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ABSTRACT 
This paper presents a statistical model for the LMS-Volterra filter, 
which is valid for truncated Volterra filters of any order with 
stationary input signals. Model expressions for the mean-weight 
behavior and learning curve are derived by considering a slow 
adaptation condition. The proposed model brings out and discusses 
the particular structure of the Volterra input autocorrelation matrix, 
focusing on its impact on the algorithm behavior. Simulation results 
illustrating the accuracy of the proposed analytical model are 
presented. 
  

1.  INTRODUCTION 

In the last few years, nonlinear adaptive filters are becoming more 
and more feasible for using in practical applications. This is due to 
the increasing processing capacity of modern digital signal 
processors (DSPs), resulting in an increased research interest in this 
area. In this context, Volterra adaptive filters have become a feasible 
option for dealing with several nonlinear applications, such as active 
noise control [1], acoustic echo canceling [2], satellite-channel 
equalization [3], among others. 

An interesting feature of Volterra filters, of nonlinear nature, is 
that they can be mathematically treated with the same procedures of 
conventional linear filters. This is due to the possibility of 
representing the output signal as a product of two vectors. Thus, an 
adaptive Volterra filter can make use of all available adaptive 
algorithms considered in linear applications. In this regard and 
because of its simplicity and robustness, we have considered here 
the LMS algorithm for adapting the weights of the Volterra filter. 

Several works devoted to the analysis of adaptive Volterra 
filters are available in the open literature. One of the first works on 
that subject is presented in [4]. There, the discussed analytical 
results are restricted to second-order Volterra filters. Other works 
are concentrated on convergence properties and stability problems 
[5]-[7] as well as focused on filters considering input 
orthogonalization approaches [8]. Thus the modeling of generalized 
order Volterra filters is still open in the technical literature. 
Contributing in this scope, this paper aims to derive model 
expressions for the first and second order moments of the 
LMS-Volterra filter without restricting the filter order. Thus under 
slow adaptation conditions, new results are developed allowing to 
accurately model the behavior of the LMS-Volterra filter. 

This paper is organized as follows. In Section 2, the standard 
Volterra filter is introduced. Section 3 derives the optimum weight 
vector. Section 4 is dedicated to the algorithm modeling, in which 
expressions for the mean-weight behavior, learning curve, and 
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misadjustment are derived. Section 5 presents some numerical 
simulations aiming to assess the correctness of the proposed model. 
Finally, Section 6 provides the conclusions and remarks of the work 
in question. 

2.  VOLTERRA FILTER 

A causal Volterra filter with a finite memory N and order P is 
described by [9] 
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In (1) and (2), ( )x n  and ( )y n  represent the filter input and output 

signals, respectively, and 1 2( , , , )p ph m m mK  denotes the th -orderp  
weight. Notice that the redundant terms in (2) were removed [1]. 
From [1], (2) can be rewritten as 

T( ) ( )p p py n n= h x                                    (3) 

where ph  is the th -orderp  weight vector and ( )p nx  is the 
th -orderp  input vector, containing the cross products of the input 

vector samples. By defining the Volterra weight vector as 
T T T T

V 1 2[ , , , ]P=h h h hK                                (4) 

and the Volterra input vector as 
T T T T

V 1 2( ) [ ( ), ( ), , ( )]Pn n n n=x x x xK                      (5) 

from (1), one can write the input-output relationship of the Volterra 
filter as an inner product of two vectors. Thus, 

T
V V( ) ( )y n n= h x .                                     (6) 

The vector description of the filtering operation (6) greatly 
facilitates the mathematical derivations for modeling a Volterra 
filter. 

3.  OPTIMUM WEIGHT VECTOR 

Fig. 1 shows the block diagram of a Volterra filter aiming to 
estimate a signal ( )d n , which is correlated with ( )x n . 

( )x n
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+

−
( )y n ( )e n

( )d n

 
Figure 1 – Volterra filter applied to a signal estimation problem. 
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From Fig. 1, the instantaneous error signal is written as 
T
V V( ) ( ) ( ) ( ) ( )e n d n y n d n n= − = − h x .                  (7) 

According to the minimum mean-square error (MMSE) criterion 
[10], the optimum weight vector is obtained by minimizing the cost 
function 2[ ( )]E e nξ = . Thus, by squaring (7) and taking the 
expected value of the resulting expression, we obtain 

