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Matthias Froehlich4, Giso Grimm5, Volker Hohmann5, Rolph Houben3, Arne Leijon6, Anthony Lombard7,

Dirk Mauler8, Marc Moonen9, Henning Puder4, Michael Schulte10, Ann Spriet1,9, Matthias Vormann10

1ExpORL – Dept. Neurosciences, Katholieke Universiteit Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
phone: + (32)16330485, fax: + (32)16330486, email: {koen.eneman, heleen.luts, jan.wouters}@med.kuleuven.be

2Department of Otorhinolaryngology, University Hospital Zürich, Switzerland
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ABSTRACT

In the frame of the HearCom1 project five promising signal en-
hancement algorithms are validated for future use in hearing instru-
ment devices. To assess the algorithm performance solely based
on simulation experiments, a number of physical evaluation mea-
sures have been proposed that incorporate basic aspects of normal
and impaired human hearing. Additionally, each of the algorithms
has been implemented on a common real-time hardware/software
platform, which facilitates a profound subjective validation of the
algorithm performance. Recently, a multicenter study has been set
up across five different test centers in Belgium, the Netherlands,
Germany and Switzerland to perceptually evaluate the selected sig-
nal enhancement approaches with normally hearing and hearing im-
paired listeners.

1. INTRODUCTION

Of the many digital signal enhancement techniques that have been
proposed during the past decades, only a limited number have been
effectively implemented and integrated in commercial hearing in-
struments. In fact, the customization of a signal processing scheme
towards the implementation in a hearing aid or cochlear implant de-
vice makes strong demands in terms of computational complexity
and processing delay, and requires a profound performance assess-
ment through physical and perceptual validation tests.
In the HearCom project (http://hearcom.eu) five promising sig-
nal enhancement algorithms are evaluated for future use in hearing
instrument devices. In this section the algorithms are presented and
some references are given to the literature. More detailed informa-
tion about the algorithms and several sound demos can be found on
http://hearcom.eu/prof/Algorithmdevelopment.html.

1.1 Single-channel noise suppression based on perceptually
optimized spectral subtraction (SS1)

Spectral subtraction is a well-known computationally efficient noise
reduction technique. However, a major drawback of this approach
is the presence of musical noise artifacts. By carefully selecting
the amount of under- or oversubtraction, the enhanced signal can
be perceptually optimized to eliminate the musical noise. To con-
trol the trade-off between speech distortion and noise suppression,
the subtraction is made adjustable by incorporating a frequency de-
pendent parameter α(k) that is a function of the noisy-signal to
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noise ratio. The algorithm variant that has been selected for the
HearCom project is a low-delay version of the original perceptually
tuned spectral subtraction method (PSS) [15], which was obtained
by reducing the time shift between subsequent frames. If the noise
reduction filter were allowed to change freely for every frame-shift
block, the rapid filter variations would be perceptually unaccept-
able. Therefore, the parameters controlling the adaptation speed of
the algorithm had to be properly tuned [15].

1.2 Wiener-filter-based single-channel noise suppression (SS2)

A second single-channel noise suppression algorithm that is con-
sidered in the HearCom project relies on Wiener filter-based mini-
mization of the mean squared error between the (unknown) desired
speech signal and a filtered version of the observed noisy speech
[13] [14]. Since speech is stationary only on short time intervals,
statistical expectation operations have to be replaced by short term
averages. Therefore, instead of using the actual a-priori SNR, es-
timated a-priori SNR values are computed following [11]. The
samples of the observed noisy speech signal are partitioned into
overlapped frames, are weighted with an analysis window and then
transformed to the DFT domain. The enhanced speech spectral co-
efficients Ŝ(m,n), with m the frame index and n the DFT bin, are
obtained as Ŝ(m,n) = H(m,n) ·Y (m,n), where Y (m,n) are the noisy
DFT coefficients and H(m,n) is a time and frequency dependent
gain. As for the Wiener filter approach H(m,n) is real valued, only
the modulus of the noisy DFT coefficient is changed and the phase is
left unchanged. After weighting with a synthesis window, the time
domain signal is reconstructed via overlap and add operations. The
algorithm variant used in the HearCom project is a low-complexity
and delay-optimized solution. The frame length and frame shift
have been reduced resulting in a larger frame overlap and hence an
increased correlation of the spectral data. As a consequence, the
noise power is typically underestimated. To overcome this problem
an improved Minimum Statistics noise power estimator has been
developed [14].

