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ABSTRACT
This work presents a practical, automatic and robust methodology
for acoustic surveillance of hazardous situations. The proposed
system efficiently identifies atypical situations which include
scream, explosion and gunshot sound events under different kind of
environments (e.g. metro station, urban etc). The main objective is
to detect abnormal events which lead to life-threatening circum-
stances or property damage by helping an authorized officer to
take the appropriate actions through a decision support interface.
After extensive experimentations, a fully probabilistic structure of
Gaussian mixtures was designed which incorporates task depended
feature sets. A testing procedure under different SNR conditions
was followed and we report high detection rates with respect to
false alarm and miss probability rates.

1. INTRODUCTION

Lately automatic systems which monitor human daily activities are
becoming increasingly common. The main aim is civil safety which
is achieved through surveillance of public spaces for recognition of
potentially hazardous situations. Atypical events are the ones that
imply a threat to human life or property loss/damage. The basic
purpose of our work is robust and reliable detection of such circum-
stances by exploiting solely the acoustic modality. In this type of
situations extreme emotional manifestations, gunshots and explo-
sions are usually encountered. Our goal is to build a system that
detects on time a crisis situation and to provide this result to an au-
thorized officer for further evaluation and action. Such a system
should be characterized by accuracy, user friendliness and flexibility
meaning that with slight alterations the system can work properly
under different kind of environments.
The research area of acoustic surveillance has gained a lot of atten-
tion recently addressing various types of applications. It is a branch
of generalized sound recognition technology, namely computational
auditory scene analysis. This particular domain tries to understand
the surrounding environment using the incoming audio as its only
input, inspired by the respective property that humans exhibit in
their everyday life quite effortless. In [1] an emotion recognition
system is described that makes use of prosody and audio quality
combined with spectral and cepstral parameters to train Gaussian
mixture models (GMMs). Their database was the SAFE corpus. The
classification task concerned fear and neutral speech while they
achieved 30% error rate. Valenzise et al [2] presented a surveillance
system for gunshot and scream detection and localization in a public
square. Forty-nine features were computed in total for building two
parallel GMMs in order to identify screams from noise and gunshots
from noise. Data were drawn out from movie sound tracks, internet
repositories and people shouting at a microphone while the noise

samples were captured in a public square of Milan. An interesting
application, crime detection inside elevators was described in [3]. A
GMM for each one of the eight classes was trained using low-level
features. The data set contained recordings of suspicious activities in
elevators and some event free clips. A gunshot detection method
under noisy environments was explained in [4]. Their corpus con-
sisted of data which were artificially created from a set of multiple
public places and gunshot sound events extracted from a CD of
sounds for the national French public radio. Widely used features
were employed, including MFCC for constructing two GMMs with
respect to gunshot and normal class using data of various SNR lev-
els. Acoustic surveillance in a typical office environment was ex-
plored in [5]. The audio files were captured in a standard office
room for a period of 48 days. The detection was based on two alter-
native criteria each of which put a threshold onto two quantities
which were designed to detect loud onset and transients in the envi-
ronment. In [6] the issue of detection of audio events in public
transport vehicles was addressed. The incoming audio data were
first automatically segmented and then classified using GMM and
SVM as shout or non shout using a hierarchical architecture. The
audio data were recorded using 4 microphones during four different
scenarios which included fight scenes, a violent robbery scene and
scenes of bag or mobile snatching. Vacher et al [7] presented a
framework for sound detection and classification for medical tele-
survey. Their corpus consisted of recordings made in the CLIPS
laboratory, files of the “Sound Scene Database in Real Acoustical
Environment” (RCWP Japan) as well as files from a commercial
CD. They used wavelet based cepstral coefficients to train GMMs
for eight sound classes while their system was evaluated under dif-
ferent SNR conditions.
This paper is an extension of a previous work of ours [8] while the
system architecture has been altered so that typical speech parts are
also considered and several important sound parameters are in-
cluded for achieving better performance. We report on a complete,
practical and real-time framework for acoustic surveillance of haz-
ardous situations that is flexible towards working under different
kind of environments (e.g. metro station and urban). Furthermore
our dataset is thorough and concise after combining several well
documented professional sound effect collections which contain
audio of high quality. Our methodology can find use in many sur-
veillance tasks such as in a military environment, banks, and public
means of transportation.

