i

it ititJ yWxW β                       (4) 

which is quadratic in the elements of W(t). This results in 
the following minimization problem: 

               
2

1
)()()())((   minimize ∑

=

− −=′
t

i

it itixtJ yWW
W

β         

The solution to this problem (the PAST solution) is as 
follows [6]: 
 
              1))()(()( −= ttt yyxy CCW                                      

where    

      )()()1()()()(
1
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t
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xy
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− ββ                (5) 
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We note that the PAST algorithm is derived by minimizing 
the modified cost function in (4) instead of the original one 
in (2). Hence, the columns of W(t) are not exactly  
orthonormal. The deviation from the orthonormality 
depends on the signal to noise ratio (SNR) and the 
forgetting factor β. This lack of orthonormality affects 
seriously the performance of post-processing algorithms 
which are dependant on orthonormality of the basis.  To 
overcome this problem, we define the following 
constrained optimization problem: 

       

r
H

t

i
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2

1
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where Ir is the r×r identity matrix and it is clear that the 
constraint in (6) guarantees the orthonormality. To solve 
this constrained problem we use Lagrange multipliers 
method. So, after expanding the expression for ))(( tJ W′ , 
we can replace (6) with the following problem: 

          ))()()()(( 

))()()((2)()(   minimize

2

1

1

Fr
HHH

t

i

it

HH
t

i

it

ttiitr

tiitrtrh

IWWWWyy

WyxCW
W

−+

+−=

∑

∑

=

−

=

−

λβ

β
 

where tr(C) is the trace of the matrix C, F.  denotes the 
Frobenius norm, and λ  is the Lagrange multiplier. 
Let 0=∇h , where ∇  is the gradient operator with respect 
to W, then we have: 

          

0)]()()(2)(2[
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1 1

=+−

++−∑ ∑
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H
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If we obtain W from aforementioned equation and use it in 
r

H IWW =  , after some manipulations we obtain:  
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where (.)1/2 denotes the square root of a matrix. 
Now,  using (8),  we can remove λ  from  equation (7) and 
attain the following solution: 

2
1

))()()(()(
−

= tttt H
xyxyxy CCCW                                   (9) 

       
This constrained projection approximation subspace 
tracking (CPAST) algorithm guarantees the orthonormality 
of the columns of W(t). The general form of solution of 
CPAST algorithm is similar to PAST except its square 
root.  

 
4. ADAPTIVE SUBSPACE TRACKING 

 
Subspace tracking methods have applications in numerous 
domains, including the fields of adaptive filtering, source 
localization, and parameter estimation. In many of these 
applications we have a continuous stream of data. Thus, 
developing adaptive algorithms is very useful for these 
applications. An efficient and numerically robust recursive 
solution for (6) can be obtained by using the matrix 
inversion lemma to compute the inverse of )()( ttH

xyxy CC  in 
(9). 
The matrix inversion lemma can be written as follows: 
   1111111 )()( −−−−−−− +−=+ DACBDABAABCDA      (10)                                                                       
We define matrix )(tΦ  as below: 

             )()()( ttt H
xyxy CCΦ =                                         (11)  

We replace the first )(txyC term in (11) with its recursive 
formula in (5), to obtain: 
          )()()()()1()( tttttt HH

xyxyxy CxyCCΦ +−= β                                                                                
Now, we define matrix A, vectors B and D, and scalar C in 
the following form: 
           )()1( ttH

xyxy CCA −= β                                        (12)  

           )(tyB =                                                 (13)                                                                                                   
            C=1                                                            (14)  
           )()( ttH

xyCxD =                                                (15)                                                                                                                           
Then, using (10) and (12-15), we have: 

    
1)()()(

)()()(
)()(

1

11
11

+
−==

−

−−
−−

ttt

ttt
tt

H

H

yACx

ACxyA
AΦP

xy

xy     (16)  

                                                              
Now, we define matrix A′ , vectors B′  and D′ , and 
scalar C′ , in the following form: 
 
 

              )1(2 −=′ tΦA β                                                (17)      

 )()1( ttH xCB xy −=′ β                                         (18) 

 1=′C                     (19)
 )(tHyD =′                    (20)                      
Substituting )(txyC from (5) into (12), we have:  

              )()()1()1(2 tttt HH yxCΦA xy −+−= ββ         (21) 
Then, using (17-20) and applying MIL to (21), we obtain 
the inverse of A as follows: 
              )()1(1 tt EPA −=−                                            (22)  
where 
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and Ir is the r by r identity matrix. Substituting (22) into 
(16), we have: 
          )()()()1()()1()( ttttttt KyEPEPP −−−=            (23)                      
where 

          
1)()()1()()(

)()1()()(
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+−

−
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tttt
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H
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xy
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Using (24) and (23), it can be shown that: 
          )()()()( tttt H PCxK xy=                                      (25)  

If we substitute )(txyC  from (5) into (25), we have: 

          )()()()1()()( tttttt HHH yxxCxK XY +−= β        (26)                 
It follows from (26) that: 

          

)()(

)()1()()(
)()()()()(
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H
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(27)                      
Now, using (5), (9) and (16), we can write: 
          

