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ABSTRACT 

In ultra-wideband (UWB) breast imaging, it has been shown that 

benign and malignant masses, which usually possess remarkable 

architectural differences, could be distinguished by exploiting their 

morphology-dependent microwave backscatter. The complex natu-

ral resonances (CNRs) of the backscatter signature can be derived 

from the late-time target response, where the damping factors vary 

with the border profiles of lesions. As an extension to our previous 

work (Chen et al. 2008), here we investigate the potential advan-

tage of multiple-input multiple-output (MIMO) radars to enhance 

the resonance scattering phenomenon in tissue differentiation. 

Based on the observed damping factors and the receiver operating 

characteristics (ROC) at different classifiers, which correspond to 

various diversity paths in the MIMO radar system, the selection 

combining fusion scheme is proposed for robust lesion classifica-

tion. We also provide numerical examples to demonstrate the effi-

cacy of the proposed imaging technique. 

1. INTRODUCTION 

In recent years, the use of ultra-wideband (UWB) radar 

techniques for breast cancer detection has attracted much 

research interest [1-3]. For UWB breast imaging, recent 

breast tissue dielectric-spectroscopy measurements have 

suggested that the malignant-to-benign dielectric contrast 

may not be sufficiently high to allow for tissue classification 

based on backscatter intensity [4]. Alternatively, it is well 

known that the architectural distortion in breast parenchyma 

can aid in distinguishing malignant tumors from benign 

masses [5]. For example, mammographic image analysis 

shows that cancerous tissues usually have an irregular ap-

pearance, and are surrounded by a radiating pattern of linear 

spicules. Conversely, benign masses are usually well-

circumscribed and roughly elliptical [5]. Accordingly, the 

microwave signature could be potentially useful for dis-

crimination between benign and malignant lesions [2, 3]. 

This paper investigates the problem of malignant/benign 

tissue discrimination assuming that the presence and loca-

tion of a strong scattering center (“Target”) has been suc-

cessfully identified through a breast cancer detection algo-

rithm (see e.g., [1]). The complex natural resonances 

(CNRs) of the target late-time response are extracted and 

their interrelationship with the morphological features of 

lesions is analyzed [3]. We will focus on a multiple-input 

multiple-output (MIMO) radar architecture, which can 

transmit multiple probing signals that may be chosen arbi-

trarily and independently. This waveform diversity enables 

superior performance of phenomenon-of-interest detection 

[6]. For the current setup of UWB breast cancer detection as 

illustrated in Fig. 1, the incident waveform transmitted from 

each array element is chosen from the family of modulated 

and modified Hermite polynomials (MMHPs). The relevant 

phenomenon-of-interest observed at Antenna 
2kA  induced 

by the probing signal from Antenna 
1kA  is considered to be 

the damping factor of a specific CNR, 
1 2,k kX . As shown in 

[3], 
1 2,k kX  is a random variable due to the nondeterministic 

nature of the lesion shape. Furthermore, the statistical prop-

erties of 
1 2,k kX  vary with the border profiles of lesions, 

which in turn are correlated with the pathologic features of 

the tissue [5]. These phenomena set up a strong basis for the 

tissue differentiation technique proposed in the current 

work. 

The remainder of the paper is organized as follows. In 

Section 2, we briefly discuss the method to generate two-

dimensional (2D) breast masses with various levels of shape 

irregularities [3]. In Section 3, we derive the empirical dis-

tribution functions of 
1 2,k kX  through comprehensive simula-

tions. In Section 4, the selection combining fusion is pro-

posed for robust lesion classification. Numerical examples 

are then provided in Section 5 to demonstrate the effective-

ness of the proposed technique. Finally, some concluding 

remarks are drawn in Section 6. 

2. RANDOM TARGET MODELS 

When the patient lies in a supine position, the 2D axial view 

of the breast could be approximated by a semi-circle [1] as 

shown in Fig. 1. The breast and antennas are immersed in a 

coupling medium with electrical properties similar to those 

of healthy breast tissues [3]. Subsequently, a first-order De-

bye dispersion equation will be employed to describe the 

frequency dependence of the dielectric properties of nominal 

healthy tissues [1]. At any frequency, the actual dielectric 

properties for normal and deceased breast tissues range over 

a specified percentage variation µ  about the nominal value. 

