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ABSTRACT

The direction of a sound source in an enclosure can be
estimated with a microphone array and some proper
signal processing. Earlier, in applications and in re-
search the use of time delay estimation methods, such
as the cross correlation, has been popular. Recently,
techniques for direction estimation that involve sound
intensity vectors have been developed and used in ap-
plications, e.g. in teleconferencing. Unlike in time de-
lay estimation, these methods have not been compared
widely. In this article, five methods for direction estima-
tion in the concept of sound intensity vectors are com-
pared with real data from a concert hall. The results
of the comparison indicate that the methods that are
based on convolutive mixture models perform slightly
better than some of the simple averaging methods. The
convolutive mixture model based methods are also more
robust against additive noise.

1. INTRODUCTION

Direction or location of a sound source is of interest in
several applications that aim to capture or to reproduce
the sound [1, 2, 3]. This is of interest for example in
teleconferencing [3]. Moreover, when exploring concert
hall impulse responses it is of interest from where and
when the direct sound and the so-called early reflections
arrive [4].

Direction estimation with traditional methods, such
as the cross correlation, has been researched widely over
several decades (see e.g. [5] and references within).
Nowadays, sound intensity vectors are used for direction
estimation in increasingly many applications [1, 2, 3, 6].
Not much research, if any, has been published in com-
paring the different methods used in direction estima-
tion from sound intensity vectors. In this article, five
direction estimation methods are compared in a real
concert hall environment.

A sound intensity vector has a length and a direction
and it is a function of time and frequency. In this work,
the focus is on the direction estimation over some set
of frequencies during a certain time frame. Direction
estimation methods can be broadly classified into two
classes: 1) direct 2) and mixture estimation. The first
class includes methods such as averaging. The second
class contains convolutive mixture models where the di-
rection of the sound source is found by fitting two or
more probability distribution of a certain shape to the
directional data, as for example in [2] and [7]. Naturally,
the methods in the second class are much more complex
than in the first, since some optimization method has to

be used to obtain the mixtures.
Generally, sound intensity vectors are obtained ei-

ther with microphone pair measurements or from B-
format signals [4]. In practice both of these measure-
ment techniques introduce a bias to the direction of
the intensity vector. For example, in Soundfield mi-
crophones, the bias is caused by the non-idealities in
the directivity patterns of the microphones [4]. In mi-
crophone pair measurements the direction estimation is
biased, since the gradient of the sound pressure is not
constant within the sensor array [6]. In the case of mi-
crophone pair measurement, also the non-idealities of
the pressure microphones affect the measurement.

The article is organized as follows. In Sec. 2 the
calculation of sound intensity vectors as well the bias
compensation of the vectors are formulated. Section 3
introduces the direction estimation methods. In Sec. 4
the experimental setup is described and in Sec. 5 the re-
sults from the experiments are presented and discussed.
In Sec. 6 the final conclusions of this study are given.

2. THEORY

In a room environment the sound s(t) traveling from
the sound source to the receiver n is affected by the
path hn(t):

pn(t) = hn(t) ∗ s(t) + w(t), (1)

where ∗ denotes convolution and w(t) is measurement
noise, independent and identically distributed for each
receiver.

2.1 Sound Intensity

On a certain axis a, the sound intensity is given in the
frequency domain as

Ia(ω) = Re{P ∗(ω)Ua(ω)}, (2)

where P (ω) and Ua(ω) are the frequency presentations
of the sound pressure and of the particle velocity with
angular frequency ω. In addition, Re{·} and is the real
part of a complex number and ∗ denotes the complex
conjugate [4]. Here, Cartesian coordinate system with x
-and y coordinate axis, shown in Fig. 1, is used. Corre-
sponding polar coordinate presentation of the Cartesian
coordinates is denoted with azimuth angle θ and radius
r. The procedure for obtaining the sound intensity pro-
ceeds as follows and is similar for both axes.

The sound pressure at the center point between four
microphones, shown in Fig. 1, can be approximated as
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the average pressure of the microphones [6]:

P (ω) ≈ 1

4

4
∑

n=1

Pn(ω). (3)

For x-axis, in frequency domain the particle velocity is
estimated as

Ux(ω) ≈ −j

ωρ0d
[P1(ω) − P2(ω)], (4)

where d is the distance between the two receivers and
ρ0 = 1.2 kg/m3 is the median density of the air and j is
the imaginary unit.