1.3 Broadband blind source separation based on second-order
statistics (BSS)

The blind source separation (BSS) algorithm considered in the
HearCom project is based on work published in [1] [2] [3] [4],
and in [5, Sect. II-E], where a class of broadband time-domain and
frequency-domain BSS algorithms were derived that are based on
second-order statistics. These broadband BSS approaches simul-
taneously take advantage of nonwhiteness and nonstationarity, and
inherently avoid the permutation problem as well as circular con-
volution effects. Hence, no geometric information about the place-
ment of the sensors is needed. The algorithm selected for evaluation

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



in the HearCom project is a low-cost, low-delay algorithm variant
using frequency-domain-based fast convolution techniques. The al-
gorithm is applied to bilateral hearing aids, using one microphone
signal from each hearing aid as its inputs. This two-microphone im-
plementation allows the separation of two point sources, additional
diffuse sound sources having only a limited influence on the algo-
rithm performance [1]. It is assumed that the desired source is lo-
cated in front of the hearing aid user, which is a standard assumption
in current state-of-the-art hearing aids. Based on the approach in [4]
the time-difference-of-arrival (TDOA) of the sound waves originat-
ing from the separated sources can be determined from the demix-
ing filters of the BSS algorithm, which makes it possible to select
the right output channel containing the desired signal.

1.4 Spatially preprocessed speech-distortion-weighted multi-
channel Wiener filtering (MWF)

The spatially preprocessed speech-distortion-weighted multichan-
nel Wiener filtering algorithm (SDWMWF) is an adaptive noise
suppression technique that is based on work described in [8] [9]
[16] [17]. It consists of a fixed spatial preprocessor, i.e. a fixed
beamformer and blocking matrix, and an adaptive stage. As a con-
sequence, the SDWMWF can be viewed as a variant of the well-
known generalized sidelobe canceller (GSC) structure. Whereas in
the case of the GSC the filter weights converge to a solution that
merely reduces the residual noise, the cost function of the SDW-
MWF approach minimizes a weighted sum of the residual noise en-
ergy and the speech distortion energy. In this way, a trade-off is pro-
vided between noise reduction and speech distortion. If the trade-
off parameter in the cost function is set to infinity speech distortion
is completely ignored and the algorithm reduces to a GSC struc-
ture. The SDWMWF algorithm can therefore be considered as an
extension of the GSC. As the SDWMWF approach makes a trade-
off between noise suppression and speech distortion, the algorithm
is more robust against speech leakage than the standard GSC [16].
Several algorithm variants have been developed, leading to cheaper
implementation and/or improved performance [8] [9] [16] [17]. For
the evaluation in the HearCom project a three-microphone version
of the algorithm is considered that relies on a frequency-domain
variant of the cost function and that uses efficient correlation matrix
updating.

1.5 Binaural coherence dereverberation filter (COH)

Dereverberation algorithms are designed to increase listening com-
fort and speech intelligibility in reverberating environments and dif-
fuse background noise (e.g. babble noise). The dereverberation
technique studied in the HearCom project is a binaural coherence
filtering based approach that builds on work described in [18]. It
estimates the coherence, i.e. the signal similarity, between the sig-
nals captured at the left and the right ear. The estimate is computed
in different frequency bands using an FFT-based filterbank with a
non-linear frequency mapping that approximates a Bark scale. As
a coherence estimate, a time average of the interaural phase differ-
ence is computed. If the signals are coherent in a specific frequency
band, the sound is expected to be directional, hence the gain in the
frequency band is set to a high value. If on the other hand the co-
herence is low, a diffuse sound field is present, and accordingly,
the frequency band is attenuated. The frequency-dependent gains
are derived from the phase difference vector strength by applying
an exponent (between 0.5 and 2) to the coherence estimate. High
values for the exponent provide efficient filtering, but lead to more
audible artifacts. Because of the head geometry, the coherence is
always high at low frequencies, independently of the type of signal.
At medium and high frequencies, on the other hand, the coherence
is low for reverberated signal components (late reflections) and for
diffuse babble noise, while it is high for the direct-path contribution
of the signal of interest. Hence, by applying appropriate gains re-
verberated signal components and diffuse noise can be suppressed
with respect to direct-path signal components.

