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ABSTRACT 1D signal, corresponding respectively to the lines and the
We consider the problem of semi-supervised segmentation eblumns of the pixels, is modeled with a 1D HMM-AR. Us-
textured images. In this paper, we propose a new Bayesidng the factor graph framework [7], a new segmentation algo-
framework by modeling two-dimensional textured images agithm is obtained by applying the sum-product algorithm [7]
the concatenation of two one-dimensional hidden Markovo a factor graph representing the joefosteriori proba-
autoregressive models for the lines and the columns, rebility distribution of the class labels given the pixel ing-
spectively. A new segmentation algorithm, which is similarties. This scheme is analog to the turbo decoding algorithm
to turbo decoding in the context of error-correcting codesproposed by Berrou [8] in the context of error-correcting
is obtained based on a factor graph approach. The prgodes. Hence the name turbo segmentation for the pro-
posed method estimates the unknown parameters using thesed method. Moreover, the unknown parameters can be

Expectation-Maximization algorithm. estimated using the Expectation-Maximization (EM) frame-
work [9].
1. INTRODUCTION This paper is organized as follows. Sec. 2 presents our

. ) . . new model for textured images based on two 1D HMM-AR
An image texture can be defined as the |ocal spatial varigs, esnonding to the lines and the columns of the pixels.
tions in pixel intensities and orientation [1]. In order 8£f o qervation of turbo segmentation using a factor graph
ognize objects and scenes in computer vision, it is esstentlgpproach is introduced in Sec. 3. Finally, experimental re-

to be able to partition an ima_ge.into me_aningful regions Withsults are given in Sec. 4 to investigate the performances of
respect to texture characteristics. This task, referredsto the proposed method

texture segmentation in the image processing literature, i
a challenging problem due to the complexity and diversity
of natural textures. We restrict the focus of this paper to2. PROPOSED MODEL FOR TEXTURED IMAGES

semi-supervised segmentation, where the number of texture ... < tion we introduce a 1D HMM-AR model of a tex-

avallable ot the fealLnes of parameters associat willied Image (Sec. 2.1). The model is visualized by means
P of a factor graph. In order to capture the 2D nature of tex-

eac\r;vclass. id del-based : h h tures, the image must be modeled as the concatenation of two
€ consider mocel-based segmentation, where the texy, HMM-AR, one for the lines and another for the columns
tures are described by a stochastic process. Existing met Sec. 2.2). The complete factor graph corresponding to the
ods model the intensity field as a Gauss-Markov random fielgf ° <. LiMM-AR model is also drawn
(GMRF) [2], which takes into account the spatial dependen- '
cies between the pixels. The segmentation task can be car-
ried out in several ways. One possibility is to apply a classi2-1 1D HMM-AR model
cal clustering algorithm to texture features based on the e§ et S— {s= (i, j),1<i <H,1< j <W} be a 2D lattice rep-
timated GMRF parameters, such as a neural network or thsenting the grid points of an image. It is well known that a
k-means algorithm [3]. A more accurate approach is obtainedzp jmage can be converted to a 1D signal through horizontal
by labeling the pixels to one &fl texture classes and model- raster scanning. This is achieved by visiting the point$ief t
ing the label field as a Markov random field (MRF), so thatyp |attice S, using the space filling curve given by Fig. 1 a).
pixels close together tend to have the same texture class. Thyith this pixel ordering, the texture labels and the grasele
labels of all pixels can then be estimated using simulated arpixe| values can be written ad,} and {y,}, respectively,
nealing [4]. _ where the discrete time indéxe ?1, 2,...,WH}.

In this paper, we propose a texture segmentation method \ve would like our model to capture the spatial depen-

based on one-dimensional hidden Markov autoregressivgancies between pixel values for each texture class. Let
models (1D HMM-AR). The main advantage of the 1Dd(]:3( ) b '

, ' n) = [a;(n),...,a(n)]" and v(n) represent the coeffi-
HMM-AR over the MRF approach is that segmentation andiienis and the variance corresponding torttib texture class

parameter estimation can be performed at lower CompUtadutoregressive (AR) modet, € {1 M}. We assume an
yoos M}

tional cost with a flexible and versatile forward-backwardpM-AR model of orderP [6] defined by the difference
procedure known as the Baum-Welch algorithm [5]. HOW'equation

ever, a single 1D HMM-AR is unable to capture the 2D
properties of textures. Therefore, we propose to handle 2D

P
textured images by converting them to two 1D signals by =5 aql +n(l 1< k<WH 1
scanning with a horizontal and a vertical raster scan. Each % F,Zl ol Mi-p el - ’ @)
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Figure 1: a) Horizontal raster scanning - b) Vertical raster
scanning.

wheren, (1, ) is an independent zero mean Gaussian noise of
variancev(l, ). The texture labels are assimilated to hidden :
states whose dynamics are governed by the transition matrix
P = {Pmn}, where

Pmn=P(,=n[l,_;=m), 1<mn<M.