Now, the sound intensity in (2) can be estimated
with the approximations in (3) and (4). For obtaining
the y-component of the sound intensity, the microphones
1 and 2 are replaced in (4) with microphones 3 and 4.

2.2 Bias Compensation for the Square Grid

Since the pressure signals are subtracted from each other
in the approximation made in (4), the azimuth angle θ of
the intensity suffers from a systematic bias [6]. This bias
can be formulated for a four-microphone square grid as
[6]

θbiased =
sin(ω d

2c sin(θ))

sin(ω d
2c cos(θ))

, (5)

where c = 343 m/s is the speed of sound. The bias can
be compensated by finding the inverse of (5). However,
this equation does not have any closed form solution.
Kallinger et al. [6] estimate the inverse function with
linear interpolation. In addition, the inverse function is
known [6] to have an upper limit at fmax = c/(d

√
2),

where ω = 2πf , i.e.

0 < ω
d

2c
<

π√
2
.

In this work the linear interpolation for finding the so-
lution to the inverse function of (5) is included and used
for compensating the azimuth angles. The unbiased es-
timate, i.e. the compensated angle at i:th frequency bin
is denoted with θi.

3. METHODS FOR DIRECTION
ESTIMATION

In a certain time window, sound intensity vectors are
estimated over a set of frequencies. Each intensity vector
at frequency bin i, consists of a radial component ri and
of an angular component θi. In this article, the focus is
on finding the direction of a sound source from a set of
radial and angular components. Next, five methods for
direction estimation are formulated.

3.1 Circular Mean and Median

In direction estimation one has to take into account the
fact that the data is circular. Therefore, for example the
mean of a set of angles θ = [θ1, θ2, ..., θN ], θi ∈ (−π, π]
is defined as the circular mean (CME) [8]:

θ̂CME = arg

{ N
∑

i=1

wie
jθi

}

, (6)
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Figure 1: The square grid with four microphones and
the coordinate system.

where arg{·} is the argument of a complex number, and
wi = 1/N is the weighting function. In principle, the
weighting function can be chosen freely. If the weighting
function is chosen as wi = ri, with

∑

ri = 1, where ri

is the corresponding radial component of an intensity
vector, then CME is equal to the mean of the Cartesian
presentation (MCA) of the sound intensity, i.e.:

arg

{ N
∑

i=1

rie
jθi

}

= arctan

{

E{Iy}
E{Ix}

}

:= θ̂MCA, (7)

where E{·} is the expected value, Ix = [x1, x2, ..., xN ],
and Iy = [y1, y2, ..., yN ] are the Cartesian presentation
of the vectors.

Here, the circular median (CMD) is defined analo-
gously to CME:

θ̂CMD = arg

{

Me
{

Re{wie
jθi}

}

+ jMe
{

Im{wie
jθi}

}

}

,

(8)
where Me{·} is the median. The mode could also be
used instead of the median, but this is not considered
in this article. Again, the weighting function can be
selected freely. Here, wi = 1/N is selected as earlier
with CME.

3.2 Mixture Models

When inspecting the distribution of the azimuth angle
of the intensity vectors, for example in Fig. 2, one can
notice that the azimuth angle is a mixture of two distri-
butions rather than one. In the example in Fig. 2 the
distribution that has smaller variance (or higher con-
centration) is caused by the sound source. The second
distribution models the noise floor. The shape of these
distributions is defined by the impulse response, i.e. the
room and the frequency content of the source signal. A
new sound source in the room always introduces a new
distribution to the total azimuth distribution [2, 7].