2 T T T
V V V V V V[ ( )] 2 [ ( ) ( )] [ ( ) ( )]E d n E d n n E n nξ = − +x h h x x h .    (8) 

Now, making 
V

0∇ ξ =h , and defining the autocorrelation 

matrix of the input vector as T
VV V V[ ( ) ( )]E n n=R x x  and the 

cross-correlation vector between the desired and input signals as 
V V[ ( ) ( )]E d n n=p x , the optimum weight vector is given by 

1
Vo VV V

−=h R p .                                      (9) 

4.  LMS-VOLTERRA ANALYSIS 

4.1 Mean-weight behavior 
By considering the LMS algorithm for weight updating, we have the 
following recursive expression [9]: 

V V V( 1) ( ) 2 ( ) ( )n n e n n+ = + μh h x                    (10) 

where μ  is the step-size parameter. If different values of the step 
size are considered for each Volterra block, the LMS update 
expression is given by 

V V V( 1) ( ) 2 ( ) ( )n n e n n+ = +h h M x                   (11) 

where M  is a diagonal matrix containing the different step-size 
values for each weight. For the sake of simplicity, the development 
presented here considers the case of a single step-size value given 
by (10). Its extension to the multiple step-size case is 
straightforward. By adding a measurement noise ( )z n  (zero-mean 
and uncorrelated with any other signals in the system) to ( )e n  in 
(10) and taking the expected value of both sides of the resulting 
expression, we get 

V V V
T

V V V V

[ ( 1)] [ ( )] 2 [ ( ) ( )]

2 [ ( ) ( )] 2 [ ( ) ( ) ( )].

E n E n E d n n

E z n n E n n n

+ = + μ

+ μ − μ

h h x

x x x h
     (12) 

Now, assuming that the correlation between the input vectors 
is more important than the correlation between the weight vector 
and the input vector, we can approximate the expectation of the last 
term in the right hand side of (12) as follows:  

T T
V V V V V V[ ( ) ( ) ( )] [ ( ) ( )] [ ( )]E n n n E n n E n≈x x h x x h .         (13) 

Such an approximation is valid for small step-size values [10]. 
From (12), (13) and from the characteristics of ( )z n , the recursive 
expression for the mean-weight behavior is given by 

V VV V V[ ( 1)] ( 2 ) [ ( )] 2E n E n+ = − μ + μh I R h p .          (14) 

By defining the weight-error vector as 

V Vo( ) ( )n n= −v h h                                  (15) 

from (14), a recursive expression for [ ( )]E nv  is easily obtained as 

VV[ ( 1)] ( 2 ) [ ( )]E n E n+ = − μv I R v .                      (16) 

Note that (9), (14), and (16) have the same form as the 
corresponding expressions for a linear FIR filter [10]. However, the 

structure of matrix VVR  and vector Vp  is quite different from 
those of the linear case. Such a fact impacts on the algorithm 
behavior. 

4.2 Matrix VVR  
The knowledge of the structure of the input autocorrelation matrix 
for the LMS-Volterra filter plays an important role on the algorithm 
behavior. By recalling its definition 

T
VV V V[ ( ) ( )]E n n=R x x                               (17) 

the structure of such a matrix considering a th -orderP  Volterra 
filter, whose input vector is given by (5), can be alternatively 
expressed as 
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where each submatrix of VVR  is given by 

1 2 1
[ ( )p p pE n=R x

2

T ( )]p nx , and 
1
( )p nx  and 

2
( )p nx  are, 

respectively, the th
1 -orderp  and th

2 -orderp  input vectors. The 
main result of the particular form of VVR  is the coupling effect 
between the elements of the recursive expression (16). 

4.3 Coupling effect of VVR  
Note from (14) and (16) that the mean-weight behavior depends on 

VVR . By considering first a purely linear case, the input 
autocorrelation matrix is only composed of the submatrix 11R , 

which for a white input signal with variance 2
xσ  is given by 

2
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From (19), (16) results in a set of uncoupled equations, 
permitting to write a model expression for the ith adaptive weight 
independently of all other weights as 

2[ ( 1)] (1 2 ) [ ( )]i x iE v n E v n+ = − μσ .                      (20) 

Now, by considering a second-order Volterra filter, matrix 
VVR  is composed of the submatrices 11R , 12R , 21R , and 22R . 

