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ABSTRACT 
A novel method for extracting distorted grid points for 
compensation of lens radial nonlinearities is presented. It is 
based on identification of homographic transformation using 
single image of dense planar chessboard pattern. 
Undistorted  grid image is determined from the central part  
of the grid and used to find the radial distortion model by 
linear least square method (LSM). The model is used for 
dense compensation by bilinear interpolation.  

1. INTRODUCTION 

Optical lens distortion in contemporary off-the-shelf camera 
is a significant problem for low cost vision systems. It 
results in image point displacement of  unacceptable size for 
applications. Therefore, systems using image based 
measurements, like 3D reconstruction systems, need robust 
distortion compensation methods.  
  The dominant optical distortion is of radial type 
which is visible as barrel or pincushion effect.  
  Many techniques for radial distortion modelling and 
compensation were published.  The method presented in 
this paper determines values of radial model parameters and 
detects the distortion centre based on determined calibration 
points coordinates from a single image of the planar pattern. 
It presents a new fast approach to distortion centre 
estimation and results in high accuracy of compensation. It 
solves perspective problem by estimation of homographic 
matrix. Therefore, no special alignment of a camera with 
regard to the chessboard plane is needed. 

2. SYSTEM DESCRIPTION 

2.1 Assumptions 
 
The method determines radial model parameters and 
localises distortion centre based on single image of planar 
chessboard pattern. The identified parameters are used to 
compensate an image. 
 Corners of chessboard squares are used as the 
calibration points. In order to assure the correct localisation 
of them, the distance between neighbouring points should be 
at least ten pixels and homogenous light condition should be 
ensured. It is not required to align the chessboard 
perpendicular to the optical axis of camera which is not easy 
task. However, in order to achieve high accuracy of results it 

is important to assure as much of calibration points as 
possible, which means that chessboard orientation should be 
close to perpendicular when the camera obscura model can 
be assumed. 
 We use precise radial distortion model, which defines 
distorted pixel coordinates as follows: 
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where p ∈ R2×1 are undistorted pixel coordinates, p0  ∈ R2×1 
are the co-ordinates of distortion centre and d1,  d2,  d3,  d4  
∈ R are model parameters. Notice that we use the distortion 
model rather than the compensation model. Paradoxically, 
having the distortion model makes the dense compensation 
for large images more efficient. 
 It is observed that in the centre of defined model the 
distortion is minimal. Therefore, we assume that distortion 
is negligible in the neighbourhood of image centre (model 
centre) and calibration points localised there are called as 
“good” ones, while the rest of calibration points are called 
as “bad” ones.  
 Considering the mentioned assumptions, the system 
realises the following steps: 

• calibration points localisation with subpixel 
accuracy; 

• localisation of distortion centre using calibration 
points; 

• estimation of radial distortion parameters values;  
• distortion compensation by obtained model. 

 
2.2 Calibration points localisation 

 
2.2.1 Edge Detection 
To image of chessboard pattern, which fulfils conditions 
introduced in previous section, a noise removal is applied 
using Gaussian masks. Next, Canny algorithm for edge 
detection is employed [13]. For gradient computation Sobel 
masks are used [14]. The hysteresis (optional) step of Canny 
algorithm is not necessary if close to homogenous light 
condition are provided. If such condition can not be assured, 
the fast implementation of thresholding hysteresis can be 
employed [14].  
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 Using the gradient orientation, the set of edge pixels 
is divided into two sets containing pixels with horizontal or 
vertical gradient orientation. 
 