Since the azimuth angle is circular, wrapped distri-
butions have to be used for the fitting. Here, two dis-
tributions are tested. The first one is the von Mises
probability distribution (VM) [2, 8]:

fVM(θ|µ, κ) =
eκ cos(x−µ))

2πI(0, κ)
, (9)
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Figure 2: Examples of the normalized histogram of
the estimated azimuth angles (top, –), the von Mises
mixture model (middle, - -), and the wrapped Gaussian
mixture model (bottom, - -), with mixture components
shown separately (–). The vertical lines (–·) illustrate
the true angle θs = −19◦ (top), and estimated source

directions θ̂VMM = −23◦(middle), θ̂WGM = −22◦ (bot-
tom). Source position S3 and receiver position R2 was
used (see Sec. 4).

where κ is a measure of concentration, µ is the mean,
and I(0, κ) is the modified Bessel function of order 0.
The second tested distribution is the wrapped Gaussian
probability distribution (WG)[9]:

fWG(θ|µ, σ) =
1√

2πσ2

K
∑

k=−K

e
−(θ−µ−2πk)2

σ2 , (10)

where σ2 is the variance, µ is the mean, and 2K + 1 is
the number of Gaussian to be wrapped, here K = 2.

The mixture model is formulated as the sum of the
distributions:

p(θ|µ, ρ) =

M
∑

m = 1

amf (m)(θ|µm, ρm), (11)

where, m indicates the index of a mixture, f = fWG

for the wrapped Gaussian mixture model (WGM), and
f = fVM for the von Mises mixture model (VMM). Pa-
rameters µ = [µ1, µ2, ..., µM] and ρ = [ρ1, ρ2, ..., ρM] de-
pend also on the model. The weighting factor is here
selected as am = 1/M and the number of mixtures is
M = 2, since there is only a single sound source. Thus,

one of the mixture components models the noise floor
and the other one the sound source. The direction of the
source is then estimated as the mean parameter µ of the
mixture component which has smaller variance (WGM)
or higher concentration (VMM). These estimated direc-

tions are noted here with θ̂WGMand θ̂VMM according to
the used model.

In order to find the parameters of the mixture model,
an optimization algorithm has to be used. The search
criteria is the same as in maximum-likelihood estima-
tion, where the goal is to maximize the likelihood

L(µ, ρ) =

N
∑

i=1

log p(θi|µ, ρ). (12)

Here, the parameters are sought with MATLAB’s
fminsearch which uses the Nelder-Mead method [10].
Other optimization algorithms that are more optimal for
this problem could be used as well, e.g. the expectation-
maximization algorithm. Figure 2 shows examples of
distributions estimated with both of the models and an
example of the original probability distribution function
(PDF), i.e. the normalized histogram of the estimated
directions.

4. EXPERIMENTAL SETUP

A microphone array consisting of two four-microphone
grids (see Fig. 1) was used. The four-microphone grids
share the same center point, having d = 10 mm and
d = 100 mm. The smaller grid is used for the frequen-
cies from 1 kHz to 5 kHz and the larger for frequencies
from 100 Hz to 1 kHz. The bias compensation is done
separately for both arrays.

The methods were tested with real concert hall data.
The impulse response measurement setup in the concert
hall (Pori, located in Finland) is given in Fig. 3. This
concert hall has 700 seats and a reverberation time of
approximately 2.1 seconds. The signals were recorded
at 48 kHz with three sound source locations (S), and
five receiving (R) locations for the array. Here, the first
three receiver positions are used (R1-R3 in Fig. 3). The
sound source was an omnidirectional loudspeaker of 26
cm diameter, consisting of 12 driver elements.

Two source signals, 2 seconds of violin playing a sig-
nal tone and 2 seconds of white noise, were convolved
with the measured impulse responses. Then, signal-to-
noise ratio (SNR) was varied by adding white noise (w(t)
in (1)) to the signals. Next, sound intensity vectors were
calculated and compensated as stated in Sec. 2. The
direction was estimated from the intensity vectors with
the methods introduced in Sec. 3 on a frame by frame
basis. Frames with 1024 samples in length and 50 %
overlap were used. For each method and test condition,
this leads to 9 × 187 = 1683 direction estimates. More-
over, 8192 bins was used in the fast Fourier transform.
This implies that the direction was estimated from 837
frequency bins, since the frequency band was from 100
to 5 kHz.

