
ANALYSIS OF A SET-MEMBERSHIP AFFINE PROJECTION ALGORITHM INNONSTATIONARY ENVIRONMENTPaulo S. R. DinizLPS � Programa de Engenharia Elétria, COPPE/Poli/UFRJ, Cx. P. 68504, Rio de Janeiro, RJ, BRAZILemail: diniz�lps.ufrj.brABSTRACTSet-membership (SM) adaptive �lters have data-seletive o-e�ient update leading to lower omputational omplexityand power onsumption. The set-membership a�ne proje-tion (SM-AP) algorithm has been known for not trading on-vergene speed with misadjustment and omputation om-plexity. In this paper analytial results related to the SM-APalgorithm in nonstationary environments are advaned. Theanalysis results for the exess of mean square error (MSE) innonstationary environments are shown to be quite aurateon�rming the attrative features of the SM-AP algorithms.1. INTRODUCTIONThe a�ne projetion (AP) algorithm, �rst proposed in[1℄, is widely disussed in the open literature due its fasteronvergene than the stohasti gradient algorithms, suh asthe LMS, and its lower omputational omplexity than theRLS algorithm [1℄-[6℄. However, the AP algorithm tradeso� omputational omplexity with onvergene speed. Set-membership (SM) adaptive �ltering algorithms [7℄-[14℄ havebeen inreasingly disussed sine they redue the ompu-tational burden while keeping low misadjustment and fastonvergene. As a result, the ombination of SM and APresults in omputationally e�ient algorithms with low mis-adjustment and high onvergene speed, suh as the SM-APalgorithms [9℄. Analytial results onerning the SM-AP al-gorithms are sare in the open literature [2℄, whereas resultsonerning nonstationary environments are not available sofar. The objetive of this paper is to propose analytial ex-pressions for the behavior of the SM-AP algorithms in non-stationary environmentsThis paper is organized as follows. In Setion 2 the SM-AP algorithms are brie�y presented along with their energyonservation equations. Setion 3 addresses the traking per-formane of the SM-AP algorithms in simple nonstationaryenvironments, where the unknown system parameters aremodeled as �rst-order Markov proesses. Setion 4 presentssome simulation results whih on�rm the validity of the an-alyti expressions.2. SET-MEMBERSHIP AFFINE PROJECTIONALGORITHMLet's de�ne the adaptive �lter output
y(k) = wTx(k) (1)where x(k) = [x0(k) x1(k) . . . xN(k)]T is the input sig-nal vetor, and w = [w0 w1 . . . wN ]T is the parametervetor. Assuming the availability of a referene signal se-quene d(k) and a sequene of input vetors x(k), both for

k = 0, 1, 2, . . . ,∞, the estimation error sequene e(k) is de-�ned as
e(k) = d(k) −wTx(k) = d(k) − y(k) (2)

The vetors x(k) and w ∈ R
N+1, where R represents the setof real numbers, whereas e(k) and y(k) represent the outputerror and adaptive �lter output signal, respetively. The ob-jetive of the SMF is to hoose w suh that the magnitudeof estimation output error is upper bounded by a presribedquantity γ. If the value of γ is properly hosen, several validestimates for w exist. That means any �lter parameter isaeptable as long as the magnitude of the output estima-tion error is smaller than the deterministi threshold γ. Thebounded error onstraint results in a set of estimates ratherthan a single one. If γ is hosen too small there might be nosolution.In atual appliations only measured data are available.Given a set of data pairs {x(i), d(i)}, for i = 0, 1, . . . , k,we an de�ne H(k) as the set ontaining all vetors w suhthat the assoiated output error at time instant k is upperbounded in magnitude by γ. That means,

H(k) = {w ∈ R
N+1 : |d(k) −wTx(k)| ≤ γ} (3)The set H(k) is known as the onstraint set. The bound-aries of H(k) are hyperplanes. For the two-dimensional ase,where the oe�ient vetor has two elements, H(k) repre-sents the region between the lines where d(k) − wTx(k) =