Tumors normally have more irregular or asymmetrical 

geometries than benign anomalies and show more deviation 

from a perfect ellipse [2, 3, 5]. Different approaches to mod-

elling these anomalies have appeared in the literature (see 

e.g.,[2, 3]). In [3, 5], the lesion boundaries are approximated 

by polygons. The similar approach is applied in this paper to 

simulate malignant and benign lesions. First, we establish a 
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Figure 1: An UWB MIMO radar system for breast tissue differ-

entiation 
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Figure 2: (a) Generation of a lesion border from a baseline el-

lipse, (b) examples of OMA and MIS targets, (c) system setup 

for characterizing the statistical properties of damping factors, 

and (d) cdfs of OMA and MIS data for Ω = 1, Ψobs = 150º, and fc 

= 1 GHz:  – empirical (OMA), – · – Laplace (OMA), – – empiri-

cal (MIS), ··· Laplace (MIS) 

baseline ellipse defined in the polar coordinate as 

( ) 2 2 2 2
sin cosB ab a bϕ ϕ ϕ= + , where a and b are the semi-

major and semi-minor axes, and φ is the angle as indicated in 

Fig. 2(a). The next step is to modify the initial shape to pro-

duce the proper mass border with various irregularities. The 

simulation routine consists of the following stages:  

(i) Define the number of sides of the polygonal approxi-

mation to the mass boundary, Q; 

(ii) Generate φq ~ U (0, 2π], (q = 1, 2, ···, Q), where U  

denotes a uniform distribution; 

(iii) For each φq, define the distribution of the border devia-

tion profile ζ(φq) ~ U (-∆B, +∆B], and apply it to the el-

liptical profile in a multiplicative fashion as (see also 

Fig. 2(a)) B'(φq) = B(φq)(1+ ζ(φq)). 

These two parameters, Q and ∆B, determine the ruggedness 

of the mass boundary. 

To simplify our analysis, we consider a binary classifica-

tion of the lesion morphology. The shape of each random 

target is assumed to fall into one of the following two catego-

ries: oval/macrolobulated (OMA) or microlobu-

lated/spiculated (MIS). The OMA class includes targets that 

correspond to round, oval, or macrolobulated shape descrip-

tors, which leads to the acceptance of Hypothesis H0 (“Target 

is benign”). On the contrary, the MIS class exhibits fine-scale 

undulations over the target surface or spicules radiating from 

the body of the target, which leads to the acceptance of Hy-

pothesis H1 (“Target is malignant”). As observed in [3], the 

circumference texture becomes considerably rugged as Q 

decreases and ∆B increases. Therefore, we obtain the OMA 

targets by generating the two random variables Q and ∆B, 

where Q ~ U [80, 100] and ∆B ~ U [0.1, 0.3]. On the other 

hand, the MIS lesions are simulated with Q ~ U [10, 30] and 

∆B ~ U [0.8, 1]. These ranges of Q and ∆B are chosen to 

reflect the distinctive features of these two types of anoma-

lies. Fig. 2(b) plots the mass border deviations corresponding 

to the OMA and MIS targets. 

The UWB MIMO radar consists of a multistatic antenna 

array, where K antennas A1, · · · , AK are probing the breast as 

shown in Fig. 1. As the commonly-used UWB signals fit 

extremely well into the Hermite polynomials, the incident 

pulse transmitted from the kth (1≤k≤K) antenna is selected 

from the family of MMHP waveforms proposed in [7] 

( )
2

inc

c,2

pp

exp cos 2
4 kk k

t t
E h f t

TT
πΩ

   
= −     

  
 (1) 

where Ωk = 0, 1, 2, ···, 
k

hΩ  is the Ωkth-order Hermite poly-

nomial, Tp controls the duration of the pulses, and fc,k is the 

carrier frequency. To test our algorithm with simulated data, 

we follow the same approaches in [3] to derive the backscat-

ter signature at any observation point and extract the CNRs 

from the late-time component of the scattered waveform. 