2. SYSTEM OVERVIEW

The main goal of our system is to emphasize on detection of human
vocal reactions and non-vocal atypical events associated with haz-
ardous situations. To this end, the structure that was designed has
the form depicted in Figure 1. The unknown sound class is predicted
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through three discrete subsequent stages, where each stage depends
on the previous one. The sound is classified as a vocalic (normal or
screamed speech) or a non-vocalic (background environment, gun-
shot or explosion) event. In case it is found to be a vocalic event,
another set of descriptors is computed and the sound is recognized
as normal or screamed speech. In the opposite case, an additional
feature extraction phase follows and the signal is classified as non-
threatening background environment or as an atypical sound event,
while during the third stage the systems proceeds into specifying the
type of the hazardous situation. The selected architecture comprises
a fully probabilistic structure which utilizes diagonal GMMs to
estimate the probability function of each sound category while their
parameters were defined after exhaustive experiments regarding
each classification phase.

2.1 Feature Extraction
The low level attributes that are extracted from the audio signals
for constructing statistical models are explained in this paragraph.
We exploit the property of Mel-scale filterbank to compress the
dimensions of the Fourier transformed vector, while its output is
logarithmically partitioned. We also employed a variety of LLDs
provided by the MPEG-7 protocol since it currently comprises the
state of the art in the area of content-based audio recognition [9].
We concluded into using the next four LLDs: Waveform Min,
Waveform Max, Audio Fundamental Frequency and Audio Spec-
trum Flatness. Additionally we used a group of features which
have been shown to provide accurate results as regards classifica-
tion of speech under stress [10]. TEO autocorrelation envelope area
was computed for discriminating between normal and screamed
speech signals. Furthermore we searched for features that are in-
dicative of the variations that intonation exhibits when it comes to
atypical speech. Intonation can be expressed as the pattern of pitch
alterations during speech, thus we used PRAAT [11] software to
calculate pitch, pitch derivative as well as harmonic to noise ratio
(HNR). It should be mentioned that all the signals were hamming-
windowed using a frame size of 200ms with 75% overlap in order
to smooth any discontinuities.

Mel-Frequency Cepstral Coefficients

For MFCC’s derivation we compute the power of the short time
Fourier transform for every frame and pass them through a triangu-
lar Mel scale filterbank so that signal components which play an

important role to human perception are emphasized. Afterwards the
data are compressed and decorrelated using the logarithmic scale
and the discrete cosine transform respectively. Thirteen coefficients
are kept (including the 0-th coefficient which reflects upon the en-
ergy of the signal) and in combination with their respective deriva-
tives a twenty six-dimension vector is formed.

MPEG-7 Audio Protocol Descriptors

A great variety of standardized tools for automatic multimedia
content description is incorporated into the MPEG-7 audio stan-
dard. Its main objective is to offer a degree of “explanation” of
the information meaning. It eases navigation of audio data by
providing a general framework for efficient audio management.
Furthermore, it includes a group of fundamental descriptors and
description schemes for indexing and retrieval of audio data. The
following parameters were used:

 Audio SpectrumFlatness (ASF)
This descriptor is a measure of flatness of a particular portion of
the signal and represents the deviation of the signal’s power spec-
trum from a flat shape. The power coefficients are taken from
non-overlapping frames while the spectrum is divided into ¼-
octave resolution logarithmically spaced overlapping frequency
bands. The ASF is derived as the ratio of the geometric mean and
the arithmetic mean of the spectral power coefficients within a
band. This feature can efficiently differentiate between noise (or
impulse) and harmonic sounds and we should take into account
that a large deviation from a flat shape generally depicts tonal
sounds.

 Audio Waveform (AWF)
This constitutes compact description of the shape of an audio signal
by computing the minimum and maximum samples within succes-
sive non-overlapping frames.

 Audio Fundamental Frequency (AFF)
For a given and assumed to be periodic portion of the signal AFF
consists of an estimation of the fundamental frequency f0. It can be
used as an approximation of the pitch of musical sounds and voiced
speech.