By considering again a white input signal with variance 2
xσ , 11R  is 

given by (19), T
21 12= =R R 0 , and 

4 4 4
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Thus in this case, the structure of VVR  is  
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From (22), some interesting characteristics can be drawn. Since the 
submatrices 12R  and 21R  are null matrices, the first and second 
order blocks are not coupled. This fact is in agreement with the 
parallel block structure of a Volterra filter [9], also observed by 
making T

21 12= =R R 0  in (20). Thus, 

1 1 11 1

2 2 22 2

( 1) [ ( )] [ ( )]
2

( 1) [ ( )] [ ( )]
n E n E n

E
n E n E n

⎧ ⎫+⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ = − μ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥+⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

v v R v
v v R v

.       (23) 

Since components 1( )nv  and 2( )nv  are uncoupled, this permits the 
use of different step-size values for each block, improving the 
algorithm convergence characteristics. Also notice that due to the 
structure of 22R , the recursion for 2( )nv  is no longer an 
uncoupled system. By extending the results to a third-order Volterra 
filter, in which matrix 13R  is not null, the first and third-order 
blocks are coupled. 

4.4 Influence of VVR  on the step-size parameter 

The structure of VVR  also presents a great influence on the 
maximum step-size value for algorithm convergence. As discussed 
in [10], the maximum step-size value is related to the trace of VVR , 
which from (18) is given by 

VV 11 22tr[ ] tr[ ] tr[ ] tr[ ]PP= + + +R R R RL               (24) 

with tr[ ]⋅  denoting the matrix trace operator. Since the correlation 
matrices are always positive definite, this upholds that 

11 VVtr[ ] tr[ ]<R R .                                 (25) 

By considering (25), it is seen that the LMS-Volterra filter requires 
a maximum step-size value smaller than that of a linear filter for the 
same input signal, for maintaining algorithm convergence. 

4.5 Learning curve 
To determine the model expression for the learning curve, we use 
(7) along with the definition of the weight-error vector (15). Thus, 
the instantaneous error can be rewritten as 

T T
V Vo V( ) ( ) ( ) ( ) ( )e n d n n n n= − −v x h x .                (26) 

By defining the optimum estimation error as 
T

o Vo V( ) ( ) ( )e n d n n= − h x , considering 2( ) [ ( )]n E e nξ = , squaring 
(26), and taking the expected value of both sides of the resulting 
expression, we obtain 

2 T 2 T
o V o V( ) [ ( )] {[ ( ) ( )] } [ ( ) ( ) ( )]n E e n E n n E e n n nξ = + −v x v x . (27) 

By considering 2
min o[ ( )]E e nξ = , defining the weight-error vector 

covariance matrix as T( ) [ ( ) ( )]n E n n=K v v , and using the 
Orthogonality Principle [10], the expression for the learning curve 
(27) can be rewritten as 

{ }min VV( ) tr ( )n nξ = ξ + K R .                        (28) 

4.6 Weight-error correlation matrix 
The learning curve (28) depends on the knowledge of ( )nK . A 
recursive expression for the latter parameter is obtained by 
expressing (10) as a function of the weight-error vector given by 

T
V V o V( 1) ( ) 2 ( ) ( ) ( ) 2 ( ) ( )n n n n n e n n+ = − μ + μv v x x v x .      (29) 

Now, making T( 1) ( 1)n n+ +v v  and taking the expected value 
of both sides of the resulting expression, we get 

T T
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x x v v x x
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I x x v x

x T T
V V( )[ 2 ( ) ( )]}.n n n− μv I x x

    (30) 

From the Orthogonality Principle the last two right hand side 
terms in (30) are equal to zero. For the sake of mathematical 
simplicity, the fourth right hand side term of (30) is disregarded due 
to its small impact on the obtained recursive expression. Then 
determining the remaining terms in (30), the following recursive 
expression for the second-order moment is obtained: 

( )VV VV
2

min VV

( 1) ( ) 2 ( ) ( )

4 .

n n n n+ = − μ +

+ μ ξ

K K K R R K

R
    (31) 

Finally, with the use of (28) and (31), we find an expression for 
describing the learning curve of the LMS-Volterra algorithm. 

4.7 Algorithm misadjustment 
The misadjustment is defined as  

excess min= ξ ξM                                  (32) 

where excessξ  is the MSE in excess, i.e., the difference between the 
steady-state value of the MSE and its optimum value. Thus, 
subtracting minξ  from (28), considering algorithm convergence, 
i.e., lim ( 1) lim ( )

n n
n n ∞

→∞ →∞
+ = =K K K , and using (31), we get 

excess VV min VVtr[ ] tr[ ]∞ξ = = μξK R R .                (33) 

Finally, substituting (33) into (32), we obtain 

VVtr[ ]= μ RM .                                 (34) 

Note from the presented expressions that the particular structure of 
matrix VVR  has great impact on the behavior of the LMS-Volterra 
algorithm. 