)())()()1(()()()( 2
1

2
1

ttttttt PyxCPCW H
xyxy +−== β   (28)                      

To achieve a recursive form for W(t), we multiply both 

sides of (28) by )(2 t
H

P and use (27) to obtain: 

          )()()1()()( ttttt
H

QPCPW xy2 +−= β                                               
Now we replace P(t) with the right hand side of (23) to 
obtain: 
 

)()()()()1()1(                      

)()1()1()()(

tttttt

ttttt
H
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β

β    (29)        

Combining (28) and (29), we can write the following 
recursive equation: 
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Table 1. The CPAST algorithm for tracking 
the signal subspace 

 
Computation Process 
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The above equation is used for updating )()( tt
H
2PW  in 

each iteration. Finally )(tW  is obtained as follows: 

             )()]()([)( tttt
HH
22 ΦPWW =                            (30)                                                                 

Table 1 summarizes this recursive CPAST algorithm 
for tracking the signal subspace. It can be shown that 
computational complexity of this algorithm is O(nr2) 
which is much less than the direct computation of SVD or 
EVD. 

 Appropriate initial values should be chosen for P(0) 
and  W(0). P(0) must  be  a  Hermitian  positive  definite 
matrix and W(0) should contain r orthonormal vectors. 
The choice of these initial values affects the transient 
behavior   but not the steady state behavior of the 
algorithm. The simplest way is to set P(0) to the r×r 
identity matrix and the columns of W(0) to the first r 
columns of the  n×n  identity  matrix.  
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Figure 1. Root mean square error in DOA estimation vs. 

snapshots 
 

5. SIMULATION RESULTS 
 
In this section, we use simulations to demonstrate the 
applicability and performance of the CPAST algorithm. To 
do so, we consider the proposed algorithm in DOA 
estimation context. We use MUSIC algorithm for finding 
the DOA’s of signal sources impinging on an array of 
sensors. Let { }n

ii 1=s  denote the orthonormal eigenvectors 
of covariance matrix R and let ( )rssS ,...,1= . We assume 
that the corresponding eigenvalues of R are sorted in 
descending order. We know that consistent estimates of the 
DOA’s can be determined as the minimizing arguments of 
the following cost function:    
             ( ) ( )( ) ( )θθθ aSSIa H

n
H

MUSICf −=  
where S is the orthonormal basis of the signal subspace 
and In is the identity matrix of dimension n. The definition 
of S shows that the CPAST algorithm can be used for 
estimating it. Once S was estimated, it can be used in the 
MUSIC algorithm for finding the desired DOA’s. 
    We consider a uniform linear array where the number of 
sensors is m=17 and the distance between adjacent sensors 
is equal to half wavelength. We use the forgetting factor 
β=0.97. To illustrate the effect of orthonormal basis on the 
MUSIC algorithm, we consider two signal sources which 
are in directions (-5o, 5o) and their SNR’s are 0 dB. Figure 
1 shows the root mean square error of DOA estimates 
obtained by using PAST and CPAST algorithms. This 
figure shows the sensitivity of MUSIC to orthonormality 
of basis. In all figures in this section, except figure 2, the 
number of simulation runs used for obtaining each point is 
equal to 100. 

Principal  angle is a measure of the difference between 
the subspaces spanned by the columns of S(t) and of the 
matrix A in the signal model (1) [10]. The principal angles 
are zero if the compared subspaces are identical. In figure 
2, we have depicted all (r=2) principal angles for the 
previously defined DOA estimation problem. This figure is 
depicted  for  one  simulation  run.  Figure 2 shows the low 
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Figure 2. Principal angles vs. snapshots for CPAST estimates 
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Figure 3. Principal angles mean vs. snapshots 

 
variability of CPAST estimates with time. 
   Figure 3 compares mean of principal angles for three   
subspace tracking methods PAST, CPAST and API. 
It turns out from this figure that CPAST gives much better 
performance than PAST. 
   The deviation of the subspace weighting matrix W(t) 
from  orthonormality  can  be  measured  by means of the 
following error criterion [9]:  
                            ⎟

⎠
⎞⎜

⎝
⎛ −

Fr
H tt IWW )()(log20  

 Figure 4 shows the mean of the above error criterion for 
the three algorithms PAST, CPAST and API when applied 
to the previously defined DOA estimation problem. It can 
be seen that CPAST provides full or nearly full 
orthonormality of the basis. In spite of PAST, CPAST 
shows very good performance even in the first snapshots. 

 
6. CONCLUSION 

 
In this paper, we introduced an interpretation of the signal 
subspace as the solution of a constrained optimization 
problem. Then, we derived the solution of this problem 
and discussed the applicability of the so-called CPAST 
algorithm   for   tracking   the   subspace.   We   derived   a  
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Figure 4. Deviation from orthonormality vs. snapshots 

 
recursive formulation of this solution for adaptive 
implementation. Our algorithm avoids the 
orthonormalization of basis in each update. Simulation 
results in DOA tracking context showed the good 
performance of the propose algorithm.  
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