±γ. For more than two dimensions, H(k) represents theregion between two parallel hyperplanes in the parameterspae w.Eah data pair is assoiated with a onstraint set. As aonsequene the intersetion of the onstraint sets over allthe available iterations i = 0, 1, . . . , k, is alled the exatmembership set ψ(k), formally de�ned as
ψ(k) =

k
\

i=0

H(i) (4)The set ψ(k) represents a polygon in the parameter spae,and one of the main objetives of the SMF is to �nd thepolygon loation. In the early iterations it is likely that theonstraint set redues the size of the membership-set poly-gon. The polygon in w, represented by ψ(k), beomes smallif the set of data pairs inludes substantial innovation. Thisondition is usually met after a large number of iterations
k, when most likely ψ(k) = ψ(k − 1), where ψ(k − 1) isalready plaed inside the onstraint set H(k). In suh sit-uation, the parameters do not require updating sine theurrent membership set is inside the onstraint set, givingrise to a data-dependent seletion of update.The SM-AP algorithm minimizes the objetive funtionby performing a oe�ient update wheneverw(k) 6∈ ψL+1(k)in suh a way that

min ‖w(k + 1) −w(k)‖2 (5)subjet to:d(k) −XT (k)w(k + 1) = γ(k) (6)
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where d(k) is the desired signal vetor and X(k) is the inputsignal matrix. Fig. 1 depits a typial oe�ient updaterelated to the SM-AP algorithm for the ase with two pa-rameters, i.e., for L = 1 and |γi(k)| < |γ|, suh thatw(k + 1)is not plaed at the border of H(k).
H(k − 1)

d(k − 1) − w
T
x(k − 1) = γ

d(k − 1) − w
T
x(k − 1) = −γ

d(k − 1) − w
T
x(k − 1) = γ2(k)

H(k)

w(k)

w(k + 1)

d(k) − w
T
x(k) = γ1(k)

d(k) − w
T
x(k) = −γ

d(k) − w
T
x(k) = γFigure 1: SM-AP algorithm oe�ient update, L = 1.The updating equation of the SM-AP algorithm is givenby w(k + 1) =

(w(k) +X(k)
hXT (k)X(k)

i

−1
[e(k) − γ(k)] if |e(k)| > γw(k) otherwise (7)where e(k) = [e(k) ε(k − 1) . . . ε(k − L)]T (8)with ε(k − i) = d(k − i) − xT (k − i)w(k) denoting the aposteriori error alulated with the data pair of iteration

k − i using the oe�ients of iteration k, for k = 1, . . . , L.The general desription of the SM-AP algorithm is desribedin detail below.The Set-Membership A�ne Projetion AlgorithmInitializationx(0) = w(0) = [0 . . . 0]Thoose γ around √
5σn (to be explained)

δ = small onstantDo for k ≥ 0e(k) = d(k) −XT (k)w(k)w(k + 1) =

(w(k) +X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)]if |e(k)| > γw(k) otherwiseWhenever required, the updating equation of the set-membership a�ne projetion algorithm has the followingformw(k + 1) = w(k) +X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)](9)Before proeeding it should be onsidered that a oe�ientupdate will not take plae all the time. This an be addressedby assoiating to the oe�ient updating equation of the SM-AP algorithm a probability of updating denoted by Pup(k),with its model brie�y desribed in Appendix I. Assumingthat the desired signal is given by
d(k) = wT

o x(k) + n(k) (10)the underlying updating equation an be alternatively de-sribed by
∆w(k + 1) = ∆w(k)

+Pup(k)X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)] (11)

where ∆w(k) = w(k) −wo.By premultiplying equation (11) by the input vetor ma-trix, the following expressions resultXT
(k)∆w(k + 1) = XT

(k)∆w(k)

+Pup(k)XT (k)X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)]

−ε̃(k) =−ẽ(k)

+Pup(k)XT
(k)X(k)

hXT
(k)X(k) + δIi−1

[e(k) − γ(k)](12)where
ε̃(k) = −XT (k)∆w(k + 1) (13)is the noiseless a posteriori error vetor andẽ(k) = −XT (k)∆w(k) = e(k) − n(k) (14)is the noiseless a priori error vetor withn(k) = [ n(k) n(k − 1) . . . n(k − L) ]

Trepresenting the standard noise vetor.Let's now de�ne the following quantitye(k) = e(k) − γ(k) (15)With the above de�nition, by solving equation (12), weget
“XT (k)X(k)

”

−1
(ẽ(k) − ε̃(k)) = Pup(k)

“XT (k)X(k) + δI
”

−1 e(k)Multiplying both sides byX(k) and then replaing the equa-tion above in equation (11), the resulting expression is givenby
∆w(k + 1) −X(k)

“XT
(k)X(k)

”

−1 ẽ(k)

