
DESIGN OF DIGITAL IIR INTEGRATOR USING RADIAL BASIS FUNCTION 
INTERPOLATION METHOD 

Chien-Cheng Tseng1 and Su-Ling Lee2 

      1Depart. of Computer and Communication Engineering               2Depart. of Computer Sci. and Information Engi. 
National Kaohsiung First University of Sci. and Tech.                               Chung-Jung Christian University 

Kaohsiung, Taiwan                                                                              Tainan, Taiwan 
tcc@ccms.nkfust.edu.tw                                                                  lilee@mail.cjcu.edu.tw

ABSTRACT 
In this paper, the design of digital IIR integrator is investi-
gated. First, the radial basis function (RBF) interpolation 
method is described. Then, fractionally delayed sample es-
timation of discrete-time sequence is derived by using RBF 
interpolation approach. Next, the numerical integration rule 
and fractionally delayed sample estimation are applied to 
obtain the transfer function of digital integrator. Finally, 
some numerical comparisons with conventional digital inte-
grators are made to demonstrate the effectiveness of this 
new design approach. 

1. INTRODUCTION 

Digital integrators are useful devices in the application areas 
of control, radar and biomedical engineering [1]-[4]. The 
methods of digital integrator design can generally be classi-
fied into two categories. One is the linear phase FIR filter 
approach in which the filter coefficients are determined by 
using maximal flatness constraints [1][2], the other is the IIR 
filter method in which the filter coefficients are obtained 
directly from well-known numerical integration rule [3][4]. 
The ideal frequency response of digital integrator is given 
by 
                               Ije

j
D ω

ω
ω −=

1)(                              (1) 

where I  is a prescribed integer delay. The problem is how 
to design a digital filter such that its frequency response fits 

)(ωD  as well as possible. In [3], Ngo presented a third-
order digital integrator whose transfer function is given by 
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In [4], Tseng and Lee have used Richardson extrapolation 
and polyphase decomposition to design digital integrators. 
From Eq.(62) in [4], the transfer function of a typical forth-
order integrator is given by 
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From Eq.(1), it is clear that the gain of integrator at zero 
frequency 0=ω  is infinity, so the above transfer functions 

have one pole at 1=z . On the other hand, radial basis 
function (RBF) has been widely used in multivariate inter-
polation, neural network, time-series prediction, control of 
nonlinear systems, mesh-free approximation, and target 
tracking in video data [5]-[7]. The early work on the RBF 
theory and implementation is surveyed in the book [8]. A 
radial basis function )(tφ  is a real-valued function whose 
value depends only on the distance from the origin, that is, 
( ) ( )tt φφ = . The notation ⋅  denotes a norm that is usu-

ally taken as be Euclidean. Common used types of radial 
basis function include Gaussian and inverse multiquadric 
whose definitions are given by 
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where σ  is called shape parameter which can be used to 
adjust the shape of function )(tφ . The purpose of this paper 
is to use RBF interpolation method to design digital IIR in-
tegrators. As a result, the design error can be reduced by 
suitably choosing the shape parameter of radial basis func-
tion.  

2. RADIAL BASIS FUNCTION INTERPOLATION 

In this section, the radial basis function interpolation method 
will be described. Given a set of 1+N  different points 
{ }Ntttt ,,,, 210 L  and a corresponding set of 1+N  real 
numbers { }Nssss ,,,, 210 L , the interpolation problem is to 
find a function )(ts  that satisfies the interpolation condition 

kk sts =)(       Nk ,,2,1,0 L=                  (5) 
The radial basis function interpolation method consists of 
choosing a function )(ts  that has the following form 

                       )()(
0

k

N

k
k ttwts −= ∑

=

φ                          (6) 

That is, the function )(ts  is represented as a sum of 1+N  
radial basis functions, each associated with a different center 

kt , and weighted by an appropriate coefficient kw . Substi-
tuting the interpolation condition of Eq.(5) into Eq.(6), we 
get the following simultaneous linear equation 
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where )( kmmk tt −= φφ . Let vectors S  and W  be 

