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ABSTRACT 
This paper presents the development of the least-mean-square 
(LMS) and normalized LMS (NLMS) algorithms for adapting 
cascaded FIR filters and the application of such algorithms to the 
whole adaptation of interpolated FIR filters. The obtained 
expressions are general and can be extended to any structure 
composed of the cascade of two FIR filters. The considered 
approach allows verifying the main characteristics of the adaptive 
process as well as the limitations of the existing adaptive 
interpolated FIR structures using adaptive interpolators. 
Numerical simulation results are presented aiming to confirm the 
effectiveness of the obtained advances. 
  

1.   INTRODUCTION 

Interpolated finite impulse response (IFIR) filters are 
computationally efficient structures, being an interesting alternative 
to implement FIR filters. The first work on this subject is due to 
Neuvo et al. [1]. Since then, much research effort in IFIR filters has 
been carried out, aiming to use them in a large number of 
coefficient-demanding applications, such as line echo canceling 
[2]-[4], active control [5], and audio processing on a digital hearing 
aid [6]. The idea behind IFIR filters is to use a sparse FIR filter 
(with a reduced number of coefficients) cascaded with an 
interpolator filter that recreates the removed coefficients in an 
approximate form. 

The adaptive version of an IFIR (AIFIR) filter also represents 
an interesting alternative to implementing coefficient-demanding 
adaptive FIR (AFIR) filters [2]. An AIFIR filter is carried out by 
just adapting the sparse filter coefficients whereas the interpolator is 
maintained fixed [7]. The position of the filters in the cascade can be 
exchanged, placing the interpolator at the input [8] or at the output 
[7] of the AIFIR structure. The interpolator position impacts on 
different update processes because of the time-varying nature of the 
structure [7], [8]. Despite that, the same steady-state performance is 
obtained for both realizations. 

The computational complexity reduction in an AIFIR structure 
is obtained at the expense of a higher steady-state mean-square error 
(MSE) value as compared with that of the standard AFIR filter. 
Such degradation is due to the use of a fixed interpolator filter, 
which generally leads to an inadequate recreation of coefficients. A 
possible solution to this problem is to consider a fully adapted IFIR 
(FAIFIR) structure, in which both the sparse and interpolator filters 
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are adapted. This class of structure was originally introduced in [9] 
and applied to an adaptive line enhancer. In [10] and [11], a FAIFIR 
structure has been introduced and discussed in an ad hoc manner. 

Regarding the mathematical treatment, this paper presents the 
derivation of the least-mean-square (LMS) and normalized LMS 
(NLMS) algorithms for adapting FIR filters in cascade as well as its 
application to FAIFIR filters. The presented framework is general, 
permitting to be applied in any structure formed by a cascade of two 
adaptive FIR filters. In particular, the provided expressions are 
applicable to FAIFIR structures regardless of the interpolator and 
sparse filter positions. Moreover, through the proposed approach 
more insight on the adaptation process of such filters is gained, 
permitting to assess the approximations used in [9]-[11]. 

This paper is organized as follows. In Section 2, the general 
mathematical description of the cascaded FIR filters is introduced. 
Section 3 presents the development of the LMS algorithm for such a 
structure. Section 4 considers the case of the NLMS algorithm. The 
developed theory for the FAIFIR case is discussed in Section 5. 
Section 6 shows some simulation results aiming to verify the 
performance of a FAIFIR structure. Finally, remarks and 
conclusions of this work are presented in Section 7. 

2.   MATHEMATICAL TREATMENT OF CASCADED FIR 
FILTERS 

Fig. 1 illustrates the block diagram of a cascade of two FIR filters, 
where T

0 1 1[       ]Mg g g −=g L  and T
0 1 1[       ]Nh h h −=h L  are the 

input and output FIR filters, respectively. Variable ( )x n  denotes the 
input signal, ˆ( )y n  represents an intermediary signal, and ( )y n  is 
the output signal of the cascade, also obtained by combining the 
cascade of filters into an equivalent filter, resulting in 

 eq = ∗w g h . (1) 

( )y n( )x n g h
ˆ( )y n

=
( )x n ( )y n

eqw
 

Figure 1 – Block diagram of a cascaded FIR structure and its equivalent 
filter. 

