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ABSTRACT
In this paper, the performance of chaos-based DS-CDMA
communication system over an m-distributed fading channel
is evaluated. The chaos synchronization is assumed and a co-
herent reception in multi-user case is considered. Based on
the Rician approximation of the energy distribution, an exact
analytical expression of the bit error rate is derived. Many
chaotic maps are used in order to demonstrate the exactitude
of our analytical approach. Analytical and simulated results
are presented and compared.

1. INTRODUCTION

Communication systems involving chaotic sequences have
received much attention in the past ten years [15]. This may
be due to the advantages provided by chaotic signals, such as
robustness in multipath environments and resistance to jam-
ming [24]. Chaotic signals are non periodic, broadband, and
difficult to predict and to reconstruct. These properties coin-
cide with requirements for signal used in communication sys-
tems, in particular for spread-spectrum and secure communi-
cations [24, 15]. The results of Pecora and Carrolls [19] on
synchronizing two chaotic processes inspired many chaotic
communication systems. However, it is practically difficult
to achieve, and it is then not used in all chaos-based systems.
Others robust synchronization techniques are proposed for
chaos-based communication systems [8] [12]. These systems
can achieve synchronization for low signal to noise ratio. The
basic principle to apply chaotic sequences in spread spectrum
systems consists of replacing the conventional binary spread-
ing sequences, such as m-sequences or Gold sequences, by
a chaotic sequence. Nowadays, PN sequences are the most
popular sequences in direct sequence spread spectrum. These
sequences have good correlation properties but have a lim-
ited security: they can be reconstructed by linear regression
attack because of their short linear complexity [20]. On the
other hand, the use of chaotic sequences instead of conven-
tional PN sequences increases transmission security because
chaotic signals can be seen as non periodic signals with an
infinite number of states [26].
A large literature exists also on chaotic spreading sequences
design [3] and optimization [22, 23]. Among the various dig-
ital chaos-based communication schemes, coherent chaos-
shift-keying (CSK) [14, 25, 26], chaos-based DS-CDMA
[22, 23], and noncoherent differential chaos-shift-keying
(DCSK)[13] schemes have been most thoroughly analyzed.
In our paper, we are only interested by computing the perfor-
mance of chaos-based DS-CDMA. In our modulation spread
spectrum schemes we use the chaotic wideband waveforms
directly to represent the binary symbols as in [15]. Coherent

systems like chaos-based DS-CDMA system require coher-
ent correlators with the assumption that the receiver is able
to generate a locally synchronous chaotic signal.system as
that describded in [25], i.e. the bit sequence is spread by
multiplying it by the chaotic sequence. Note that other CSK
systems can be found in the literature [15].
In order to compute the bit-error rate (BER) performance of
chaos-based communication systems, many various assump-
tions have been presented. The simplest approximation used
in [7] for example, is to consider the transmitted chaotic bit
energy being constant. This approximation yields to very
imprecise BER performance when the considered spreading
factors are very small. In fact, because of the non periodic
nature of chaotic signals, the transmitted bit energy after
spreading by chaotic sequence varies from one bit to another.
Another widely used assumption is to consider the Gaus-
sian approximation for the decision parameter at the corre-
lator output [18, 25, 7]. This approximation considers the
sum of dependent variables as a Gaussian variable. Since the
chaotic signals are generated from a deterministic generator,
the Gaussian approximation can be valid for high spreading
factors but suffers from precision for small ones [26].
An exact computation of the BER for single and multi-
user chaos communication system was recently presented by
Lawrance et al in [26, 16]. In their approach, they did not use
the constant bit energy approximation, neither the Gaussian
assumption. Only additive channel noise and multiple access
interference noise follow, in their study, a Gaussian distri-
bution. Their approach enables the dynamics properties of
the chaotic sequence by integrating the BER expression for
a given chaotic map over all possible chaotic sequences for a
given spreading factor. This latter method is compared to the
BER computation under Gaussian assumption in [8, 26] and
seems more realistic to match the exact BER. But, as men-
tioned in [16], the method has a high computational cost.
Since previously presented approaches are not valid for small
spreading factors or have a high complexity of computa-
tion, another accurate approach was recently developed in
[9, 11, 10] to compute the exact BER performance for sin-
gle and multi-user chaos-based DS-CDMA over an Additive
White Gaussian Noise (AWGN) channel. The idea is to com-
pute the Probability Density Function (PDF) of the chaotic
bit energy and to integrate the BER over all possible values
of the PDF. The shape of the PDF bit energy is a qualitative
indication concerning expected BER performances.
The system studied in this paper is quiet similar to the co-
herent CSK system. The earliest study of the performance of
chaos-based DS-CDMA system over a Rayleigh channel was
performed in [7]. The Gaussian approximation is used in [7]
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in order to give the empirical BER curves, and the BER per-
formances of the studied systems are computed by numerical
simulations. Our motivation in this paper is to give an exact
analytical BER expression without neglecting the dynamical
properties of chaotic sequences.
The channel used in this paper is an m-distributed fading
channel (e.g. Rice and Rayleigh channels). The analog
chaotic wideband waveforms are used directly to spread the
binary symbols. Based on previous works on the robust
synchronization of chaos-based communication systems [8]
[12], we assume that the perfect synchronization is achieved.
Further, the approach adopted here may be valid for many
others chaotic communication systems.
Section 2 presents the transmitter structure and the channel
model. In section 3, the demodulation process is defined, and
the theoretical BER is provided, and section 4 is dedicated to
simulation results.