= ∆w(k) −X(k)
“XT (k)X(k)

”

−1
ε̃(k) (16)Assumptions: The additional noise is white and statisti-ally independent of the input signal; the inverse of the in-herent orrelation matrix is statistially independent of boththe a priori error and the noises; the error in the oe�ientsduring the transient is independent of the data; the a priorierror e(k) is modeled as a zero-mean Gaussian proess, afteronvergene. From the above equation it is shown in [2℄ that

(2 − Pup(k))tr
n

E[ẽ(k)ẽT (k)]E[Ŝ(k)]
o

+2(1 − Pup(k))tr
n

E[n(k)ẽT (k)]E[Ŝ(k)]
o

=

Pup(k)tr
n

E[n(k)nT (k)]E[Ŝ(k)]
o (17)where Ŝ(k) is the inverse of XT (k)X(k).Any hoie for the thresholds γi(k) is valid as long asthey orrespond to points represented by the adaptive �lteroe�ients in H(k − i+ 1), i.e., |γi(k)| ≤ γ. A partiularlysimple SM-AP version is obtained if γi(k) for i 6= 1 orre-sponds to the a posteriori error ε(k − i+ 1) = d(k− i+1)−wT (k)x(k − i+ 1) and γ1(k) = e(k)/|e(k)|. Sine the oe�-ients were updated onsidering previous data pairs then atthe urrent iteration it is true that w(k) ∈ H(k − i+ 1), i.e.,

|ε(k − i+ 1)| = |d(k − i+ 1) − xT (k − i+ 1)w(k)| ≤ γ, for
i = 2, . . . , L+1. Therefore, by hoosing γi(k) = ε(k − i+ 1),
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for i 6= 1, all the elements the a posteriori errors remain on-stant, exept for �rst element. The onstraint value γ1(k)an be seleted as in the SM-NLMS algorithm where γ1(k)is suh that the solution lies at the nearest boundary of H(k),i.e.,
γ1(k) = γ

e(k)

|e(k)| = γsgn[e(k)] (18)The resulting update equation is then given byw(k + 1) = w(k) +X(k)
hXT (k)X(k)

i−1

µ(k)e(k)u1 (19)where u1 = [1 0 . . . 0]T ,
e(k) = d(k) −wT (k)x(k) (20)
µ(k) =



1 − γ

|e(k)|
if |e(k)| > γ

0 otherwise (21)This algorithm minimizes the Eulidean distane
‖w(k + 1) − w(k)‖2 subjet to the onstraintw(k + 1) ∈ ψL+1(k) suh that the a posteriori er-rors at iteration k − i, ε(k − i), are kept onstant for
i = 2, . . . , L + 1. Fig. 2 illustrates a typial oe�ientupdating for the simpli�ed SM-AP algorithm where it isobserved that the a posteriori error related to previousdata remains unaltered. The simpli�ed SM-AP algorithm

H(k − 1)

d(k − 1) − w
T
x(k − 1) = γ2(k − 1)

w(k)

d(k − 1) − w
T
x(k − 1) = γ

d(k − 1) − w
T
x(k − 1) = −γ

H(k)

d(k) − w
T
x(k) = γ

d(k) − w
T
x(k) = −γ

w(k + 1)

Figure 2: Simpli�ed SM-AP algorithm oe�ient updatewith onstant a posteriori error, L = 1.given by equation (19) will perform an update if and only ifw(k) 6∈ H(k), or |e(k)| > γ. After some lengthy derivationspresented in [2℄ it is possible to verify that
E[ẽ2

0(k)] ≈
(L + 1)Pup

2 − Pup

×
σ2

n + γ2

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0(k)]

γ

!(22)In the expression above, γ is the SM threshold and e20(k)denotes the MSE. Therefore, the misadjustment for the set-membership a�ne projetion algorithm is given by
M =

(L + 1)Pup

2 − Pup

×

γ2

σ2
n

+ 1

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

! (23)

For small 1−Pup, this equation an be approximated by
M =

(L+ 1)Pup

(2 − Pup)

„

γ2

σ2
n

+ 1

« (24)3. BEHAVIOR IN NONSTATIONARYENVIRONMENTSIn a nonstationary environment the error in the oe�-ients is desribed by the following vetor
∆w(k + 1) = w(k + 1) −wo(k + 1) (25)where wo(k + 1) is the atual time-varying vetor. For thisase, equation (16) beomes

∆w(k + 1) = ∆ŵ(k)