Note from (1) that the equivalent structure is obtained by a 
convolution operation. To facilitate the mathematical treatment, 
such an operation is expressed as a product of matrices [9]. For 
such, let us define the following matrices: 
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with dimension ( 1)N M N+ − × , and 
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with dimension ( 1)N M M+ − × . Then, (1) is now rewritten as 

 eq = =w Gh Hg . (4) 
Due to the convolution operation in both (1) and (4), the equivalent 
filter has a memory size of 1N M+ − . Now, defining a new input 
vector with the same dimension of the equivalent filter (4) as 

[ ]T
e ( ) ( )  ( 1)    ( 2)n x n x n x n N M= − − − +x L            (5) 

the input-output relationship of the cascaded structure is written in 
terms of matrix-vector product as 

T T T T T
eq e e e( ) ( ) ( ) ( )y n n n n= = =w x h G x g H x .             (6) 

3.   LMS ALGORITHM IN THE CASCADED STRUCTURE 

In this section, the adaptive version of the cascade of two FIR filters 
(see Fig. 1) is derived. For such, we assume that the coefficients of 
both filters are adjusted according to the LMS algorithm. Fig. 2 
shows the block diagram of the structure in question, in which 

( )d n  denotes the signal to be estimated (desired signal) and ( ),e n  
the error signal given by 

( ) ( ) ( )e n d n y n= − .                                 (7) 
The remaining signals in this figure are the same as in Fig. 1. 

( )y n( )x n ˆ( )y n Σ

Adaptive algorithm

( )d n

( )e n
−

+
( )ng ( )nh

 
Figure 2 – Block diagram of the adaptive cascaded structure. 

By substituting (6) into (7) and considering that now the coefficients 
are time-varying for both FIR filters, we get 

T T
e

T T
e

( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ).

e n d n n n n

d n n n n

= −

= −

g H x

h G x
                       (8) 

Now, defining a cost function based on the instantaneous error, one 
can write 

2
MSE

ˆ ( ) ( )J n e n= .                                    (9) 

Then considering the setup of Fig. 2, the filters’ coefficients are 
updated by using the gradient of the cost function (9) as given in 
[12]. For such, the required expressions are obtained in the next 
sections. 

3.1 Coefficient update of the input filter 
By considering the input filter ( )ng  the updating process is 
described by the gradient rule. Thus, 

2
1( 1) ( ) ( )n n e n+ = − μ ∇gg g                           (10) 

with 1μ  representing the step-size parameter for adapting the input 
filter. By applying the chain rule in (8), the gradient vector is written 
as  

2 2
2 ( ) ( ) ( )( )

( ) ( ) ( )
e n e n e ne n

n e n n
∂ ∂ ∂

∇ = =
∂ ∂ ∂g g g

.                     (11) 

Then, from (8), the right hand side terms of (11) are 
2 ( ) 2 ( )
( )

e n e n
e n

∂
=

∂
                                   (12) 

and 
T

e
( ) ( ) ( )
( )

e n n n
n

∂
= −

∂
H x

g
                            (13) 

where ( )nH  is the time-varying version of (3). Therefore, the 
LMS-update equation for the input filter of the setup of Fig. 2 is 
given by 

T
1 e( 1) ( ) 2 ( ) ( ) ( )n n e n n n+ = + μg g H x .                (14) 

3.2  Coefficient update of the output filter 
For the output filter, the update process is again given by 

2
2( 1) ( ) ( )n n e n+ = − μ ∇hh h                          (15) 

where 2μ  is the step-size parameter for adjusting the output filter. 
Then from (8), now considering vector h(n), according to the 
chain rule we write 

2 2( ) ( ) ( )
( ) ( ) ( )

e n e n e n
n e n n

∂ ∂ ∂
=

∂ ∂ ∂h h
                            (16) 

resulting in (12) and 
T

e
( ) ( ) ( )
( )

e n n n
n

∂
= −

∂
G x

h
                            (17) 

where ( )nG  is the time-varying version of (2). Finally, the 
LMS-update equation for the coefficients of the output filter is given 
by 