2. CHAOS BASED DS-CDMA SYSTEM

The multi-user chaos-based DS-CDMA system is repre-
sented in figure 1.
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Figure 1: Simplified baseband equivalent of chaos-based DS-
CDMA system with a m-distributed fading channel.

2.1 Transmitter structure
The studied system is a chaos-based DS-CDMA system with
M asynchronous users. The data information symbols of user
m (s(m)

i = ±1) with period Ts are generated by independent
sources. Symbols of user m are spread by a chaotic sequence
x(m)(t). The chaotic sequences of all users are generated us-
ing the same chaotic generator f (.) with different initial con-
ditions. A new chaotic sample (or chip) is generated every
time interval equal to Tc (x(m)

k = x(m)(kTc)) from

x(m)
k+1 = f (x(m)

k ) (1)

The chaotic sequences generated from f (.) have a common
mean µ and a common variance. It is always possible to
move the map to achieve µ = 0 without changing the dynam-
ical properties of the map. The mean of all sequences is then
assumed egal to zero (µ = 0) in this paper. The transmitted
signal of user m at the output of the transmitter is:

u(m)(t) =
∞

∑
i=0

β−1

∑
k=0

s(m)
i x(m)

iβ+kg(t− (iβ + k)Tc) (2)

where g(t) is the pulse shaping filter (in this paper we have
chosen a rectangular pulse of unit amplitude on [0, Tc]), β is
the spreading factor, which is equal to the number of chaotic
samples in a symbol duration (β = Ts/Tc).

2.2 Chaotic maps
In order to generalize our approach, four chaotic maps have
been chosen. These maps are widely used in chaos-based
communication systems [7, 15, 9]. They have different sta-
tistical properties, which allows us to consider a large family
of chaotic maps. The first map is the Chebyshev polynomial
function of order 2 (CPF); the second one is the Cubic map;
the third one is the Hénon map, and the last one is a piecewise
linear map (PWL). They are given by:
1- CPF map: xk+1 = 1−2x2

k

2- Cubic map: xk+1 = 4x3
k−3xk

3- Hénon map:
{

xk+1 = 1+ yk−1.4x2
k

yk+1 = 0.3xk

4- PWL map:
{

zk = L |xk|+φ [mod 1]
xk+1 = sign(xk)(2zk−1)

The PWL map depends on parameters L and φ . L is a positive
integer and φ (0 < φ < 1 ) is a real number. Throughout
the paper, the PWL parameters are fixed as follows: L = 3,
φ = 0.1 [2].