2. PHYSICAL EVALUATION

To properly validate a signal enhancement algorithm in a hearing
aid context, dedicated evaluation measures are required that can ac-
curately predict algorithm performance for a number of representa-
tive hearing loss profiles. However, a reliable performance assess-
ment would require intensive speech intelligibility testing, listening
effort assessment and quality scoring with a large number of test
subjects under several realistic environmental conditions, which is
highly time consuming.
Taking this into account there clearly is a need for advanced physi-
cal evaluation measures that incorporate aspects of human hearing,
and that can reliably predict algorithm performance through simu-
lation experiments only. In a first phase of our research we relied on
a number of physical evaluation measures that incorporate basic as-
pects of normal human hearing, such as the intelligibility-weighted
signal-to-noise ratio (SNR), the segmental intelligibility-weighted
SNR, the segmental SNR and a frequency-weighted log-spectral
signal distortion measure. However, keeping the hearing aid ap-
plication in mind, more advanced evaluation measures were put for-
ward that take into account some characteristics of impaired hearing
as well. In this respect, a number of physical performance measures
have been proposed that assess various aspects of user-perceived
signal quality, such as speech intelligibility, signal distortion, and
relative loudness of desired and undesired signal components. In
order to evaluate algorithm performance across different auditory
profiles, the proposed measures make use of an auditory functional
model that takes into account aspects of normal as well as impaired
hearing. The auditory functional model and the physical evaluation
measures are presented in sections 2.1 and 2.2, respectively.
Hearing aids present recorded sounds with amplification and spec-
tral shaping, individually adjusted to the user. To allow a fully au-
tonomous performance assessment, the NAL-RP prescription rule
[6] was included in the evaluation model to automatically set the
amplification and spectral shaping for each profile.

2.1 Functional auditory model

In section 2.2 four physical evaluation measures are introduced that
are based on a functional auditory model that accounts for normal
auditory functions and for some fundamental effects of hearing im-
pairment, for instance loss of audibility at low input levels, loudness
recruitment, reduced frequency resolution and reduced ability to ex-
tract suprathreshold speech cues for speech recognition. It should
be noted, however, that the model attempts to simulate only the most
fundamental and reasonably well-known effects of auditory pro-
cessing. In particular, temporal masking effects and specific deficits
in the binaural integration are not included in the model. More in-
formation about the functional auditory model can be found in [10].
Typical auditory profiles are incorporated into the model. The pro-
files have been selected based on a broad study of audiometric data
from a large number of hearing impaired listeners, including indi-
vidual pure-tone air-conduction thresholds, speech recognition, and
results of categorical loudness judgements. In this way, six common
categories ranging from mild over moderate to severe hearing loss
have been considered [10]. Normal hearing was added as a seventh,
reference profile.

2.2 Physical performance measures

2.2.1 Speech Intelligibility Index

The speech intelligibility index (SII) is a standardized (ANSI-S3.5-
1997) and commonly used measure to predict speech intelligibil-
ity in non-fluctuating noise. For broadband external noise that ex-
ceeds the hearing threshold at all frequencies, the SII is based on the
frequency-weighted SNR (in dB), calculated using long-term aver-
age speech and noise power spectra. Once the SII is computed both
for the unprocessed signal (SIIin) and the processed signal (SIIout ),
the SII improvement ∆ SII = SIIout −SIIin can be determined. The
SII is always a number between 0 and 1. For normally hearing
listeners, this range corresponds to SNR values from −15 dB to
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+15 dB. Hence, an SII improvement of 0.1 corresponds to a real
SNR improvement of 3 dB. It is well known that the standard
SII overestimates the speech-recognition performance of hearing-
impaired listeners, especially in noisy environments. Various mod-
ifications of the SII have been proposed to account for additional
suprathreshold deficits in impaired ears such as the incorporation of
“desensitization factors” [10].

2.2.2 Segmental Speech Intelligibility Index

The SII standard does not claim to account for the effects of fluctu-
ating noise. Additionally, the frequency-weighted long-term SNR
may obscure some segmental effects introduced by the noise reduc-
tion algorithms. Therefore, a slightly modified procedure is used to
derive a segmental SII measure (segSII). The SII is first calculated
for each short-time segment of 50 ms, and is then averaged over the
full duration of the test signal. If an algorithm improves only the
SII, but not the segSII, it is questionable whether the algorithm will
effectively improve speech understanding.