3. STATISTICAL PROPERTIES OF OBSERVED 

DAMPING FACTORS 

The system setup used to generate synthetic data for our 

quantitative analysis is shown in Fig. 2(c). The transmit (Tx) 

and receive (Rx) antennas are positioned in a circle with 

radius of 4 cm around the lesion. For data acquisition, the 

Tx antenna transmits an MMHP pulse E
inc

(Ω, fc) where Ω 

and fc are the pulse order and modulation frequency, respec-

tively, and Tp is fixed as 50 ps (cf. (1)). The following Debye 

parameters are used to fit experimental results for nominal 

breast tissues (εs = 10, ε∞ = 7, σs = 0.15 S/m, τ = 7.0 ps) (see 

[1] for the definitions of various Debye parameters). A 0.2-

cm skin layer with the relative dielectric constant εr = 36.0 

and conductivity σ = 4.0 S/m is also included [1]. Further-

more, the slab model is applied to derive the transmission 

coefficient through the skin [3]. The dielectric properties of 

the target are obtained by setting µ = 4 (see also Section 2). 

We build a library of random dielectric masses with 

shapes that fall into either OMA or MIS category. The semi-

major and semi-minor axes of the baseline ellipse are as-

sumed to be 4 mm and 3 mm, respectively. We generate 30 

independent target realizations for each shape class. To ex-

amine the isolated effect of different design parameters of 

the MIMO radar, two different scenarios are considered: 

(i) The Tx and Rx antennas are at the same location with 

Ψ
inc

 = Ψ
obs

 = 150º. Ω = 1 and fc = 0, 1, 2, 3, 4 GHz; 
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(ii) The Tx antenna location is fixed with Ψ
inc

 = 150º while 

the Rx antenna location varies with angle so that Ψ
obs

 = 

30º, 60º, 90º, 120º, 150º. For this case, Ω = 1 and fc = 1 

GHz. 

The CNRs of the backscatter waveforms are then extracted. 

In general, two most dominant resonances can be obtained 

from the backscatter [3]. We found through extensive simu-

lations that out of these two frequencies, the high-frequency 

resonance provides better classification performance as com-

pared to the low-frequency one by offering more sensitive 

lesion discrimination through statistical inference of the 

damping factors. Therefore, we will focus on the high-

frequency CNR in the current work. 

The empirical cumulative distribution functions (cdfs) of 

the damping factors are illustrated in Fig. 2(d) for Ω = 1, 

Ψ
obs

 = 150º, and fc = 1 GHz. The following important obser-

vations can be made. Firstly, the damping factors for OMA 

lesions fall within a narrow range, where the empirical cdf 

agrees well with a truncated Laplace distribution as shown 

in Fig. 2(d). The theoretical pdf can be expressed as 

( )
00

0 min max

0 0

exp ,  
2

X X
p X X X X

W W

 −
 = − ≤ ≤
 
 

K
 (2) 

where X denotes a random damping factor, and 
0

X  and W0 

are the location and scale parameters, respectively. In (2), 

Xmin and Xmax are the lower and upper bounds of X for OMA 

targets. 
0
K  is a normalization factor to ensure that p0(X) is a 

pdf. Secondly, contrary to the OMA class, the damping fac-

tors for MIS lesions are scattered over a much wider range 

due to more ill-defined target geometries. The empirical data 

could be fit with a general Laplace pdf 

( )
1

1

1 1

1
exp

2

X X
p X

W W

 −
 = −
 
 

 (3) 

where 
1

X  and W1 are model parameters. Thirdly, it is more 

difficult to characterize p1 exactly due to the limited simu-

lated data and the widely-spread damping factors. Hence, it 

is supposed that p0 is completely specified while p1 belongs 

to an uncertainty class 
1
P , which is defined by assuming 

that W1 is a random variable with an uniform pdf, W1 ~ 

U [W1,min, W1,max]. Fig. 2(d) plots the best-fit Laplace cdf for 

the MIS data and the corresponding cdf bounds, which are 

obtained by setting W1,min = 2 and W1,max = 4. 
1

X  remains 

unchanged. In general, W0 = 1 and 1≤W1≤ 4 for all the simu-

lation scenarios. Finally, the cdf curves for OMA and MIS 

data are well separated in the cdf space, which demonstrates 

the feasibility of lesion discrimination through statistical 

inference of the damping factors. 

4. DATA FUSION RULE FOR ROBUST LESION 

CLASSIFICATION 

4.1 Basic Concepts 

In a MIMO-radar-based breast lesion classification system, a 

total number of K
2
 classifiers 

1 2,k kC (1≤k1,k2≤K) observe data 

generated according to either H0 (“Target is benign”) or H1 

(“Target is malignant”). The classifier 
1 2,k kC  corresponds to 

the spatial diversity path from Antenna 
1kA  to Antenna 

2kA , 

and the observable is the random damping factor 
1 2,k kX . 