2.3 Channel model
Figure 1 shows the bloc diagram of the channel model. τ(m)

is the time delay of user m (these delays are different, so that
the users are asynchronous), and λ (1)... λ (M) are independant
random variables of the form:

λ
(m) =

√
2K(m) +a(m) + jb(m) (3)

where K(m) is the channel gain and a(m), b(m) are two in-
dependent Gaussian random variables with zero mean and
variances equals to 1. The channel distribution depends on
the value of K(m). For low gain, the channel can be seen as
a Rayleigh channel, but when K(m) is high the channel fol-
lows the Rice distribution. The channels of all users are inde-
pendent. An additive complex circular white Gaussian noise
w(t) is added at the output of the channels, with a two-side
power spectral density equal to N0. The multi-user received
signal is finally given by :

r(t)=
M

∑
n=1

∞

∑
i=0

β−1

∑
k=0

λ
(n)s(n)

i x(n)
iβ+kg(t− (iβ + k)Tc− τ

(n))+w(t).

(4)
3. BER EXPRESSION

3.1 Demodulation Process
At the receiver, the first step of the detection for the bit
i of user m consists of passing the received signal r(t)
through the filter matched to g(t) in the interval [(iβ +k)Tc +
τ(m);(iβ + k + 1)Tc + τ(m)], assuming perfect synchroniza-
tion (i.e. knowledge of the delay τ(m) for user m only), for
all k = 0, . . . ,β −1, yielding to variables

ρ
k
(i,m) ,

∫ (iβ+k+1)Tc+τ(m)

(iβ+k)Tc+τ(m)
r(t)g

(
t− (iβ + k)Tc− τ

(m)
)

dt

(5)
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After channel compensation (which assumes that the channel
gain for user m is known), the decision variable is defined as

D(m)
i , real

((
λ

(m)
)∗ β−1

∑
k=0

ρ
k
(i,m)x

(m)
iβ+k

)
(6)

and the symbol estimation is defined as

ŝ(m)
i = sign

(
D(m)

i

)
(7)

Note that other multi-user detectors have been proposed in
[5] for DCSK systems, where the corresponding perfor-
mances are also provided. It can then be shown that D(m)

i
can be expressed as

D(m)
i = |λ (m)|2s(m)

i E(i,m)
bc + ∑

n 6=m
MUIm(n)+nm,i (8)

where E(i,m)
bc , Tc ∑

β−1
k=0

(
x(m)

iβ+k

)2
is the chaotic energy corre-

sponding to the ith symbol interval, MUIm(n) denotes the in-
terference of user n on user m, and nm,i is a zero-mean Gaus-
sian variable representing the noise term.

3.2 BER expression of chaos based DS-CDMA system
Due to the non periodic nature of chaotic sequence, the en-
ergy E(i,m)

bc is not constant for all transmitted bits. From
the central limit theorem, one can assume that the sum
of the multi-user interference (MUI) terms in (8) is nor-
mally distributed. Moreover, under mild conditions, the
variance of the MUI-plus-noise term can be expressed as
1
2 |λ

(m)|2E(i,m)
bc ψ(i,m), where ψ(i,m) depends on the (low) cor-

relations between user m and the other users, on the gains
λ (n), on the delays τ(n), and on N0. The actual expression of
ψ(i,m) is not given here for brevity. According to the fact that
the symbols are equally distributed on the set {−1,+1}, it
comes from (7) and (8) that the detection probability of sym-
bol i (with energy E(i,m)

bc ) for a given gain λ (m) and for given

energie E(i,m)
bc is given by:

P(i,m)
er = Q


∣∣∣λ (m)

∣∣∣2 E(i,m)
bc√

1
2

∣∣λ (m)
∣∣2 E(i,m)

bc ψ(i,m)

 (9)

The mean BER of the system is obtained by integrating (9)
over all possible values of the bit energy and channel gain
(using the notation λ̃=|λ |):