Intonation and Teager Energy Operator based features

The specific analysis concerns sixteen critical bands. Initially the
signal is passed through Gabor filters for concentrating on a particu-

Figure 1 - The proposed probabilistic structure for atypical event detection.
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lar spectral band and each one’s TEO profile is computed. Subse-
quently the autocorrelation envelope area of each frame is computed
and then normalized by frame length/2. The output feature vector
has sixteen coefficients like the number of the critical bands. They
are used combined with pitch, pitch derivative and HNR which
depict the variation of intonation regarding typical and atypical
speech. Together with the already computed MFCC they form a
vector for discriminating between normal and screamed speech
audio events.
The sound descriptors that are additionally calculated in both cases
(vocalic and non-vocalic sound event detection) contain comple-
mentary to MFCC information and are specialized for serving the
following classification step. While MFCC comprise a general de-
scription of the audio event, MPEG-7 LLDs reflect upon the flatness
(ASF), the envelope’s structure (AWF) and the periodicity (AFF) of
the specific sound, thus characterizing it at a higher level. In the case
of non-vocalic sound events this information is crucial and needs to
be taken under account during the modelling procedure. On the
contrary when a vocalic sound event appears in the audio stream,
the needed features are the ones with capabilities to identify whether
a vocalic segment is typical or atypical. The audio analysis which
relies on Teager energy operator can reveal aspects of verbal or non-
verbal human reactions which are not captured by MFCC and are
related to stress expression. They are believed to be indicative of the
alterations that the airflow pattern exhibits regarding the speech
production under atypical circumstances. Pitch and harmonicity
measurements are also included during this phase for offering in-
formation regarding the periodic character of the signal (in general,
normal speech is to be more periodic than atypical speech). Com-
parative results regarding the addition of these groups of parameters
are depicted in Table I.

2.2 Classification Process
During classification procedure we used a generative approach,
Gaussian mixture models. This approach is based on the assumption
that the data belonging to a specific class follow a mixture of Gaus-
sian distributions. This distribution can be approximated using the
Expectation-Maximization (EM) algorithm which results to the
creation of statistical models. The main characteristic of this type of
classifiers is that they handle the samples of each class independ-
ently of the other classes. Subsequently the previously constructed
models are used for computing a degree of resemblance (log-
likelihood) between each model and an unknown input signal. This
type of score is compared against the rest and the final decision is
made with a simple maximum log-likelihood determination. Torch
[12] implementation of GMM, written in C++ was used during the
whole process. The maximum number of k-means iterations for
initialization was 50 while the EM algorithm had and upper limit of
25 iterations with a threshold of 0.001 between subsequent itera-
tions.

3. EXPERIMENTAL SET-UP

The audio data that were used for training the statistical models and
testing the proposed system are reported in this paragraph. Natural
corpora with extreme emotional manifestation and atypical sounds
events for surveillance applications are not publicly available be-
cause of the private character of the data, their scarcity and unpre-
dictability [13]. Our corpus consists of audio acquired from profes-
sional sound effects collections. These kinds of collections com-
prise an enormous source of high quality recordings used by the
movie industry. An important detail, which is not widely known, is
that the audio in a movie is not the exact audio recorded at a scene
but it is processed and in most cases added separately to the audio
stream later. Therefore, there is a vast corpus of vocal and non-

vocal audio available for the construction of trained probabilistic
classification models. Sound samples from the following compila-
tions: (i) BBC Sound Effects Library, (ii) Sound Ideas Series 6000,
(iii) Sound Ideas: the art of Foley, (iv) Best Service Studio Box
Sound Effects, (v) TIMIT and (vi) sound effects from internet
sources were identified and isolated for putting together the final
corpus. The concurrent usage of these datasets offers great variabil-
ity and diversity regarding the a-priori knowledge which is to be
incorporated to the probabilistic models.

3.1 Model Construction and Average Recognition Rates
The data belonging to each class were splitted into 75% for training
and 25% for testing in a random way. Content based audio recogni-
tion is based on the fact that every sound source is distributing its
energy across different frequencies in a different way. A diagonal
GMM was built for each category while testing consists of a simple
comparison of log-likelihoods. Due to the system architecture we
first constructed two kinds of models: vocalic (including screamed
and normal speech) and non-vocalic (including explosion, gunshot
and the respective environmental soundscape). After extensive ex-
perimentations on the number of Gaussian components we con-
cluded to use the parameters tabulated in Table I. As it can be seen
high recognition rates are achieved during every stage of the pro-
posed implementation, showing the effectiveness of the selected
feature sets and statistical method.

3.2 Detection of Atypical Situations in different kind of
Environments

Emergency situations located in a metro station or urban envi-
ronment were artificially created by merging abnormal sound
events which indicate danger, crisis and high-risk in general, with
subway and urban soundscape at different SNRs (from -5dB to
15dB with 5dB step). It should be mentioned that unlike previous
studies [4] we utilized only clean sound samples to train our sys-
tem. The proposed architecture depicted in Fig. 1 incorporating
the respective probabilistic models that were described in the

Table I - Average recognition rates achieved regarding each
stage of system’s topology for different kinds of environ-
ments. The recognition score without the additional feature
extraction stage is depicted in parenthesis for comparison.