Subsequently, a decision 
( ),1 2k kC

i
U  (-1 if H0 is accepted and 1 

otherwise) about the true hypothesis is to be made based on 

1 2,k kX  subject to its distribution under H0 (given as 
( ),1 2

0

k kC
p ) 

and H1 (given as 
( ),1 2

1

k kC
p ), where 

( ),1 2

1

k kC
p  belongs to the un-

certainty class 
( ),1 2

1

k kC
P . Mathematically, 

( ),1 2k kC

i
U = 

( ) ( ),1 2

1 2,

k kC

i k k
Xγ { }1,1∈ − , where 

( ),1 2k kC

i
γ  is the ith local ad-

missible strategy. The local decisions 
( ),1 2k kC

i
U , together with 

( ),1 2k kC

i
γ  and their corresponding probability of detection 

( ),1 2

D,

k kC

i
P  and probability of false alarm 

( ),1 2

F,

k kC

i
P  are sent to a 

data fusion center for a global decision U∈{-1,1}. Our goal 

is to design an optimal fusion rule that maximizes the as-

ymptotic error exponent E , which is given by the Chernoff 

information under the Bayesian framework [8]. For the ease 

of analysis, we consider a special case of Chernoff informa-

tion, the Bhattacharyya distance [8]. The following concepts 

are introduced to facilitate the analysis of the fusion struc-

ture. For simplicity, the superscript (
1 2,k kC ) and the sub-

scripts i and k1,k2 are omitted. 

Definition 1 (Uncertainty Class): An uncertainty class 

1
P  is a set of neighbourhood distributions containing p1(x; 

Θ1) under Hypothesis H1. The dummy variable x represents 

the observed data X, and Θ1 is the model parameter for the 

uncertainty class, which is a random variable following the 

distribution function ( )
1 1fΘ Θ . 

Definition 2 (Receiver Error Exponent Characteris-

tics (REEC)): A REEC curve represents a curve joining a 

set of points with the coordinates (PF, E ). Each point de-

notes an admissible strategy γ, which produces false posi-

tives with a probability PF and the achievable error exponent 

E  given by the Bhattacharyya distance. 

Remark 1: The optimum test for two hypotheses is the 

log-likelihood-ratio (LLR) test, which usually involves 

comparison of the observed data X to a threshold Xth [8]. 

Without loss of generality, it is assumed that H1 is accepted 

if X≥Xth and H0 is accepted otherwise. In other words, a lo-

cal decision U can be calculated as U = γ(X) = sgn(X-Xth) 

where sgn is the signum function. Subsequently, the false 

positive rate PF is related to Xth through the following equa-

tion ( )
( )0
max

th
F 0

H
X

X
P p x dx= ∫ , where 

( )0

max

H
X  is the maximum 

observed data conditional on H0. Apparently, Xth can be ex-

pressed as a function of PF, Xth = F (PF). The next step is to 

derive the probability of detection as 

( )
( )

( )
( )

( )1 1
max max

th F
D 1 1 1 1; ;

H H
X X

X P
P p x dx p x dx= Θ = Θ∫ ∫F , where 

( )1

max

H
X  is 
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the maximum observed data conditional on H1. Finally, the 

Bhattacharyya distance can be derived as [8] 

( ) ( )

( ) ( )
( )

( )

( )
( )

( )1 1
max max

F F

1 11 1

2 22 2
2 F D F D

1 1
11 2 2
22

2 F 1 1 F 1 1

log 1 1

log 1 1 ; + ;
H H

X X

P P

P P P P

P p x dx P p x dx

  
= − − − + 

  

 
    

= − − − Θ Θ    
     
∫ ∫F F

E

(4) 

Following (4), E  is a random variable at each PF with dis-

tribution dependent on ( )
1 1fΘ Θ . 

To provide a statistical characterization of reliable lesion 

classification, the notion of outage is introduced. 

Definition 3 (Outage Probability): Consider a classifier 

with unspecified conditional probability distributions of the 

observations. At each false positive rate PF, the outage prob-

ability Pout is defined as the probability for which the classi-

fier is in a state of outage (i.e., failure) for hypothesis testing 

at a certain error exponent 
out
E . Mathematically, Pout = 

Pr(
out

≤E E ) where Pr(·) denotes probability. 