BER(i,m) =
∫

∞

0

∫
∞

0
Q

√2λ̃ 2Ebc

ψ(i,m)

 p(Ebc)p(λ̃ )dEbcdλ̃

One can also expressed the mean BER as

BER(i,m) =
∫

∞

0
Q

(√
2V 2

ψ(i,m)

)
p(V )dV , with V = λ̃

√
Ebc

(10)

The computation of (10) requires the knowledge of the pdf
of V . Now, eq. (10) is similar to the BER obtained in the
framework of mobile radio channels. Indeed, the BER ex-
pression for a BPSK transmission over a radio channel with
gain ρ and with bit energy-to-noise ratio Eb/N0 is:

BERRadio channel =
∫

∞

0
Q

√2ρ2Eb

N0

p(ρ)dρ (11)

Closed form expressions are available for (11) in the case
of channels following Rayleigh [4], Nakagami [6] or Rice
distributions [17] . Expression (10) has the same form as
(11) and all previous results on (11) can be used for getting
an analytical form of integral (10).

Figure 2: Examples of PDFs of variable V for different
chaotic maps (Hénon, CPF, PWL, Cubic), and correspond-
ing approximated Rice PDFs.

4. BER COMPUTATION

In order to compute analytically the integral in (10), one
needs an expression of the pdf of V = λ̃

√
Ebc. Now, the

actual pdf is not standard, since it depends on the particular
distribution of the energy E(i,m)

bc . One proposes then to ap-
proximate this distribution by one of the three distributions
(Rayleigh, Rice, and Nakagami) which allows us to obtain a
closed-form expression from (10) and (11). For many differ-
ent examples of system parameters (in particular, for differ-
ent chaotic sequences), these three theoretical densities have
been considered to approximate the density of V . The pa-
rameters of these distributions have been chosen in order to
best fit the actual distribution. From these different examples,
it always appeared that the Rice distribution gives the best
approximation. Therefore, one focused on this distribution.
Figure 2 gives some examples of the distribution of V with
gain K = 0dB of the Hénon (with β = 10), CPF (β = 20),
PWL (β = 30), Cubic (β = 40) chaotic sequences, along
with the corresponding approximated Rice densities. The
histogram of each sequence is obtained from 106 samples.
The procedure to derive the Rice parameters is describded
below.

4.1 Derivation of the Rice distribution parameters
Let R be a random variable distributed according to a Rice
distribution. The general Rice pdf is a function defined for
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positive real numbers by:

pR(r) =
2(Kr +1)r

Ω
e−Kr− (Kr+1)r2

Ω I0

(
2

√
Kr(Kr +1)

Ω
r

)
(12)

where r ≥ 0, Kr ≥ 0, Ω ≥ 0, and I0 is the modified Bessel
function of the first kind with order zero. The shape parame-
ter Kr can be expressed in terms of γ explicitly as [1]:

Kr =
√

1− γ

1−
√

1− γ
(13)

Parameters Ω and γ can be obtained from the second-order
moments of variable R by [17]:

Ω = E[R2], γ = var(R2)/Ω
2 (14)

Therefore, we propose to define parameters Ω and γ of the
Rice distribution which approximates the distribution of V
so that they match the same equations (14) with V instead of
R. Therefore, we set:

Ω = E[V 2] = TcE
[
(
√

2K(m) +a)2 +b2
]

E
[
∑

β−1
k=0

(
xiβ+k

)2
]

= 2Tc(1+K(m))E
[
∑

β−1
k=0

(
xiβ+k

)2
]

(15)
and

γ = var(V 2)/Ω2 = E[V 4]−Ω

Ω2

= 1
Ω2

(
4T 2

c ((K(m) +1)2 +1)E
[(

∑
β−1
k=0

(
xiβ+k

)2
)2
]
−Ω

)
(16)

In (15) and (16), the mathematical expectations are estimated
from the chaotic sequences. Kr is then obtained from (13).