2.2.3 Signal-to-noise Loudness Level Difference

By using an auditory excitation model for a specific type of simu-
lated hearing loss [10], the partial loudness of both speech and the
competing signals can be calculated, including the masking effect
of noise on the speech loudness, and vice versa. First, preliminary
instantaneous partial loudness density patterns are computed for the
desired and for the competing signals [10]. To represent the reduced
partial loudness of speech in the presence of noise, and vice versa,
the loudness density is further reduced smoothly towards zero. The
instantaneous loudness function is then calculated by numerical in-
tegration over the auditory place scale along the basilar membrane
in the cochlea (inner ear). Next, the partial-loudness estimates are
calculated by three steps of non-linear smoothing of the instanta-
neous loudness functions, followed by a conversion to a phon scale.
Finally, the loudness level difference between desired and compet-
ing signals is computed.

2.2.4 Signal Excitation-level Distortion

The Signal Excitation-level Distortion is a measure of the spec-
tral deviation between the unprocessed and processed desired sig-
nal [10]. This measure is calculated as a root-mean-square average
of excitation-level differences between the desired signal compo-
nent in the unprocessed sound and the desired signal component
in the processed sound. To avoid the influence of speech pauses
in the test material, signal segments are included in the calculation
only, if the segmental signal-to-noise ratio is larger than −15 dB
for either the unprocessed or the processed signal. Furthermore, to
avoid including distortion elements that are completely masked by
noise, non-zero contributions are allowed at those auditory places
along the basilar membrane and at those time segments only, where
the signal-to-noise excitation ratios exceed a predefined threshold,
which is set to match an SNR of −10 dB in normal hearing. At
lower signal-to-noise excitation-level differences, any spectral devi-
ations in the desired signal are assumed to be masked by the noise.

2.3 Test conditions

For a reliable objective performance assessment realistic acous-
tic test conditions have to be defined. We have used a database
with real-life audio recordings provided by Siemens Audiologische
Technik, Erlangen, Germany. The database contains recordings
with different kinds of audio signals in a number of representative
recording rooms (low-reverberant room, living room, cafeteria, car
cabin and street corner). All test material was recorded by small
microphones mounted in a behind-the-ear hearing aid case that was
placed on an artificial head-and-torso manikin. All signals were si-
multaneously recorded at a sampling rate of 16 kHz. The selected
subset of test material includes both point-source material (speech,
music, speech-shaped noise) coming from various directions, and
diffuse-like noise (natural noise sound fields recorded on a street
corner, in a car cabin or in a crowded restaurant).

algorithm % CPU time
SS1 8.3 %
SS2 4.2 %
BSS 59.9 %

MWF 4.3 %
COH 1.2 %

Table 1: Computational complexity estimates of the algorithms
measured on the real-time PHS–MHA platform