We collect the unknown parameters of the HMM-ARAir=
(P,B(n),v(n),n€ {1,...,M}).

We define the vector of hidden labels &g, =
(I3,15,...,lyy) and the vector of pixel intensities gs,,y =
(Y1,¥2:- -+ %)~ Under the assumption of first-order gigyre 2: Factor graph of an HMM-AR model of order-2 for
Markov model for the label process, we obtain the factorngrizontal raster scanning of the pixels.
ization

PUpwn Yawn) O pOY[1)PU1) p(Yallo, Yo )Pl ) x ...

this model will be referred to as the vertical 1D HMM-AR.

x P(YpllpsYp1:-- Y1 )Plpllp_s) The corresponding factor graph is the same as the one de-
WH picted in Fig. 2 (when the ordé? = 2), except that the line

x ) |_| PYicllio Yem1s- -+ Yieep) Pl 1) dependencies are replaced by column dependencies.
—P+1

5 As a result, each pixel is now associated with two tex-
(2) ture labels, corresponding to the horizontal and vertiéal 1

From an image modeling viewpoint, it also seems reasonab%'v“vl'AR model, respectively. The first (resp. second) label

e e L it of e hozontl (e, veria) 16 HN-AR. S
so that the lines become independent. With this simpliﬁcaepOth labels correspond in fact to the same pixel, we mustim-
tion, the corresponding factor graph [7] is depicted in Big. pose an equality constraint on those variables. We call the

(whenP = 2). Variable nodes are represented as circles an?]esultlng model a concatenated HMM-AR model. The cor-

: ! o ding factor graph (ignoring the local functigpsor-
the local functions appearing in the factorization of élpgos- esponal S = -
L " . ; responding to pixel intensities for the sake of readab)iigy
teriori probability density function, denoted by drawn in Fig. 3. The graph in thick (resp. thin) line corre-

governed by the dynamics imposed by the state transition

fo =Pl ;) sponds to the horizontal (resp. vertical) 1D HMM-AR model
k™ 7 Wkl k=1 (3) of a textured image. Equality constraints between hidden la
9= PVl Y15+ > Yiep) bels are represented in a box.
are represented as squares. 3. TURBO SEGMENTATION
2.2 Concatenated HMM-AR model 3.1 Bayesian inference algorithm

The 1D HMM-AR introduced in Sec. 2.1 models the dynam-We apply the sum-product algorithm (SPA) [7] to the com-
ics of the texture labels as a discrete-valued Markov chaiplete factor graph in Fig. 3, which implements belief propa-
along the lines of the image. In the sequel, this model will begation [7].

referred to as the horizontal 1D HMM-AR. In general, thisis  In order to derive the messages exchanged by the SPA,
not sufficient to capture the 2D features of textures. Vigiti we focus on a small portion of the complete factor graph cen-
the points of the 2D latticBwith the vertical raster scanning tered at time index, illustrated by Fig. 4. This small portion
curve given by Fig. 1 b), we define a second 1D HMM-AR corresponds to the horizontal 1D HMM-AR, whose parame-
to model the dependencies along the columns. In the sequégrsA = (P,B(n),v(n),ne€ {1,...,M}) are fixed. Of course,
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by the equality function node 1g is given by
M

el =Y all—1)a'(ly) = a'(ly), (4)
/=1
where d(.) represents the Dirac function. Conversely, let
o(l,) be the message sent ko the equality function node,
the message sent by the equality function nodg igiven

by
M
£0) =Y 80,—1Ho() =a(l). (5)
=1
. B . =] . Leta(l,_,) be the message sent by, to the function
.".‘ .-'.‘ O nodef,, then the message sent yto |, has the form
Z Plyl—)al_y)-
ke1=1

Now, applying the sum-product rule at the variable nhgde
we get the recursion
Figure 3: Complete factor graph for the concatenated HMM-

AR model (hereH =5,W =5). z Pl Dal Dyl ed), 1<l <M
k 1_
. _(6)
Similarly, let3(l,) be the message sent by the function node
fi .1 tol,, we obtain the recursion

M
Bl 1) = |le(lk“k’l)ﬁ(lk)y(lk)g(lk)’ 1<l ;<M.