4.2 Analytical BER expression
Once the pdf of V has been approximated by the Rice distri-
bution as above, the BER (10) is obtained from (11), yielding
to [17] :

BER(i,m) = Q(u,v)− I0(uv)
2

[
1+

√
d

1+d

]
exp
(
−u2 + v2

2

)
(17)

where u =

√
Kr [1+2d−2

√
d(d+1)]

2(1+d) , v =

√
Kr [1+2d+2

√
d(d+1)]

2(1+d) ,

and d = Ω

Kr+1
Eb

ψ(i,m) . Moreover Eb is the constant bit energy

before spreading, and Q(., .) is the Marcum Q-function [17].
Note that BER(i,m) actually depends on i (and m), through the
term ψ(i,m). However, due to the low correlations between
chaotic sequences, this dependency is weak, and BER(i,m) re-
mains almost constant for all i, as shown in the simulations.

5. SIMULATIONS

In the simulations presented below, all user channels have
the same gain. In figure 3, the BER curves are obtained from
(17), and from Monte Carlo simulations for the chaos-based
DS-CDMA system. The simulated BER curve of the conven-
tional DS-CDMA system using Gold codes is also plotted to
compare the performances between both systems. It clearly

appears that there is an excellent match between simulations
and analytical results of chaos-based DS-CDMA system. In
multi-user case, the performance of the DS-CDMA system
is worse than the chaos-based DS-CDMA system when the
spreading factor is low. This is due to the fact that the chaotic
sequences in multi-user case have a lower cross-correlation
magnitude than short Gold sequences [21]. But when the
spreading factor is high, the cross-correlation magnitude of
Gold sequences is low, and the Gold sequences outperform
the chaotic sequences. The degradation is related in this case
to the non constant transmitted bit energy after spreading by
the chaotic signal [9, 10]. But for a sufficiently high spread-
ing factor (β = 127), both performances are very close. The
higher is the spreading factor, the less is the difference be-
tween the performances [9, 10]. In fact, a low spreading fac-
tor for a transmission over a fading channel has a limited ben-
efit. In order to improve the performance of these systems,
high spreading factors must be used. The use of chaotic se-
quences in the spreading spectrum systems increases the se-
curity of the transmission for a very small degradation, espe-
cially when the spreading factor is high. Figure 4 presents the

Figure 3: Simulated BER for chaos-based DS-CDMA sys-
tem, analytical BER expression for Rice distribution, Simu-
lated BER for DS-CDMA system for M = 3 users, spreading
factors β = 15, 31, 127 and channel gain K = 2dB.

performance results for different chaotic maps and different
parameters, defined as follows. Hénon map: (β = 10, M =
10, K = −20dB), CPF map: (β = 20, M = 8, K = −10,dB)
PWL map: (β = 40, M = 6, K = −5dB) and Cubic map:
(β = 80, M = 4, K = 5dB). One can see that for all chaotic
maps, spreading factors, number of users and channel gains,
the excellent match between analytical and simulated BERs
remains.

6. CONCLUSION

This paper presents a new methodology for computing the
analytical expression of the BER for asynchronous multi-
user chaos-based DS-CDMA system. The use of the Rice
distribution in the derivation of the theoretical BER leads
to an analytical expression of this latter. For all considered
chaotic maps, spreading factors, number of users and chan-
nel gains, there is an excellent match between analytical and
simulated BERs. The chaos-based DS-CDMA system sys-
tem is compared with a conventional DS-CDMA system us-
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ing Gold codes. Since the cross-correlation of the Gold codes
is higher than the chaotic sequences for low spreading fac-
tor, the chaos-based DS-CDMA system system outperforms
the conventional DS-CDMA system in this case. When the
spreading factor is high, the performances of the two sys-
tems are very close. The motivation to use chaotic sequences
instead of Gold sequences over fading channels is justified
by the high security of transmission with low performance
degradation.

Figure 4: Simulated and analytical BERs for chaos-based
DS-CDMA system with different parameters.
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