5. RESULTS AND DISCUSSION

In order to compare the methods, the estimated direc-
tions are processed as follows. Firstly, the anomalies are
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Figure 3: Receiver (R) and source (S) positions in the
concert hall of Pori. Receiver positions R1, R2, and R3,
and source positions S1, S2, and S3 were used in the
experiments.

removed from the direction estimates. Here, the thresh-

old criteria for an anomaly is 30◦, i.e. if |θ̂i − θs| > 30◦,
where θs is the true angle of the sound source, the esti-

mate θ̂i is considered to be an anomaly. The goodness
of a method is evaluated with three measures. The first
measure is the percentage of anomalies PAN, the sec-
ond measure is the circular bias of the non-anomalous
estimates θ̃i:

µθ =

∣

∣

∣

∣

arg

{ Ñ
∑

i=1

ej(θ̃i−θs)

}
∣

∣

∣

∣

and the third is the circular standard deviation:

σθ =

[

2

(

1 −
1

Ñ

∥

∥

∥

∥

Ñ
∑

i=1

ej(θ̃i−θs)

∥

∥

∥

∥

)]1/2

,

where Ñ is the number of non-anomalous estimates, | · |
is the absolute value of a real number and || · || is the
length of a complex number.

The results of the experiments for a white noise
source signal are presented in Fig. 4 and for a violin
source signal in Fig. 5. As expected, since white noise
has energy in all frequencies it provides more robustness
against additive noise and gives more accurate direction
estimation results than a violin source signal.

As one can see from Figs. 4 and 5, the mixture model
based estimation methods, VMM and WGM, perform
the best in all conditions, VMM having lowest num-
ber of anomalies in total, and therefore performing the
best of all the methods. The best estimator from the
first class (introduced in Sec. 3.1) is CME. However,
the differences in the performance between the mixture
model based estimation methods and two simple aver-
aging methods, CME, and CMD, are not drastical. The
worst estimator in all conditions is clearly MCA. Even
with the highest SNR the percentage of anomalies is
high (PAN ≈ 38 %).
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Figure 4: Bias (top) and standard deviation (middle) of
the non-anomalous estimates, as well as the percentage
of anomalies (bottom) against SNR. White noise was
used as the source signal and the reverberation time is
about 2.1 seconds.

VMM is the most robust method against additive
noise. In Fig. 5, VMM has less than 50 % of anomalies
in all the test conditions. Thus, even with high noise
level VMM is able to find the distribution caused by
the sound source. One reason for this might be that,
although the total energy of the noise is higher than
the energy of the sound source, the distribution caused
by the noise has much smaller concentration than the
distribution caused by the sound source.

The bias of all methods is less than 4 ◦ in all cases.
With noise source the bias increases in general when the
SNR increases. Thus, the error distribution is biased
more with high SNR. The reasons behind this unex-
pected behaviour are not clear. When the SNR is high
the bias is introduced by the reverberation. Perhaps,
this is caused by the non-idealities in the microphones.
However, with violin source signal the trend of the bias
is the opposite. The general trend of the standard de-
viation is that it decreases when the SNR increases, as
expected.

As the results indicated, MCA is not a good method
to estimate the direction of arrival from a continuous sig-
nal. MCA gives very often anomalous estimates. This
is caused by the weighting with the radial components,
since when the weighting is not used, as in CME, the
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Figure 5: Bias (top) and standard deviation (middle) of
the non-anomalous estimates, as well as the percentage
of anomalies (bottom) against SNR. The source signal
was violin and the reverberation time is about 2.1 sec-
onds.

estimation is close to the actual direction. So, at least in
thecase of circular mean it is not a good idea to use the
radial components as the weighting function. Perhaps,
if one would select only a certain set of the azimuth
and of the radial components one would arrive to bet-
ter result. Also, one could use a maximum-likelihood
weighting (with respect to the spectrums of the signal
and the noise) for the cross spectral components, as in
time delay estimation [5].

6. CONCLUSIONS

Five methods for estimating the direction of a sound
source from a set of sound intensity vectors was
considered. There were two classes of methods in test.
First class includes simple methods such as the circular
mean, and the second class contains methods that are
based on convolutive mixture models. The methods
were tested in a real concert hall environment. The
results indicate that the methods from the second class
perform better and provide more robustness against
additive noise than the methods from the first class.
Especially, the von Mises distribution was found to suit
well for the problem.
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