3. COMMON EVALUATION PLATFORM

To facilitate intensive subjective listening testing across different
test sites, all five signal enhancement algorithms that were dis-
cussed in section 1, have been implemented on a common real-
time hardware/software platform, called Personal Hearing System
(PHS). The hardware platform consists of a (laptop) PC running a
real-time (low-latency) Linux kernel. The PC is equipped with a
multi-channel RME Multiface sound card, which is connected via a
pre-amplifier box to a pair of hearing aids. The hearing aid devices
used in this study are Siemens Acuris hearing aid cases with only
the 3 microphones and a single receiver (loudspeaker) inside (no
processor included). All signal processing is to be done externally
on a real-time Linux PC. Thereto, all algorithm developers incorpo-
rated a C/C++ version of their algorithm into the real-time Master
Hearing Aid (MHA) software environment [12], which is running
on the PC. The MHA communicates with the RME Multiface sound
card using the Jack sound driver under Linux. In this way, the 3 mi-
crophone signals from both the left and the right hearing aid are
digitized by the sound card, are sent to the PC, and are processed
in real time, resulting into an enhanced stereo audio stream that is
output by the sound card and sent to the receiver of the left and the
right hearing aid. In this respect, it is important to note that the
single-channel noise suppression algorithms SS1 and SS2 only use
the front microphone signal and that both hearing aids run the same
algorithm with identical parameters, independently of each other.
The BSS and COH approaches are truly binaural algorithms using
the front microphone of the left and the right hearing aid as their in-
puts. The MWF beamformer, on the other hand, is a multi-channel
noise reduction algorithm that processes all 3 microphone signals of
the hearing aid, and hence disposes of more degrees of freedom to
cancel background noise. Similar to SS1 and SS2, the left and right
hearing aid run the same algorithm, independently of each other.
Apart from passing signals to and from the algorithms, the MHA
software is also responsible for applying basic hearing aid process-
ing to the signals, such as frequency dependent gain setting and
level compression. The parameters of the amplification and level
compression unit are automatically computed by a NAL-RP pre-
scription rule [6] according to the amount and type of hearing loss
of the user, which is input to the MHA via a MATLAB-based GUI.
This same GUI allows the user to toggle between the five signal en-
hancement algorithms and also provides an interface for calibration
and data streaming control.
The PHS–MHA system was intensively tested, including a valida-
tion of the implementation of the algorithms on the PHS–MHA plat-
form against their initial realization in MATLAB. For a possible
future integration in a commercial hearing aid device, the compu-
tational complexity of the algorithms has to be monitored. Table 1
shows an estimate of the computational complexity of each algo-
rithm. The measurements are performed on a Dell Latitude D610
with Intel Pentium M 1.6 GHz processor running a low-latency
Linux operating system. The baseline processing by the PHS–
MHA system with all signal enhancement algorithms switched off
requires 10.3% of CPU time. Note that as the primary objective of
the HearCom project is to prove the validity of the different algo-
rithmic approaches in a hearing aid context, there is still some room
left to further reduce the computational load of the algorithms.
Apart from the computational complexity also the total signal delay
that is introduced by the system has to be carefully monitored. Most
hearing-instrument users receive processed sound together with un-
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processed sound leaking directly into the ear canal. Noticeable in-
terference then may occur if the processed signal is delayed more
than about 5− 10 ms with respect to the unprocessed sound [7].
Listeners with a severe hearing loss on the other hand, mainly suf-
fer from the asynchrony between the perceived speech sounds and
visual information such as lip movements. In this case, delays up
to a few tens of milliseconds are acceptable. The total input/output
delay from the signal sent into the AD converter to the signal that
appears at the DA converter output was measured on a Dell Lati-
tude D620 with Intel Core Duo 1.83GHz processor running a low-
latency Linux operating system. The total input/output delay in-
cludes the combined delay of the PHS–MHA system and of the
selected signal enhancement algorithm. With all signal enhance-
ment algorithms switched off an input/output delay of 10.6 ms was
measured. This number increased to 10.8 ms for SS1, to 16.8 ms for
SS2, to 10.8 ms for BSS, to 13.2 ms for MWF and remained equal to
10.6 ms for COH. Based on this data it is still hard to retrieve the ac-
tual processing delay that is introduced by the mere signal enhance-
ment algorithms. The measured latencies are always combinations
of delays inserted by the algorithm itself, by different overlap–add
frameworks and delays due to the PHS-MHA system (e.g. sample
rate conversion). One should also keep in mind that there usually is
a trade-off between processing delay and computational complex-
ity. In this respect, the numbers in table 1 can typically be reduced
at the expense of a larger processing delay.

4. PERCEPTUAL EVALUATION

All five signal enhancement algorithms that were discussed in sec-
tion 1, are currently validated through subjective listening tests in
Dutch and German, and this across five different test centers in Bel-
gium, the Netherlands, Germany and Switzerland. Three types of
tests are performed : an adaptive speech reception threshold (SRT)
sentence test, a listening effort test and a preference rating test.
To restrict the number of test conditions, we limit ourselves to two
types of listening rooms : a room with a reverberation time T60 be-
tween 400 and 600 ms, which is typical for a living or office room,
and which is in compliance with standards for school/educational
acoustical environments, and a highly reverberating room with T60