+Pup(k)X(k)
“XT (k)X(k) + δI

”−1

(e(k) − γ(k))(26)where ∆ŵ(k) = w(k) − wo(k + 1). By premultiplying theexpression above by XT (k) it follows thatXT (k)∆w(k + 1) = XT (k)∆ŵ(k)

+Pup(k)XT (k)X(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k))

−ε̃(k) = −ẽ(k)

+Pup(k)XT (k)X(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k))(27)By solving the equation (27), it is possible to show that

“XT (k)X(k)
”

−1
[ẽ(k) − ε̃(k)] =

Pup(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k)) (28)Following the same proedure to derive equation (16), wean now substitute equation (28) in equation (26) in orderto dedue that

∆w(k + 1) −X(k)
“XT

(k)X(k)
”

−1 ẽ(k) = ∆ŵ(k)

−X(k)
“XT

(k)X(k)
”

−1
ε̃(k) (29)By omputing the energy on both sides of this equation itis possible to show that

E
h

‖∆w(k + 1)‖2
i

+ E

»ẽT (k)
“XT (k)X(k)

”

−1 ẽ(k)

–

= E
h

‖∆ŵ(k)‖
2
i

+ E

»

ε̃
T

(k)
“XT

(k)X(k)
”

−1
ε̃(k)

–

= E
h

‖∆w(k) + ∆wo(k + 1)‖2
i

+E

»

ε̃
T (k)

“XT (k)X(k)
”

−1
ε̃(k)

–

≈ E
h

‖∆w(k)‖2
i

+ E
h

‖∆wo(k + 1)‖2
i

+E

»

ε̃
T

(k)
“XT

(k)X(k)
”

−1
ε̃(k)

– (30)where ∆wo(k + 1) = wo(k) − wo(k + 1), and in the lastequality we have assumed that E ˆ∆wT (k)∆wo(k + 1)
˜

≈
0. This assumption is valid for simple models for the time-varying behavior of the unknown system, suh as random
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walk model1. We will adopt this assumption in order tosimplify our analysis.In Appendix II we ompute the ovariane of ∆wo(k+1)leading to
E
h

‖∆wo(k + 1)‖2
i

= tr{cov[∆wo(k + 1)]}

= (N + 1)

"

2κ2w
1 + λw # σ

2w (31)with κw de�ned in the Appendix II.Solving equation (30) using equation (31) and assumingthat the algorithm has onverged suh that
E
ˆ

‖∆w(k + 1)‖2˜ = E
ˆ

‖∆w(k)‖2˜Equation (30) an be expressed as
P

2
upE

»ẽT
(k)
“XT

(k)X(k)
”

−1 ẽ(k)

–

= PupE

»

ε̃
T (k)

“XT (k)X(k)
”

−1
ε̃(k)

–

+(N + 1)

"

2κ2w
1 + λw # σ

2w (32)Leading to the equation
P

2
upE

h

(e(k) − γ(k))T Ŝ(k)R̂(k)Ŝ(k) (e(k) − γ(k))
i

= PupE
hẽT (k)Ŝ(k) (e(k) − γ(k)) + (e(k) − γ(k))T Ŝ(k)ẽ(k)

i

+(N + 1)

"

2κ2w
1 + λw #σ

2w (33)By solving this equation following the same proedure as in[2℄, we an derive the exess of MSE only due to the time-varying unknown system.
ξlag =

(N + 1)

Pup(2 − Pup)

»

2κ2w
1 + λw – σ2w (34)By taking into onsideration the additionalnoise and the time-varying parameters to be es-timated, the overall exess of MSE is given by

ξexc =
(L + 1)Pup

2 − Pup

σ2
n + γ2

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

!

+
(N + 1)

Pup(2 − Pup)

"

2κ2w
1 + λw #σ

2w
=

1

2 − Pup

8

>

>

>

>

<

>

>

>

>

:

(L + 1)Pup(σ2
n + γ2)

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0(k)]

γ

!

+
N + 1

Pup

"

2κ2w
1 + λw # σ

2w) (35)1In this model the oe�ients hange aording to wo(k) =wo(k − 1) + nw(k).

If κw = 1, the expression above beomes simpler
ξexc =

1

2 − Pup

8

>

>

>

>

<

>

>

>

>

:

(L + 1)Pup(σ2
n + γ2)

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

!