                     T
NsssS ][ 10 L=                       (8a) 

                     T
NwwwW ][ 10 L=                    (8b) 

and Φ  denotes an )1( +N -by- )1( +N  matrix with ele-

ment mkφ , then Eq.(7) can be rewritten as  

                                   SW =Φ                                      (9) 
If 0t , 1t , …, Nt  are distinct points, then matrix Φ  is 
nonsingular. Thus, the unknown vector W  is given by 
                                 SW 1−Φ=                                    (10)  
Once W  has been obtained, the function )(ts  in Eq.(6) is 
known. So, )(ts  is computable for the given t . Finally, an 
example is use to illustrate the RBF interpolation method. 
The data ks  is obtained by uniformly sampling the continu-
ous sinusoidal function )2.0cos( tπ  with 10

k
kt = , that is, 

)cos( 10
2.0 k

ks π= . The radial basis function is chosen as 
Gaussian in Eq.(4a) with 1.0=σ . The number of points 
are 2011 =+N . Fig.1(a)(b) shows the interpolated func-
tion )(ts  in Eq.(6) and sinusoidal function )2.0cos( tπ . It 
is clear that both functions look almost the same. To observe 
where the errors occur, Fig.1(c) shows the absolute errors 

)2.0cos()( tts π− . Clearly, the errors are very small ex-

cept at the edge points 00 =t  and 20=Nt . 

3. FRACTIONALLY DELAYED SAMPLE 
ESTIMATION 

In this section, we will use RBF interpolation method to 
solve fractionally delayed sample estimation problem be-
cause the proposed IIR integrator design method is based on 
this estimation method. The problem to be studied is how to 
estimate fractionally delayed sample )( dIns −−  from the 
given integer delayed samples )(ns , )1( −ns , )2( −ns ,..., 

)( Nns − , where I  and N  are integers and d  is a frac-
tional number in the interval ]1,0[ . And, I  is usually cho-
sen in the range ]1,0[ −N . In this paper, we use weighted 
average approach to achieve the purpose, that is, fractionally 
delayed sample is estimated by 
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Now, the remaining problem is how to use the RBF interpo-
lation method in the preceding section to determine the 
weights ),( dmh . To solve this problem, let us choose 

kntk −=  and )( knssk −= . Then, the RBF interpola-
tion formula in Eq.(6) becomes 
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Because kntk −=  and mntm −=  are chosen, we have 

)()( mktt kmmk −=−= φφφ                 (13) 

Using the above expression and )( knssk −= , the simul-
taneous equation in Eq.(7) reduces to 
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This equation can be shorten as the form SW =Φ , as 
described in Eq.(9). Clearly, Φ  is a symmetric and Toeplitz 
matrix. Let the inverse of matrix Φ  be denoted by 
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then the solution of simultaneous equation in Eq.(14) is 
given by 
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This result implies that 
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Substituting Eq.(17) into Eq.(12), we get 
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Taking dInt −−= , the above equation reduces to 

( ) )()(
0 0

mnsdIkdIns
N

m

N

k
km −⎟

⎠

⎞
⎜
⎝

⎛
−−=−− ∑ ∑

= =

φα   (19) 

Compared Eq.(19) with Eq.(11), the weights ),( dmh  are 
given by 
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=
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N

k
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Finally, given the radical basis function )(tφ  with shape 
parameter σ , integer N , and delay dI + , the procedure 
to estimate fractionally delayed sample )( dIns −−  from 
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the given integer delayed samples )(ns , )1( −ns , 
)2( −ns ,..., )( Nns −  is summarized below:  

Step 1: Compute the matrix Φ  whose elements are given 
by )( mkmk −= φφ . 

Step2: Calculate the inverse matrix 1−Φ  with element mkα . 

Step 3: Use Eq.(20) to compute the weights ),( dmh . 
Step 4: The fractionally delayed sample is estimated by 

)(),()(
0

mnsdmhdIns
N

m
−=−− ∑

=

. 