T
2 e( 1) ( ) 2 ( ) ( ) ( )n n e n n n+ = + μh h G x .              (18) 

3.3  Particularities of cascaded adaptive filters 
Some important questions arise in the updating process of cascaded 
adaptive filters: 
i) Coefficient initialization. As mentioned in [9], if both coefficient 
vectors ( )ng  and ( )nh  are initialized with zeros according to 
common practice, from (14) and (18) one verifies that such 
coefficient vectors are unchanged during the updating process. One 
possible solution is to initialize the coefficient vectors ( )ng  and 

( )nh  (or at least one of them) with nonzero values. 
ii) Computational complexity. From (14) and (18) one notices that 
an evaluation of two matrix products T

e( ) ( )n nH x  and 
T

e( ) ( )n nG x  is required at each iteration. However, under slow 
adaptation conditions and considering the particular structure of 

( )nG  and ( )nH  matrices, these matrix products can be simplified 
to an inner vector product, reducing thus the computational burden. 
Such procedure is discussed in the following sections. 
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iii) Algorithm stability. Because of the simultaneous adaptation of 
both filters and the use of two different step-size parameters, to 
obtain analytical expressions for the stability bounds is somewhat 
difficult. Then, an alternative solution is to use a conservative 
step-size value for both filters, obtained experimentally. With such 
strategy, good practical results are achieved as will be shown in 
Section 6. A mathematical analysis of the cascaded structure is very 
complex, thus the determination of stability bounds remains an open 
problem in the literature of the area. 

4.   CASCADED NLMS STRUCTURE 

In this section, the expressions allowing to adapt the coefficients of 
the cascaded structure by using the NLMS algorithm are derived. 
Similarly as in [12], the NLMS updating equation is obtained by 
minimizing the Euclidean norm of 

( 1) ( 1) ( )n n nδ + = + −g g g                            (19) 
subject to the constraint 

T T
e( 1) ( ) ( ) ( )n n n d n+ =g H x .                        (20) 

Note that the constraint expression (20) is slightly different from 
that presented in [12] due to the particular characteristics of the 
cascaded structure. By applying the method of Lagrange multipliers 
[12] to (19) and (20), the cost function is now given by 

2 T T
g 1 e( ) ( 1) ( ) ( 1) ( ) ( )J n n d n n n n⎡ ⎤= δ + + λ − +⎣ ⎦g g H x      (21) 

where 1λ  is a real-valued Lagrange multiplier. By differentiating 
(21) with respect to ( 1)n +g , we get 

[ ]g T
1 e

( )
2 ( 1) ( ) ( ) ( )

( 1)
J n

n n n n
n

∂
= + − − λ

∂ +
g g H x

g
.          (22) 

By setting (22) equal to zero, we obtain 
T

1 e
1( 1) ( ) ( ) ( )
2

n n n n+ = + λg g H x .                    (23) 

By substituting (23) into (20) results in 
T

T T
1 e e

2T T T
e 1 e

1( ) ( ) ( ) ( ) ( ) ( )
2

1       ( ) ( ) ( ) ( ) ( ) .
2

d n n n n n n

n n n n n

⎛ ⎞= + λ⎜ ⎟
⎝ ⎠

= + λ

g H x H x

g H x H x
           (24) 

Now, solving (24) for 1λ  we get 

T T
e

1 2 2T T
e e

2 ( ) ( ) ( ) ( ) 2 ( )

( ) ( ) ( ) ( )

d n n n n e n

n n n n

⎡ ⎤−⎣ ⎦λ = =
g H x

H x H x
.       (25) 

Finally, substituting (25) into (23), adding a positive constant 1α  
for controlling the adaptation process as well as a small positive 
constant 1ψ , preventing a division by zero [12], the coefficient 
update equation of the input filter considering an NLMS-like 
adaptive algorithm is given by 

T1
e2T

e 1

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
g g H x

H x
.     (26) 

In a similar way as (19) and (20), for the output filter we have to 
minimize 

( 1) ( 1) ( )n n nδ + = + −h h h                            (27) 

subject to the constraint 
T T( 1) ( ) ( ) ( )n n n d n+ =h G x .                         (28) 