(7)
We recognize that (6) and (7) are a modified version of the
. forward and backward recursion of the well-known Baum-
Welch algorithm [5], withe(l, ) as an additional multiplica-
tive term.
Finally, the message sent hyto the equality constraint
node under the sum-product rule is given by

o(l) =a(l)Bl/ely), 1<l <M

In fact, as suggested in [10], the message serl{ by the
equality constraint node should be slightly modified to

Figure 4. Messages exchanged on a portion of the complete a(ly) =wa(l)B()/el), 1<I, <M, (8)
factor graph. T

where 0< w < 1 is a weight factor left as a design parameter,
which increases with the number of iterations.

Due to the presence of many cycles in the proposed factor
one could just as well draw a small portion of the graph for, 'graph illustrated by Fig. 3, instead of stopping the message
the vertical 1D HMM-AR, with exactly the same graph Struc- . mp tations once all the nodes have been visited, the mes-
ture and therefore the same message-passing algorithm. sages are recomputed iteratively until a stopping criteiso

Let y(l,) be the message sent by the local function nodgeached [7].

g, tothe variable nodg, according to (1) we have The proposed inference procedure is summarized in Ta-
ble I.

y(h) = PVl Y10+ -+ Yip) Maxlt, the total number of allowed iterations, is the num-

P 2} ber of iterations needed so that a consensus is found between

1 1
- 2nv<l>p{2v<l> b g

Denote byl{ the texture label of the vertical HMM-AR I, =arg G{Ta)ﬁﬂ}a(lk)ﬁ(lk% 1<k<WH, (9)
related tdl, by an equality constraint and ly (I{) the mes- Wit
sage sent by{ to the equality function node. Applying the where thea’s and s are the forward and backward mes-
sum-product rule to the equality constraint, the messagie sesages computed during the last vertical pass.

the texture labels computed by the horizontal and vertical
pass. The final estimate of the texture labels is given by the
maximum posterior mode (MPM) decision rule as [7]
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In order to avoid convergence problems, the transition prob

1. Initialize alla, 8, € messages to 1 (no prior !nform:L abilities are constraint to be greater than a threshold, say
tion) and the set of parameteisfor the horizontal Prmn > 1072,

and vertical 1D HMM-AR. Set the iteration counter
toit =1. 3.3 Parameter initialization
2. Horizontal pass: Compute the forward recursion (6),
the backward recursion (7) and (8) for each line|of
the image. Pass the updatednessages (5) to the
columns. Updatad for the horizontal 1D HMM-AR.
3. Vertical pass: Compute the forward recursion (6), the
backward recursion (7) and (8) for each column of the

The initialization procedure for the AR parameters corre-
sponding to each texture class is inspired from the coarse
segmentation algorithm introduced in [2]. The lattigés
partitioned into non-overlapping rectangular regiong. the
purpose of parameter initialization, we assume that each re
. . gion contains only a single texture. LBtdenote the lat-
|mzijge. )\Pfass ghe upplatlednessages (4) to the line tice corresponding to such a region @dhe interior subset
Up _at? orthe v_ert|ca 1D_HMM'AR' of R[2]. After horizontal raster scanning & a 1D signal
4. Whileit < Maxit, incremenit and return to step)2 {y,(R)} corresponding to the pixel intensities is obtained, so
that each pixel belonging 8, can be modeled by an hori-
zontal AR model

Uy

Table 1: Turbo segmentation algorithm Y (R) = 7y By + Nes

wherez, (R) = R), R),...,V. »(R)T, By is the
3.2 Parameter estimation columnléec)tor ([));Ijb\l%?(cc)r)eyflficzi((anis am%{/kis%(zc)a]ro mean Gaus-
Since our aim is to propose a semi-supervised segmentatiéfn noise of variance,. A LS estimate ofB,, andv, is
algorithm, after each horizontal or vertical pass of theinf obtained as
ence algorithm proposed in Table I, the set of parameters

-1
of the corresponding 1D HMM-AR must be updated. We use o T
the EM approach developed in [6] to achieve this goal. By = ZZk(R)Zk(R) 1 lgyk(R)zk(R)]
The 1D HMM-AR state transition matrix is re-estimated ! 1 !
according to 9 — ( _ TR \2
H Y«(R) —2(R)'By)".
o cardR) &
Z ¢, (m,n) Simi . . .
& imilarly, after vertical raster scanning & a 1D signal
Pn=wnow > 1<mn<M. (10) {y (R)} corresponding to the pixel intensities is obtained, so
g (m,n) that each pixel belonging #® can be modeled by an vertical
K=1 n=1 AR model