Classification
Problem

Number of
Gaussian

Components

Average
Recognition

Rate (%)
Vocalic vs. Non-

Vocalic sound events
(Subway environ-

ment)

64 100

Vocalic vs. Non-
Vocalic sound events
(Urban environment)

128 99.85

Typical vs. Atypical
Non-Vocalic sound
Events (Subway en-

vironment)

128 97.2 (87.6)

Typical vs. Atypical
Non-Vocalic sound

Events (Urban envi-
ronment)

128 92.95 (88.2)

Explosion vs. Gun-
shot sound events 512 83.9 (76.4)

Normal vs. Screamed
Speech 128 100 (89.1)
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former paragraph, was tested using Detection Error Tradeoff
(DET) curves, which have been shown to be effective for the

evaluation of detections tasks [14]. The performance of such a
system cannot be analyzed by a simple recognition rate because
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Figure 3 - DET curves regarding to atypical sound events as
the target class when explosion, gunshot, screamed and nor-
mal speech sound events were merged with urban sound-
scape under different SNRs.
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Figure 2 - DET curves regarding to atypical sound events as
the target class when explosion, gunshot, screamed and nor-
mal speech sound events were merged with subway sound-
scape under different SNRs.
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of the underlying tradeoff error - detection of an atypical situation
may fail or such an event may be declared when it is not present.
Fig. 2 depicts results of atypical sound event detection for all three
different sound categories under metro station background environ-
ment. A rapid degradation is observed when the SNR condition of
the test signals decreases. However emergency situations are ade-
quately detected even at very low SNR conditions. In the case of -
5dB SNR the average equal error rate (EER) of all types of events is
8.29% while the best detection rate concerns the abnormal vocalic
sound events with 6% EER. This is an outcome of the structure of
our implementation, each stage of which discriminates audio signals
which have different spectral patterns and share only a few common
characteristics. The audio signals that are most vulnerable to back-
ground noise corruption are the gunshot ones with 12.47% EER at -
5dB SNR. At the energy ratio of 0dB which represent real-world
conditions appropriately, the proposed system demonstrates high
performance with EER of 6.68% and false alarm probability 2.26%
which is of severe importance for this kind of applications.
Fig. 3 illustrates the capabilities of our implementation under urban
environment. At this stage we used the statistical models that were
created with the inclusion of urban audio data. As expected, miss
detection probability falls as the SNR conditions increase from -5dB
to 15dB. Atypical sound events are detected with relatively low
EERs across all SNR values when the audio signal is corrupted by
urban background environmental noise. We observe that better per-
formance is achieved with average EER at -5dB SNR conditions
being 5.19% in contrast to subway background. More precisely
emergency situations at -5dB ratio are detected with EERs of
6.05%, 4.35% and 5.19% when the abnormality refers to explosion,
gunshot and scream sound events respectively. The events that are
less affected by background noise are scream sounds while explo-
sion detection presents the highest EERs across all SNR conditions.
Additionally, our implementation provides very good false alarm
probability with a mean value of 1% among the three sound event
categories with 0dB SNR conditions. The corresponding EERs
achieved by the system regarding to abnormal situation expressed as
explosion, gunshot and screams are 5.78%, 4.23% and 1.7% respec-
tively. Conclusively it can be observed that the results are quite
promising and underline the effectiveness of the selected probabilis-
tic structure, which incorporates features of high discrimination
capabilities.

4. CONCLUSIONS

Threatening situations such as crime and terrorist acts in large urban
areas are not fictitious scenarios but real facts that require special
attention and measures. In this work we presented and evaluated a
probabilistic framework for acoustic monitoring in a metro station
and urban environment. Its main aim is to provide a practical, easily
deployable, real-time system that can identify on time the sensed
situation (unlawful act in progress, an accident and/or atypical be-
haviour) and deliver the necessary warning messages to an author-
ized officer. The proposed approach was tested against highly non-
stationary metro station and urban background noise and demon-
strated robust and reliable atypical event detection under adverse

conditions. Future work includes one-channel signal separation as
well as the incorporation of mixtures on-line adaptation in the rec-
ognition stage.
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