Again, by applying the method of Lagrange multipliers [12], one 
obtains 

2 T T
h 2 e( ) ( 1) ( ) ( 1) ( ) ( )J n n d n n n n⎡ ⎤= δ + + λ − +⎣ ⎦h h G x .   (29) 

Note that (29) has the same form as (21); thus, by achieving a 
similar development as before, we get the following update 
equation: 

T2
e2T

e 2

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
h h G x

G x
     (30) 

where 2α  and 2ψ  are small positive constants aiming to control the 
adaptation process and to prevent a division by zero, respectively. 
Regarding practical questions, same considerations as those given in 
Section 3-3 are also applicable here. However, it is interesting to 
highlight that, if the simplified form is used, it leads to smaller 
values for 1α  and 2α  than when using the standard NLMS 
algorithm to obtain a satisfactory performance. 

5.   FULLY ADAPTIVE IFIR FILTERS 

In this section, by following the procedures previously described, 
the coefficient update equation is derived for a FAIFIR structure. 
Fig. 3 shows the block diagram of an IFIR structure, where sw  

characterizes a sparse FIR filter and T
0 1 1[ ]Mi i i −=i L , the 

interpolator filter. The input signal ( )x n  and its interpolated version 
( )x n%  are related by 

1

0

( ) ( ) ( )
M

j
j

x n x n i x n j
−

=

= ∗ = −∑i%                         (31) 

and the sparse filter output is given by 
sˆ( ) ( )y n x n= ∗ w%                                 (32) 

where *  denotes the convolution operator. An IFIR filter may also 
be implemented by exchanging the order of the blocks. The results 
presented here are also valid for such a case, provided 
corresponding modifications are made. 

( )y n( )x n i sw( )x n%
 

Figure 3 – Block diagram of an IFIR filter. 

The factor determining the sparsity in sw  is termed interpolation 
factor, which is denoted by L [7]. The sparse filter is obtained by 
setting to zero ( 1)L −  samples from each L consecutive ones from 
the N-dimensional model filter T

0 1 1[       ] .Nw w w −=w L  Thus, the 
corresponding N -dimensional sparse vector is 

s

T
s 0 2 ( 1)[  0  0  0  0   0  0   0  0]L L N Lw w w w −=w L L L L   (33) 

with an input vector given by 
T( ) [ ( )  ( 1)  ( 2)    ( 1)]n x n x n x n x n N= − − − +x% % % % %L .        (34) 

In (33), sN  denotes the number of nonzero coefficients, given by 

s
1 1NN

L
−⎢ ⎥= +⎢ ⎥⎣ ⎦

.                                  (35) 

with ⋅⎢ ⎥⎣ ⎦  representing the truncation operation. 
Note that an IFIR filter is a particular case of the structures 
presented in Section 2. Thus, the equivalent coefficient vector for 
the structure of Fig. 3 is given by 

i s s= =w Iw W i                                    (36) 

where the matrices I  and sW  are defined in a similar way as in (2) 
and (3), respectively. The fully adaptive update equations of the 
IFIR filter are obtained by using the expressions from Sections 3 
and 4. Thus, by considering the LMS algorithm, we get 

T
1 s e( 1) ( ) 2 ( ) ( ) ( )n n e n n n+ = + μi i W x                     (37) 

and 
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T
s s 2 e( 1) ( ) 2 ( ) ( ) ( )n n e n n n+ = + μw w I x .                (38) 

Expressions (37) and (38) are valid for an IFIR structure considering 
the interpolator in any position, either at the front or end. The 
implementation of the recursions (37) and (38) requires a 
considerable computational burden because of the matrix products. 
However, by considering a slow adaptation condition, such filters 
can be implemented with less complexity by admitting some 
simplifications. This procedure is carried out taking into account 
that the product T

s e( ) ( )n nW x , given by 
T T T

w s e s s s s

T T
s s

( ) ( ) ( ) [ ( ) ( )  ( ) ( 1)  