On the basis of Definition 3, we further define the outage 

error exponent as follows. 

Definition 4 (Outage Error Exponent): Consider a 

classifier with unspecified conditional probability distribu-

tions of the observations. At each false positive rate PF, the 

outage error exponent is defined as the maximum error ex-

ponent that can be achieved across all possible realizations 

of conditional probability distributions of the observations, 

1 1
p ∈P , for a prescribed outage probability Pout. 

Remark 2: One conventional way to design decision 

rules when the conditional pdfs of the observations are not 

specified completely is the minimax approach [9], where the 

goal is to optimize the worst case performance over the un-

certainty class. However, this operational point will be of 

little practical significance if it is of low likelihood. A more 

statistically-relevant solution is to optimize the classifier 

performance along the receiver outage error exponent char-

acteristics (ROEEC) curve, where the error exponent is de-

fined for a sufficiently low outage probability. 

 

4.2 Selection Combining Fusion 

The selection combining fusion rule is proposed to choose 

one classifier that yields the best outage error exponent 

across all classifiers and across all admissible strategies, i.e., 

( ) ( ) ( ) ( ) ( ) ( )( ), , ,1 2 1 2 1 2

1 2 F

out F F out F out
, ,

max  s.t. Pr
k k k k k kC C C

k k P
P P P P≤ =E E E (5) 

Where 
( ) ( ),1 2

out F

k kC
PE  represents the outage error exponent at a 

false positive rate PF for Classifier 
1 2,k kC . The above optimi-

zation process can be realized through the following steps: 

(i) Plot the ROEEC linking a series of points (PF, 
( ),1 2

out

k kC
E ) 

for each classifier 
1 2,k kC , conditional on Pout; 

(ii) Convert the ROEEC into the receiver operating charac-

teristics (ROC) curve, where 
( ),1 2

out

k kC
E  is changed to the 

corresponding probability of detection 
( ),1 2

D,out

k kC
P ; 

(iii) Produce the maximum realizable ROC (MRROC) pre-

dicted by the convex hull containing all the ROC curves 

associated with all classifiers [10]. The vertex points of 

the convex hull will be points corresponding to the ex-

isting classifiers generated by Step (ii). The facets of the 

hull are line segments with an existing classifier at each 

end point; 

(iv) Identify the optimal operational point on the MRROC 

with the best asymptotic error exponent. 

The general algorithms discussed above can be readily 

applied to the lesion classification problem, where the pdfs 

of damping factors for OMA and MIS targets follow the 

Laplace distributions in (2) and (3). Moreover, p0 is com-

pletely specified while p1 belongs to an uncertainty class 
1
P , 

which is defined by assuming that W1 ~ U [W1,min, W1,max]. 

Subsequently, the following results can be established. 

Proposition 1: If the distributions of random damping 

factors satisfy the empirical models presented in Section 3, 

the true positive rate corresponding to the outage error ex-

ponent 
out
E  for an outage probability Pout is given by 

Case I: 
1 0

X X<  

( ){ }
( )

( )

D,out

0 1 0 F 0 min 0 0

1,min 1,max 1,min out

min th 1

0 1 0 F 0 min 0 0

ln 2 exp
1

exp ,
2

                                                                     if  

ln 2 exp
1

1 exp
2

P

X X W P X X W

W W W P

X X X

X X W P X X W

=

  − + + −
  

 
+ − 

 

≤ <

− + + −
− −

K

K{ }
( )

( ) ( ){ }
( )

1,max 1,max 1,min out

1 th 0

0 1 0 0 F 0 min 0 0

1,max 1,max 1,min out

                                                                    if  

ln 2 2 exp
1

1 exp
2

    

W W W P

X X X

X X W P X X W

W W W P

 
  

 
− − 

 

≤ <

  − − − − −
  

− − 
− − 

 

K K

0 th max
                                                                if  X X X




















 ≤ ≤

 (6) 

Case II: 
1 0

X X>  

( ) ( ){ }
( )

( )

D,out

0 1 0 F 0 min 0 0

1,max 1,max 1,min out

min th 0

0 1 0 0 F 0 m

ln 2 1 exp
1

1 exp ,
2

                                                                     if  

ln 2 1 exp
1

1 exp
2

P

X X W P X X W

W W W P

X X X

X X W P X

=

  − + − + −
  

−  
− − 

 