2.2.2 Calibration Points Rough Localisation 
Next, rough co-ordinates of grid intersections are found. For 
this purpose the popular Harris filters can be used. However, 
instead of that we propose method of neighbourhood 
analysis, which does not need SVD computation. It uses 
mask shown in Fig. 1a. It is checked, for the current pixel, if 
there is at least one edge pixel having horizontal gradient 
orientation in top and bottom fields signed as H, respectively 
and if there is no edge pixel with vertical gradient 
orientation in any of field signed as H. Adequate conditions 
are checked for V-type fields. If they all are fulfilled, the 
actual pixel co-ordinates are the candidate for rough 
estimation of calibration point localisation. It is worth 
saying, that radius of neighbourhood analysis r (the distance 
between central point and H-type or V-type fields) was 
found experimentally and can be changed according to data 
characteristic. If two of found candidates are localised 
within a distance equal or smaller than r=2, only this one 
from them is promoted, for which neighbourhood analysis 
detected the higher number of edge pixels with horizontal 
 

 

 
Figure 1 –  Calibration points localisation: (a) - neighbourhood 

analysis with radius r=3 for rough localisation of calibration point, 
(b) - searching for right neighbour P(0,1) of point P(0,0),  

(c) - neighbourhoods of  p(j,i) for PCA analysis 

gradient orientation in H-type fields and with vertical 
gradient orientation in V-type fields. The other candidate is 
eliminated. 

 
2.2.3 Indexing of Calibration Points Rough Localisations 
Localised calibration points are indexed then. Firstly, 
calibration point, which is localised at the smallest distance 
to image centre is indexed as p(0.0). Next, its right neighbour 
is founded using iterative function on image with calibration 
points. During every iteration vertical searching window is 
moved one pixel right starting from calibration point 

indexed as p(0,0) (Fig. 1b). This process is continued until the 
first calibration point appears in the window. This point is 
indexed as p(1,0). Adequately, the function finds left p(-1,0), up 
p(0,-1) and bottom neighbour p(0,1). Next, function seeks for 
points p(j,0), for j=2,3,4,… Searching for p(j,0) point is made 
in a window with certain size. Localisation of a centre of the 
window is calculated as a sum of co-ordinates of calibration 
point p(j,0) and actual displacement vector between 
localisation of point p(j,0) and p(j-1,0). Thus, searching function 
is adjusted to local character of distortion. In case of point 
p(j,0) is not localised, the searching is proceeded: the 
searching window is moved by actual displacement vector 
and seeking next calibration points is made. For every found 
point p(j,0), j=0,1,2,3,4,… searching for points p(j,i) is made, 
firstly for i=1,2,… and then for i=-1,-2,… After such 
searching is finished, points p(j,i), j=-1,-2,.., i=…,-2,-
1,0,1,2,… are indexed. 
 
2.2.4 Calibration Points Exact Localisation 
Having indexed rough positions of calibration points, the 
next step is to determine exact co-ordinates of them. 
Considering the fact, that image is nonlinearly distorted, 
methods determining intersections of global straight lines in 
image such as [15] cannot be applied. The method analysing 
local neighbourhood of rough localisation of calibration 
point was designed and used. In such neighbourhood, 
distortion influence is negligible and line can be considered 
as straight. Intersection of two of grid lines found using PCA 
in the neighbourhood leads to obtain co-ordinates of a 
calibration point with sub-pixel accuracy. For vertical line 
the neighbourhood of point p(j,i) is defined as an interior of 
tetragon ABCD (Fig. 1c), where A is geometrical centre of 
segment p(j-1,i-1)p(j,i-1), and B, C, D are respectively 
geometrical centres of segments p(j,i-1), p(j+1,i-1), p(j,i+1)p(j+1,i+1), 
p(j-1,i+1)p(j,i+1). All of edge pixels having horizontal gradient 
orientation which are in the neighbourhood are used in PCA 
[16] in order to determine parameters of the best fitted line. 
Solution for PCA is found using SVD computation [17]. In 
adequate way horizontal line is found in tetragon EFGH. 
Intersection of horizontal and vertical line is an exact 
localisation of calibration point. 