                  ( ) ( 1)]

n n n n n n n

n n M

= = −

− +

x W x w x w x

w xL
    (39) 

can be replaced by its approximated version 
T T

w s s s s

T T
s s

( ) [ ( ) ( )  ( 1) ( 1)  

                ( 1) ( 1)]

n n n n n

n M n M

′ = − −

− + − +

x w x w x

w xL
       (40) 

where s ( )nx  in (39) and (40) is 

[ ]T
s ( ) ( )  ( 1)    ( 1)n x n x n x n N= − − +x L .             (41) 

To obtain the elements from (39), the evaluation of all M  inner 
vector products are required at each iteration .n  We can reduce the 
computational complexity of (39) by using the approximation (40), 
requiring now the computation of only the first element 

T
s s( ) ( )n nw x  at each iteration. With such a reduction the 

applicability of the cascaded structure is significantly enhanced. The 
same consideration is also used for computing the product 

T
e( ) ( )n nI x , resulting in vector ( )nx%  which is already available 

from the filtering operation. The simplified update expressions of 
the FAIFIR-LMS filter are 

1 w( 1) ( ) 2 ( ) ( )n n e n n′+ = + μi i x                        (42) 
and 

s s 2( 1) ( ) 2 ( ) ( )n n e n n+ = + μw w x% .                    (43) 
As before, the same care must be taken to ensure proper operation 
of the adaptive cascaded structure. 
The update expressions using the NLMS algorithm, according to the 
expressions obtained in Section 4, are 

T1
s e2T

s e 1

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
i i W x

W x
      (44) 

and 
T2

s s e2T
e 2

( 1) ( ) ( ) ( ) ( )
( ) ( )

n n e n n n
n n

α
+ = +

+ ψ
w w I x

I x
.    (45) 

Then, the corresponding simplified expressions are given by 
1

w2
w 1

( 1) ( ) ( ) ( )
( )

n n e n n
n
α ′+ = +

+ ψ
i i x

x
                 (46) 

and 
2

s s 2
2

( 1) ( ) ( ) ( )
( )

n n e n n
n

α
+ = +

+ ψ
w w x

x
%

%
.               (47) 

The simplified expressions (42)-(43) and (46)-(47) for the LMS and 
NLMS algorithms, respectively, are presented in [9]-[11]. In [9], 
such expressions are obtained by assuming that each filter is 
time-invariant. This is also the case in the derivations given in [10] 
and [11], where the NLMS and affine projection (AP) algorithms 
are also considered. However, the impact of the adopted 
approximations on the algorithm behavior is not highlighted in these 
papers. 

The use of FAIFIR filters for replacing the standard AFIR 
filters is only interesting if the simplified structure is adopted. The 
computational burden required by the standard AFIR filter is much 
smaller than that required by FAIFIR ones without any 

simplification. However, it is very important to notice that, if 
simplified expressions are used, special care with the used step-size 
value must be taken, avoiding an improper algorithm operation. The 
simulation results presented in the next section provide more insight 
on this fact. 

6.   SIMULATION RESULTS 

In this section, considering a system identification problem, some 
examples are presented aiming to verify the proposed algorithms. 
The MSE curves of the FAIFIR structures (without and with 
simplification) are compared with those of the AFIR and AIFIR 
ones, for both the LMS and NLMS algorithms. Here, the MSE 
curves of the AFIR structure are shown only for performance 
comparison purposes. Such a structure does not consider any 
strategy for reducing the required computational burden. For all 
simulations the input signal is white with unit variance. We also add 
to ( )d n  a measurement noise with a variance 2 610v

−σ =  
(SNR 60dB).=  Simulations with colored input signals are not 
shown here since the obtained results are similar to those by using 
white input signals. 