+
2(N + 1)

Pup(1 + λw)
σ

2wff (36)As an be veri�ed, the ontribution due to the lag is in-versely proportional to the value of Pup. This is an expetedresult sine if the updates are not frequent the adaptive �l-ter will not be able to trak the variations in the unknownsystem. 4. SIMULATION EXAMPLESAn adaptive �ltering algorithm is used to identify a sys-tem whose impulse response is given by [2℄
[0.1 0.3 0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]using the SM-AP algorithm using L = 0, L = 1 and L = 2.Table 1 lists the estimated and measured misadjustmentsfor L = 0, L = 1, and L = 2. The results were obtained for

γ =
√

2.7σ2
n and γ =

√
5σ2

n. The results re�et the average ofthree distint experiments with di�erent values of the inputsignal orrelation matrix eigenvalue spread. The expetedmisadjustments are lose to the measured ones despite theapproximations in the derivation of the theoretial formula.Table 1: Evaluation of the SM-AP Algorithm, γ =
√

2.7σ2
nand γ =

√
5σ2

n Misadjustment
γ L = 0 L = 1 L = 2Exp. Theory Exp. Theory Exp. Theory√
2.7σ2

n 0.2591 0.3354 0.4137 0.4315 0.5305 0.5432√
5σ2

n 0.1947 0.1934 0.2295 0.2292 0.3305 0.2738In Fig. 3, it is shown the measured and theoretial val-ues of the exess of MSE in a non-stationary environment,for the ase where λw = 0.96. One again the measured andtheoretial results obtained from equation (35) are as lose assimilar results usually found in the literature, demonstratingthe validity the proposed analysis. It an be observed thatthe results are less aurate for larger values of γ due toa redution in the number updatings, turning the trakingmore di�ult. The omputational omplexity of the SM-APalgorithm is similar to the original AP algorithm wheneveran update is required. However, the SM-AP algorithm sub-stantially redues the misadjustment.5. CONCLUDING REMARKSThis paper presented the analysis of the set-membershipa�ne projetion (SM-AP) algorithms in nonstationary en-vironments. The losed form expressions, derived for theexess of MSE of the SM-AP algorithms in nonstationary en-vironments, are tools for the proper setup of these algorithmsin pratial appliations. Some simulation results were in-luded verifying that the analytial results math well theexperimental ones.
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Figure 3: Exess of MSE in nonstationary environments ofthe SM-AP algorithms for L = 0, L = 1, and L = 2, eigen-value spread equal 20.Appendix IThe expression of the exess of MSE in the SM-AP algo-rithm must take into onsideration how often the algorithmupdates the oe�ients after the transient. In [2℄ it is shownthat probability that the adaptive �lter is updated an beapproximated by
P̂up ≈ max

"

2Q

 

γ
p

(σ2
n + γ2)

!

+ 2Q

„

γ√
5

«

, 1

# (37)where Q[·] is the omplementary umulative distributionfuntion, and σ2
n is the additional noise variane.Appendix IIThe time-varying harateristi of the unknown systemis a soure of exess mean-square error. In order to takeinto aount the exess MSE let's onsider that eah elementof the atual oe�ient vetor is modeled as a �rst-orderMarkov proess [17℄, sine it leads to simple derivations. The�rst-order Markov proess is desribed bywo(k) = λwwo(k − 1) + κwnw(k) (38)where nw(k) is a vetor whose elements are zero-mean whitenoise proesses with variane σ2w, and λw < 1. The fa-tor κw = (1 − λw)

p
2 , for p ≥ 1, is hosen suh that

E[wo(k)wT
o (k)] is bounded.The value of the exess of MSE requires the ovarianeof ∆wo(k + 1) = wo(k) −wo(k + 1), that is

cov[∆wo(k + 1)] = E
h

(wo(k + 1) −wo(k))(wo(k + 1) −wo(k))T
i

= E
h

(λwwo(k) + κwnw(k) −wo(k))(λwwo(k) + κwnw(k) −wo(k))
T
i

= E
n

[(λw − 1)wo(k) + κwnw(k)][(λw − 1)wo(k) + κwnw(k)]T
o(39)Sine eah element of nw(k) is a zero-mean white noiseproess with variane σ2w, and λw < 1, it follows that

cov[∆wo(k + 1)] = κ2wσ2w (1 − λw)2

1 − λ2w I + κ2wσ2wI

= κ2w »1 − λw
1 + λw + 1

–

σ2wI (40)
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