 
2.3 Distortion parameters estimation 
Modelling of optical distortion is based on analysis of 
transformation of ideal planar grid of calibration points Pi, 
i=1,…,n, into image points pi, which were localised and 
indexed. This transformation can be divided into two steps: 
perspective projection of calibration points Pi onto an image 
plane: 
  ,,,1, niMPp ii L=≡  (2) 
and radial distortion of points co-ordinates on image plane 
according to (1): 
  .,,1),(~ nipdp ii L==  (3) 
Calibration points are coplanar, therefore only 2D version of 
projection matrix has to be estimated, i.e. the homographic 
matrix H: 
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  .,,1, niHPp ii L=≡  (4) 
 
2.3.1 Homographic Matrix Estimation 
Perspective projection of chessboard plane onto image plane 
is determined by the unknown eight elements of the 
homographic matrix H=[hij], H ∈ R3×3, h33=1. They 
determine  a transformation of point P(X,Y) into image point 
p(x,y) in homogenous co-ordinates: 
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Rewriting the equations we get their linear form for central 
points which can be considered as undistorted (good points): 
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The values of hij are obtained by the linear Least Square 
Method (LSM). According to (1) the distortion size near the 
distortion centre is minimal. Therefore, we assume that the 
distortion is negligible for the calibration points around the 
distortion centre. We call such points as “good” ones and 
substitute them to (6) getting by LSM: 

  ,minarg 2bhAh
h

opt −=  (7) 

where A is 8× 2ngood real matrix: 
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b is 1× 2ngood real matrix: 

  [ ] ,11 goodgood nn yyxxb KK=  (9) 

and h is also 1× 8 real matrix: 
  [ ].3231232221131211 hhhhhhhhh =  (10) 
In theory, only four pairs of points (Pi,pi), i=1,2,…,n, ngood=4 
are needed to obtain values of hij. Practically, number of 
“good” points should be much higher in order to obtain high 
accuracy of results, e.g. more than 50 for total number of 
calibration points about 2000. 
 The most popular method, which serves solving least 
square method is using the pseudoinverse matrix A+ [12]. It 
uses SVD computation. However, size of A depends linearly 
on number of “good” points and for large number of them 
time complexity can become a problem. Therefore, for large 
number of points we propose to reformulate equations. 
 Equations (4) means that: 
  ., RHPp pp ∈= λλ  (11) 
We use the hat operation, which implements the vector 
product with p: 
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Both sides of equation (11) can be multiplied by p̂ : 

  .ˆˆ HPppp pλ=  (13) 

Notice that 130ˆ ×=pp . After dividing both side of (13) by λp 
it is obtained: 
  .0ˆ =HPp  (14) 
Product HP can be written as: 
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A product of two matrices is obtained. First of the matrix is 
Kronecker’s product of identity matrix I3×3 and Pt. The 
second one is column vector consisted of sought elements of 
homographic matrix H: 
  ).()( 3 HvecPIHP t⊗=  (16) 
Inserting (16) into (14): 
  .0)()(ˆ 3 =⊗

32143421
xA

t HvecPIp  (17) 

We can write such equation for all “good” calibration points: 
  .,,1,0)()ˆ( good
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t
ii niHvecPp
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==⊗  (18) 

We obtained a set of linear equations, which can be solved 
using the least square method. However, in order to avoid 
solution x=08×1, we consider the quadratic form: 
  .0=AxAx tt  (19) 
For all “good” calibration points it holds: 
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where the expression in brackets we call as the secondary 
matrix B: 
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instead of matrix (8) which is called as the primary matrix. 
 Because matrix B is symmetric and semidefinite, 
EVD decomposition of this matrix produce the same results 
as SVD. This property can be used to determine the solution 
of (20), which is the eigenvector corresponding to the 
smallest singular value. It means that having SVD(B)=UΣVt, 
the solution for vec(h) is the last column of U. 
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2.3.2 Distortion Centre Estimation 
Point p≡HP is the image of P, which is then distorted along 
the direction of p-p0. Therefore, points p0, p, p~  are collinear 
and the following matrix is singular: 
  [ ] .0~,det 00 =−− pppp  (22) 
For every calibration point which is distorted significantly 
(called “bad” point) the equation (22) is true: 
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Having a set of such equations, the solution for distortion 
centre p0 can be obtained by LSM. 
 