5.  SIMULATION RESULTS 

To verify the accuracy of the proposed model some numerical 
simulations are presented considering a system identification 
problem. In the given examples different step-size values, referred 
to its maximum step-size value maxμ  for algorithm convergence, 
are used. The measurement noise ( )z n  is white and Gaussian with 

variance 2 610z
−σ = . 

Example 1: In this example, a second-order Volterra filter with 
memory equal to 7 is used. The input signal is white, Gaussian with 
unit variance. The plant is also a second-order Volterra filter given 
by 

T
1 [1.00 0.50 0.10 0.20 0.30 0.10 0.08]= − − −h  

2

T

[0.70 0.30 0.00 0.10 0.00 0.00 0.05 0.50 0.20 0.00 0.00 
       0.20 0.00 0.35 0.00 0.05 0.01 0.00 0.20 0.00 0.05 

        0.00 0.10 0.05 0.02 0.10 0.00 0.05] .

= −

− − − −

−

h

(35) 
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Fig. 2 shows the results obtained for the mean-weight 
behavior, whereas Fig. 3 presents the results for the learning curve, 
using max0.5μ = μ  with max 0.005μ =  (experimentally 
determined). In these figures, we verify the accuracy of the 
proposed model. A small mismatch during the transient phase of the 
learning curve is observed, due to the step-size value used 
( max0.5μ = μ ), which violates the slow adaptation condition. For a 
smaller step-size value max0.1μ = μ  (Fig. 4), the learning curve 
obtained from Monte Carlo (MC) simulations presents a very good 
agreement with the proposed model. 

Example 2: This example considers the same plant as in Example 1. 
Now, the input signal is a colored noise obtained from an AR(1) 

process, given by ( ) ( 1)x n x n= α −  21 ( )u n+ − α , where ( )u n is 
a white noise process with unit variance and 0.5α = . The step size 
used in this example is max0.25μ  with max 0.002μ =  
(experimentally obtained). The learning curve results are shown in 
Fig. 5, where again a very good accuracy between the simulation 
and the model is observed. 

Example 3: In this example, a third-order Volterra plant with 
memory equal to 8 is used. The adaptive filter also is a third-order 
Volterra filter with the same plant and memory size. The input 
signal is white noise with unit variance. The step size used is 

max0.2μ  with max 0.008μ =  (experimentally determined). Fig. 6 
shows the results obtained for the learning curve (simulation and 
model), also confirming the model accuracy, now considering a 
higher-order Volterra filter. 

Example 4: For this example, the input signal presents uniform 
probability distribution between 1−  and 1 . The plant and the 
modeling filter are the same as in Example 1. The step size is 

max0.1μ  with max 0.1μ =  (experimentally obtained). From Fig. 7, 
we again observe a very good agreement between the simulation 
and the analytical model results, now by considering an input signal 
with a non-Gaussian distribution. 

Example 5: In this example, the plant is again the same as in 
Example 1 and the input signal presents a uniform probability 
distribution between 0 and 1. The step size is max0.2μ  with 

max 0.08μ =  (experimentally obtained). The results are shown in 
Fig. 8, from which we observe a very good accuracy between the 
simulation and the model. 

[
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Figure 2 – Example 1. Evolution of V[ ( )]E nh  for max0.5μ . (Gray line) 
MC simulation (average of 200 independent runs). (Black line) 
analytical model Eq. (14). 
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Figure 3 – Example 1. Evolution of ( )nξ  using max0.5μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 
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Figure 4 – Example 1. Evolution of ( )nξ  for max0.1μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 
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Figure 5 – Example 2. Evolution of ( )nξ  with max0.25μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 
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Figure 6 – Example 3. Evolution of ( )nξ  using max0.2μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 
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Figure 7 – Example 4. Evolution of ( )nξ  with max0.1μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 
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Figure 8 – Example 5. Evolution of ( )nξ  using max0.2μ . (Gray-ragged 
line) simulation (average of 200 independent runs). (Black line) 
analytical model Eqs. (28) and (31). 

6.  CONCLUSIONS AND REMARKS 

In this work, a stochastic analysis of LMS-Volterra filters is 
presented. The vector form of the input-output relationship of the 
Volterra filter is exploited, permitting a tractable mathematics to 
derive the analytical expressions. In addition, the particular structure 
of the input autocorrelation matrix and its impact on the algorithm 
behavior are discussed. The developed model works well being 
independent of both the input signal statistics and Volterra filter 
order. The obtained results showed a very good agreement between 
the simulations and the proposed analytical model. 
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