Example 1: In this example, the adaptive structures are used for 
modeling a plant given by the length-11 vector o

1 [1.00 0.72=w  
T0.51 0.37 0.26 0.19 0.14 0.10 0.07 0.05 0.04] .  The parameters 

used for the AIFIR and FAIFIR are 2L =  and s 6N = . Here, the 
adaptive algorithm is the LMS one and the step size used is 

max / 5μ = μ  (for all filters), where maxμ  is the maximum step size 
for algorithm convergence (experimentally determined). The 
obtained values for maxμ  are 0.07  for the AFIR, 0.05  for the 
AIFIR, 0.06  for the FAIFIR, and 0.03  for the simplified FAIFIR 
structure. In the case of the FAIFIR structures, the same step size is 
selected for both algorithms to ensure stability. The MSE curves are 
obtained from Monte Carlo simulations (average of 100 
independents runs), which are shown in Fig. 4. From this figure, we 
note that the FAIFIR structures present a better steady-state MSE 
performance than that obtained with the AIFIR one. Observe that 
the convergence rate of the FAIFIR structure is larger than that of 
the simplified one when attaining the same steady-state MSE value. 

AIFIR

AFIR
FAIFIR

Simplified FAIFIR

M
SE

Iterations
0 1000 2000 3000 4000 5000 6000 7000-70

-60

-50

-40

-30

-20

-10

0

10

20

 
Figure 4 – Example 1. Plant with 11 coefficients. Several filter 
structures using the LMS algorithm. MSE curves (average of 100 runs). 

Example 2: For this example, the plant used is the length-25 vector 
o
2 [0.01 0.03 0.07 0.12 0.16 0.24 0.28 0.37 0.39 0.49 0.46 0.54=w

T0.49 0.54 0.46 0.48 0.38 0.37 0.28 0.24 0.16 0.12 0.07 0.03 0.01] .
Again the adaptive algorithm is the LMS one and the choice of the 
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step size is determined as in Example 1. The values obtained for 
maxμ  are 0.03  for the AFIR filter, 0.02  for the AIFIR, and 0.01  

for the simplified FAIFIR structure. The MSE curves are shown in 
Fig. 5, in which again we verify that the FAIFIR performance is 
better than the one exhibited by the AIFIR structure. By using the 
same step size, the FAIFIR performance is similar to that of its 
simplified version, corroborating the comments made in Section 3. 

Iterations
0 1000 2000 3000 4000 5000 6000 7000

M
SE

-70

-60

-50

-40

-30

-20

-10

0

10

AIFIR

Simplified FAIFIR

FAIFIR

AFIR

 
Figure 5 – Example 2. Plant with 25 coefficients. Several filter 
structures using the LMS algorithm. MSE curves (average of 100 runs). 

Example 3: For this example, the plant is the same as in Example 1. 
Now, the algorithm used is the NLMS one, with 1 2 0.5α = α =  and 

6
1 2 10−ψ = ψ = . The obtained results are shown in Fig. 6. As 

expected from Example 1, the FAIFIR structure presents a better 
MSE behavior than the AIFIR one. Now, comparing the MSE 
performance between the FAIFIR and its simplified version, the 
difference between them is remarkable. In the latter, we note a 
higher steady-state MSE as well as the presence of some spikes both 
due to the values used for the parameters 1α  and 2α . 
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0 500 1000 1500 2000
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AIFIR
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FAIFIR
AFIR
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-20

-10
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20

 
Figure 6 – Example 3. Plant with 11 coefficients. Several filter 
structures using the NLMS algorithm with 1 2 0.5α = α = . MSE curves 
(average of 100 runs). 

Example 4: In this example, we have used the same data of 
Example 3, but now we have reduced the values of the parameters 
to 1 2 0.2α = α = . The MSE curves are shown in Fig. 7. Now, we 
observe almost the same MSE performance for both the FAIFIR 
structure and its simplified version. This fact demonstrates how 
critical is the choice of the step-size control parameter values for the 
NLMS algorithm if a satisfactory MSE performance is required. 
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Figure 7 – Example 4. Plant with 11 coefficients. Several filter 
structures using the NLMS algorithm with 1 2 0.2α = α = . MSE curves 
(average of 100 runs). 

7.   CONCLUDING REMARKS 

In this work, general expressions for the LMS and NLMS 
adaptation of cascaded FIR structures are presented. The application 
of such expressions to fully adaptive interpolated FIR filter is also 
discussed, highlighting its advantages, limitations as well as some 
simplifications aiming to reduce the required computational burden. 
The presented results bring new insights on adaptive interpolated 
structures, expanding thus its range of applications. 
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