R)=z By, +n,,
where{, (m,n) = 0in casd, is the last label of a line/column %(R) = =By 1y

andl,, , is the first label of the next line/column, otherwise Wherez,(R) = [y, 1(R),¥, »(R),-.-,¥% p(R)]", By is the
column vector of AR coefficients angj is a zero mean Gaus-

G (mn) = sian noise of variance,. Also a LS estimate oB,, andy,
Pmna (I, =m)B(l 1 =MVl =me(l, . =n) denoted byB,, and\;, can be obtained. Each regifis then
M M ) associated with the corresponding feature vector
all,=mB(, =yl ,=nel_,=n .
rTZlnzl Pmna ( k )B( k+1 W k+1 )€( k+1 ) F— (BL,B\T,)T.
(11)

o _ _ _ Applying thek-means algorithm [3] to the feature vectors, a
where it is understood that is the old valuepafn is used in  coarse estimate of the label fig]t], s € S} is obtained. This
(11). The expression of the quantities 3, y, € is given in  step implements a coarse segmentation where the number of

Sec. 3.1. . classedMl is assumed to be known. Assuming that the label
The AR parameters corresponding to theh texture  field estimate{{?,s € S} is correct, a LS parameter estima-
class are re-estimated according to tion of B(n),v(n) for then-th texture classp = 1,...,M, is
WH 1wk recomputed for the horizontal and the vertical 1D HMM-AR.
_ T These values will be used as initial AR parameters.
B(n) = L;’]k(”)zkzk] kzlnk(n)ykzk] The initialization of the state transition matrix for the

(12)  horizontal and vertical 1D HMM-AR is obtained as follows.

SR () (Y — zIB(n))2 Raster scan the label fie{®, s € S} obtained from the coarse
v(n) = sWH 1 (n) ; segmentation and set the initial valuef,, 1< mn <M
k=1"1k to
where __number of transitions from labeh to labeln 13)
2= Y 1Y 20 Yipl" P = number of transitions from labeh ’

n(m) = all,=mB(=m C1<m<M. If pmn = O during initialization, sepmy to 102 and renor-
M a(l, =mB(l, =m) malize the resulting state transition matix= {pmn}, so
ng k™ k™ that the lines sum to one.
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Figure 5: (a) 256« 256 three-texture mosaic - (b) correct seg-Figure 6: (a) 256« 256 four-texture mosaic - (b) correct seg-
mentation - (c) turbo segmentation with error rate g226.  mentation - (¢) turbo segmentation with error rate @&726.

4, EXPERIMENTAL RESULTS data, Englewood Cliffs, New Jersey: Prentice Hall,
Fig. 5a and 6a are texture mosaics taken from the Brodaiz 1988. » . . .
album [11]. Fig. 5¢c and 6¢ show the turbo-segmentation rel4] S: Géman and D. Geman, "Stochastic relaxation, Gibbs
sults when the order of the 1D HMM-AR modelsRs= 5 distributions and the Bayesian restoration of images,”
and the maximum number of iterations is seMaxit = 5. IEEE Trans. Pattern Anal. Mach. Intell., vol.6, no.6, pp.

The evolution of the weight factors [10] (affecting the mes- 721-741, Nov 1984.
sages sent by the lines to the columns and the messages si@jtL.E. Baum, T. Petrie, G. Soules and N. Weiss, "A max-
by the columns to the lines) with the iteration number was  imization technique occurring in the statistical analysis

optimized experimentally to of probabilistic functions of Markov chains,” Ann. Math.
Statist. , vol.41, no.1, pp. 164-171, 1970.
w=1[0.1,0.1,0.1,0.1,1.0]. [6] J.D. Hamilton, "Analysis of time series subject to

changes in regime,” J. of Econometrics. , vol.45, pp. 39-
The parameter initialization procedure described in S&&.3  7q 1890_ I PP

partitions the image into non-overlapping square regidns cs)[7
size 32x 32 pixels. The obtained classification error rate ] h and th duct alqorithm * IEEE T |
are very good. Other numerical experiments, although not fgrap an he sum—plro uc angI’I m, Lags. n-
shown due to lack of space, demonstrated that turbo segmen- ormation Theory, V(_) 47,n0.2, pp. 498'5_19_’ Feb 2001.
tation generally converges within a few iterations and carl8] C. Berrou, A. Glavieux and P. Thitimajshima, “Near

outperform existing Bayesian GMRF-based segmentation. ~ Shannon limit error-correcting coding and decoding:
turbo codes,Proc. IEEE Int. Conf. Comm., pp. 1064—

1070, Geneva, Switzerland, May 1993.
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