4. DESIGN OF DIGITAL IIR INTEGRATOR 

In this section, the numerical integration rule and RBF-
based fractionally delay estimation method are used to de-
sign digital IIR integrator. When a signal )(ts  passes 
through the ideal integrator with integer delay I , its output 

)(ty  is given by 

                       ∫
−
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Setting 1−= nt  and nt = , we have 
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Using the following equality:  

∫ ∫ ∫
−

∞−

−−

∞−

−

−−
+=

In In In

In
dsdsds

1

1
)()()( ττττττ   (23) 

we get 
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Thus, the design problem reduces to how to evaluate the 
definite integral of the second term in Eq.(24). This problem 
can be solved by using various numerical integration rules in 
textbook [9]. If the trapezoidal rule is used, second term in 
Eq.(24) can be approximated by 

( ))()1(
2
1)(

1
InsInsds

In

In
−+−−≈∫

−

−−
ττ    (25) 

Substituting Eq.(25) into Eq.(24), we have 
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2
1)1()( InsInsnyny −+−−+−=  (26) 

Taking the z transform at both sides, we obtain 
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where )(ZS  and )(ZY  are the z transforms of )(ns  and 
)(ny . The above integrator )(ZH  is the well-known 

trapezoidal integrator in the literature. This integrator has 
large approximation error in the high frequency region, so 
RBF interpolation method and other integration rules will be 
used to improve the design accuracy. Two typical cases are 
studied below:  
Case 1: Simpson 1/3 rule 

Using the Simpson 1/3 rule, second term in Eq.(24) can be 
approximated by 
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Because )( 2
1−− Ins  is a unknown fractionally delayed 

sample, the RBF interpolation method is used to estimate its 
value from the known integer delayed samples )(ns , 

)1( −ns , …, )( Nns − . The estimation formula has been 
described in Eq.(11) and Eq.(20). Thus, using Eq.(11), 
Eq.(28) can be written as 
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Substituting Eq.(29) into Eq.(24), we have 
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Taking the z transform at both sides, we obtain 
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The above )(1 ZH  is the designed Simpson 1/3 integrator 
using RBF interpolation method. 
Case 2: Simpson 3/8 rule 
Using the Simpson 3/8 rule, second term in Eq.(24) can be 
approximated by 
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Using fractionally delayed sample estimation formula in 
Eq.(11), the above equation can be written as 
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                     ),(),()( 3

2
3
1 mhmhmg +=                   (34) 

Substituting Eq.(33) into Eq.(24), we have 
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Taking the z transform at both sides, we obtain 
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The above )(2 ZH  is the designed Simpson 3/8 integrator 
using RBF interpolation method.  
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5. DESIGN EXAMPLES AND COMPARISON 

In this section, we will study the design error of the proposed 
RBF-based integrator and compare it with conventional inte-
grators. To evaluate the performance, the integral squares 
error of frequency response is defined by 

                  ωω
λπ ω dDeHE j

kk

2

0
)()(∫ −=       (37) 

Obviously, the smaller the error kE  is, the better the per-
formance of the design method is.  
Example 1: In this example, we first study the relation be-
tween design error kE  and shape parameter σ  for Gaussian 
radial basis function )(tφ  in Eq.(4a). The parameters are 
chosen as N=30, I=15, and 95.0=λ . Fig.2 shows the error 
curve kE  of the proposed RBF integrator )(ZH k  for 

]5.3,5.1[∈σ . From these results, it is clear that the error 

1E  is almost same as the error 2E . And, both errors reach 
the minimum value 0.013 when 3.2≈σ  is chosen. More-
over, Fig.3 depicts the magnitude responses (solid line) of the 
Simpson 1/3 integrator )(1 ZH  for Gaussian RBF with 

3.2=σ . The dashed line is the ideal magnitude response 
ω
1 . Obviously, the specification is fitted well. 