2.3.3 Radial Coefficients Estimation 
Having the  homographic matrix H and localised “good” 
points, undistorted pixel co-ordinates for “bad” points can 
be calculated. Differences between these estimated 
undistorted localisations and real distorted localisation of 
“bad” points have the models: 
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where: 
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The distortion parameters are found using LSM iteratively 
selecting the number of “good points”. 

 
2.4 Distortion compensation 
For the whole image compensation, we consider the target 
image as the one which is distorted and therefore the 
unknown colour of target pixel can be found by applying the 
radial distortion model to coordinates of target pixel and 
next filtering colours in the distorted image around the 
obtained source pixel. The required colour is obtained by the 
bilinear interpolation of four nearest pixels of the source. 
This simple approach gives satisfactory results. 

3. EXPERIMENTS 

The presented system was tested on images acquired by 
following digital devices: camcorder SONY EVI-D31, two 
cameras Olympus C-7070 and camera SONY DSC-S600. 
Experiments showed, that calibration points can be localised 
with subpixel accuracy (exemplary results are shown in Fig. 
2a-c). 
 Tests showed also that values of distortion 
parameters estimated by the method leads to obtain subpixel 
accuracy of image correction. As quality measure the 
deviation from the best fitted straight lines were used. The 
lines were found using PCA analysis. Exemplary 
compensated image is shown in Fig. 2d. 
 The deviation of compensated points for different 
number of “good” points is presented in Fig. 3-4 (total  
 

 
Figure 2 – Exemplary results for camera SONY DSC-S600: (a) – 
original image with straight lines added, (b) – localised calibration 
points, (c) – indexes of calibration points, (d) – compensated image 

with straight lines added 

 
Figure 3 – Maximum deviation of compensated points from straight 

lines for method using primary matrix (solid line) and secondary 
matrix (dotted line) for homographic matrix computation 

 
Figure 4 – Mean deviation of compensated points from straight lines 
for method using primary matrix (solid line) and secondary matrix 

(dotted line) for homographic matrix computation 
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Figure 5 – Exemplary executing time for implementations with 

primary matrix (solid line) and secondary matrix (dotted line) for 
homographic matrix computation 

 
Figure 6 – Exemplary executing time for implementations with 

primary matrix (down) and secondary matrix (up) for radial 
parameters estimation 

number of detected calibration points is about 2400). For 
primary matrix method used for homographic matrix 
estimtation optimal number of “good” points is 177, for this 
number maximum deviation is about 0.742 pixel. 
         The approaches of the primary and the secondary 
matrix were tested by the least square method for 
homographic matrix estimation and radial parameters 
estimation. Method using secondary matrix usually provides 
slightly better estimation of homographic matrix (Fig. 3-4). 
For the radial parameters estimation differences between 
obtained values of the parameters were negligible, while the 
executing time was better for solution using primary matrix 
(Fig. 6). 
 Using compensation model instead of distortion 
model does not improves the results. For the example 
illustrated above the maximum deviation is about 0.769 
pixel for optimal number of “good” points equal to 171 for 
primary matrix method using the following compensation 
model (cf. (1)): 
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4. CONCLUSION 

A novel method for extracting distorted grid points for 
compensation of lens radial nonlinearities is presented. It is 
based on identification of homographic transformation using 
single image of dense planar chessboard pattern. 
Undistorted grid image is determined from the central part  
of the grid and used to find the radial distortion model by 
linear least square method (LSM). The algorithm includes 
steps for fast localisation of calibration points using 
designed neighbourhood analysis instead of more complex 
popular techniques like Harris filters for corner detection. 
 Two versions of least square method were tested for 
homographic matrix estimation and for values of distortion 

parameters estimation. Primary matrix method needs 
computation of SVD on bigger matrices than secondary 
matrix method. However, the second method is generally 
more time consuming because of complex data preparation 
process for SVD computation. Nevertheless, use of 
secondary matrix method for homographic matrix 
estimation increases slightly the accuracy of results. 
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