larger than 1 s. The maximum permissible background noise level
is set to 35 dB(A). During the test the listener is given a PHS–MHA-
controlled hearing aid pair and is seated in the room amidst 4 loud-
speakers that are positioned in front (0◦), at the right (90◦), at the
back (180◦) and at the left (270◦), at 1 m distance from the center
of the listener’s head. All loudspeakers are directed towards the lis-
tener. Speech is presented through the front (0◦) loudspeaker.
Three noise scenarios are considered. A diffuse noise field sce-
nario is approximated by simultaneously playing uncorrelated noise
through the 3 loudspeakers at the left, right and back of the listener
(S0N90180270 condition). A point-source noise scenario is cre-
ated by playing noise through the loudspeaker at the right (90◦) of
the listener and muting the loudspeakers at the left and at the back
(S0N90 condition). Finally, some of the algorithms (e.g. COH) are
evaluated in silence, in the absence of background noise.
The noises are calibrated to produce a fixed combined sound level
of 65 dB(A) at the reference position, which is the center of the
listener’s head (measured when the head is absent). The speech
level is then adjusted is such a way that a desired signal-to-noise
ratio is obtained at that reference position. Two types of noises are
considered : multitalker babble noise of Auditec of St-Louis, and
ICRA5 250 noise (ICRA5 with restricted gaps).
Three subject groups participate in the tests, each characterized by
a specific type of hearing loss : a group of listeners with a moderate
sloping-type of perceptual hearing loss, a group with moderate flat
perceptual hearing loss, and a group of normally hearing listeners.

5. TEST RESULTS

At the time of writing only a subset of the test protocol specified in
section 4 has been completed. The first results related to this work
are presented in this paper.
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Figure 1: SRT improvements relative to the identity condition for an
office-like room with 3 competing multitalker babble noise sources
at 90, 180 and 270 degrees : the mean score (averaged over 10
normally-hearing subjects and test+retest) and the standard devi-
ation is shown for each algorithm. For the identity condition,
SNR50% = −4.0 dB with standard deviation 1.5 dB.

Figures 1, 2 and 3 show the results obtained from an adaptive speech
reception threshold (SRT) test that has been performed with 10 nor-
mally hearing Belgian subjects using the Dutch VU98 open-set sen-
tence test and competing multitalker babble noise. The subjects
have been tested in an office-like room (T60 ≈ 500 ms, critical dis-
tance around 130 cm) in the S0N90 and S0N90180270 condition,
and in a highly reverberating room (T60 ≈ 2.8 s, critical distance
around 35 cm) in the S0N90180270 condition. All test conditions
were randomized and conducted twice (test+retest). No significant
differences were found between the test and the retest condition.
Figures 1, 2 and 3 show the mean SRT improvements (averaged
over all subjects and test+retest) and standard deviations that were
obtained relative to the identity condition, i.e. when all signal en-
hancement algorithms were switched off and only the basic pro-
cessing of the PHS–MHA system was activated. Absolute SRT
values can be derived by adding the SRT improvement numbers to
SNR50%, the SRT for the identity condition (see figures), which is
defined as the average signal-to-noise ratio at which 50% of the pre-
sented speech material was intelligible. Hence, positive numbers in
the figures indicate an improvement in speech understanding with
respect to the identity condition.

6. DISCUSSION AND CONCLUSION

A first not very surprising conclusion drawn from figures 1, 2 and 3
is that the reverberating room is a much more challenging condition
for speech understanding than the office-like room. Note that the
absolute SRT values drop significantly, e.g. by 6.9 dB for the iden-
tity condition, when going from the reverberating to the office-like
room. The same figures furthermore suggest that multi-microphone
enhancement techniques such as BSS and MWF can take advan-
tage of the spatial diversity of the setup and therefore succeed in
improving speech intelligibility. Furthermore, for the scenarios un-
der test and the low input SNR values obtained with normally hear-
ing listeners, single-channel noise suppression algorithms appear to
offer limited SRT improvements, or sometimes even seem to fail
to enhance the SRT. The BSS algorithm on the other hand, seems
optimally suited for the point-source scenario. An explanation for
the rather poor performance of the COH and BSS algorithms in the
presence of diffuse-like noise (S0N90180270 condition) might be
that the noise field was created by playing back time-shifted mul-
titalker babble noise files through 3 distinct loudspeakers, which is
not truly realistic and probably offers a higher binaural coherence
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Figure 2: SRT improvements relative to the identity condition for an
office-like room with 1 competing multitalker babble noise source
at 90 degrees : the mean score (averaged over 10 normally-hearing
subjects and test+retest) and the standard deviation is shown for
BSS and MWF. For the identity condition, SNR50% =−7.2 dB with
standard deviation 1.5 dB.

than a natural multitalker babble noise, especially if the loudspeak-
ers are located within the critical distance (such as in the office-like
room). This observation in fact reveals the trade-off that had to be
made between a real-life diffuse sound reproduction that is as realis-
tic as possible for the application we have in mind, on the one hand,
and compliance with standardized SRT testing procedures and pre-
serving reproducibility and compatibility of test results across test
sites, on the other hand.
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