Example 2: In this example, we will study the relation be-
tween error kE  and parameter σ  for inverse multiquadric 
radial basis function )(tφ  in Eq.(4b). The parameters are 
chosen as N=30, I=15, and 95.0=λ . Fig.4 shows the error 
curve kE  of the integrator )(ZH k  for ]5.9,5[∈σ . 
From these results, it is clear that the error 1E  is slightly 
smaller than the error 2E . And, both errors almost reach the 
minimum value 0.017 when 7≈σ  is chosen. Because this 
minimum value is slightly larger than the value in Gaussian 
RBF case, Gaussian RBF is preferred in integrator design. 
Moreover, Fig.5 depicts the magnitude responses (solid line) 
of the Simpson 1/3 integrator )(1 ZH  for inverse multiquad-
ric RBF with 7=σ . The dashed line is the ideal magnitude 
response ω

1 . Obviously, the specification is fitted well. Com-
pared Fig.3 with Fig.5, it is easy to see that the magnitude 
responses are almost the same for Gaussian and inverse mul-
tiquadric RBF design cases. 
Example 3: In this example, we compare Gaussian RBF 
integrator with the Ngo integrator in Eq.(2) under the same 
implementation complexity. The design parameters are cho-
sen as N=3, I=1 and 95.0=λ . Fig.6(a) shows the error 
curve 1E  of the integrator )(1 ZH . From this result, it is 
clear that the error 1E  reach the minimum value 0.192 when 

3.3≈σ  is chosen. Fig.6(b) shows the frequency response 
error |))()((|log20 110

ωω jeFD − . The dashed line is the er-
ror |))()((|log20 110

ωω jeHD −  for Gaussian RBF integrator 

with 3.3=σ . Obviously, )(1 zH  has smaller error than 
Ngo integrator in the frequency band ],18.0[ ππ . However, 

Ngo integrator is better than Gaussian RBF integrator in the 
low frequency band ]18.0,0[ π  
Example 4: In this example, we compare Gaussian RBF 
integrator with the Tseng integrator in Eq.(3) under the same 
implementation complexity. The design parameters are cho-
sen as N=4, I=1 and 95.0=λ . Fig.7(a) shows the error 
curve 1E  of the integrator )(1 ZH . From this result, it is 
clear that the error 1E  reach the minimum value 0.157 when 

8.1≈σ  is chosen. Fig.7(b) shows the frequency response 
error |))()((|log20 210

ωω jeFD − . The dashed line is the error 

|))()((|log20 110
ωω jeHD −  for Gaussian RBF integrator 

with 8.1=σ . Obviously, )(1 zH  has smaller error than 
Tseng integrator in the frequency band ],4.0[ ππ . However, 
Tseng integrator is better than Gaussian RBF integrator in the 
low frequency band ]25.0,0[ π  

6. CONCLUSIONS 

In this paper, the design of digital IIR integrator using radial 
basis function interpolation method has been presented. The 
fractionally delayed sample estimation and numerical inte-
gration rule are applied to obtain the transfer function of 
digital integrator. The numerical comparisons with conven-
tional digital integrators are also made. However, only digi-
tal integrator design is studied here. Thus, it is interesting to 
extended RBF interpolation method to design various digital 
filters in the future. 
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Fig.1 The radial basis function interpolation. (a) The interpo-
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Fig.2 The error curve kE  of the proposed Gaussian RBF 
method for ]5.3,5.1[∈σ . 
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Fig.3 The magnitude response of Simpson 1/3 integrator 

)(1 ZH  designed by Gaussian RBF. The dashed line is the 
ideal magnitude response. 
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Fig.4 The error curve kE  of the proposed inverse multiquad-
ric RBF method for ]5.9,5[∈σ . 
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Fig.5 The magnitude response of Simpson 1/3 integrator 

)(1 ZH  designed by inverse multiquadric RBF. The dashed 
line is the ideal magnitude response. 
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                                                   (b) 
Fig.6 (a) Error curve 1E . (b) Error |))()((|log20 110

ωω jeFD − . 
The dashed line is the error |))()((|log20 110

ωω jeHD − . 
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                                                   (b) 
Fig.7 (a) Error curve 1E . (b) Error |))()((|log20 210

ωω jeFD − . 
The dashed line is the error |))()((|log20 110

ωω jeHD − . 
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