≤ <

− − − + −
−

K

K K ( ){ }
( )

( ) ( ){ }
( )

in 0 0

1,max 1,max 1,min out

0 th 1

0 1 0 0 F 0 min 0 0

1,min 1,max 1,min out

                                                                    if  

ln 2 1 exp
1

exp
2

X W

W W W P

X X X

X X W P X X W

W W W P

  −
  

 
− − 

 

≤ <

  − − − + − −
 

− 
+ −



K K

1 th max
                                                                    if  X X X
















 





 ≤ ≤

 (7) 

Proof: The proof is omitted for simplicity. 
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C7: -5%≤µ≤0, C8: -10%≤µ≤-5%, C9: 0≤µ≤5%; (b) ROC curves at 

10% outage probability 

 

(((( ))))1,1 1 1C A A→→→→

(((( ))))1,2 1 2C A A→→→→

(((( ))))2,1 2 1C A A→→→→

(((( ))))2,2 2 2C A A→→→→

Selection combining

MP
FP

16.7% 26.7%

16.7% 10%

20% 40%

20% 13.3%

16.7% 10%

(((( ))))M FP P 2++++

21.7%

13.3%

30%

16.7%

13.3%
 

Finally, applying the above results and following Steps 

(iii) and (iv) give the global decision of the selection com-

bining fusion scheme. 

5. CLASSIFICATION RESULTS 

The breast geometry that generates test data set for our ex-

amples is shown in Fig. 3(a). We consider a simplistic 2 × 2 

MIMO radar architecture. Two antennas A1 and A2 are lo-

cated at (- 2 3  cm, 5 cm) and ( 2 3  cm, 5 cm), respec-

tively. A1 transmits an MMHP pulse with Ω = 1, fc = 1 GHz, 

and Tp = 50 ps, while A2 transmits a pulse with Ω = 1, fc = 4 

GHz, and Tp = 50 ps. The anomaly is located at (0 cm, 3 

cm), which has been estimated a priori through a breast 

cancer detection algorithm [1]. The semi-major and semi-

minor axes of the baseline ellipse are 4 mm and 3 mm, re-

spectively. The test data set is created by generating 30 in-

dependent target realizations for either OMA or MIS class. 

The dielectric properties of the clutter items range over 

±10%. This numerical phantom also reproduces the effect 

that the dielectric properties of the healthy tissues exhibit 

structural differences at different locations [4]. The thickness 

of the skin layer is 0.2 cm, and the dielectric properties of 

the nominal and deceased tissues are given in Section 3.  

The model parameters of the damping factors for the 

four diversity paths are obtained based on the results in Sec-

tion 3. Fig. 3(b) depicts the ROC curves when the outage 

probability is 10%. It can be seen that no single diversity 

path produces superior classification performance over the 

entire range of PF. Overall, it is expected that the classifiers 

C1,2 (A1→A2) and C2,2 (A2→A2) should result in better detec-

tion performance as compared to the classifiers C1,1 

(A1→A1) and C2,1 (A2→A1). Fig. 3(b) also shows the 

MRROC predicted by the convex hull containing other ROC 

curves, which yield the best performance over the entire 

range of PF. The results in Fig. 3(b) clearly demonstrate the 

advantage of a MIMO radar for lesion classification, which 

fully explores the information on the phenomenon-of-

interest provided by different classifiers to improve the 

overall performance. The lesion classification results are 

listed in Table I. We consider the following performance 

indicators, the probability of miss (PM = 1-PD), the probabil-

ity of false alarm (PF), and the overall error probability 

((PM+PF)/2). As could be expected, the selection combing 

fusion achieves the best overall performance. The lesion 

morphology is classified with 86.7% accuracy averaged 

over 60 targets. This result is also comparable to the classi-

fier performance reported in [2], where over 70% of the tar-

get shapes are correctly classified for 10 dB signal-to-noise 

ratio. 

6. CONCLUSIONS 

We have investigated the feasibility of breast tissue discrimi-

nation using an UWB MIMO radar imaging system. As a 

proof-of-concept, we have considered a binary classification 

of the lesion morphology (OMA versus MIS). The distinct 

statistical features of the attenuation factors for OMA and 

MIS targets have been realized through comprehensive simu-

lation studies. Subsequently, the selection combing fusion 

rule has been proposed to facilitate robust lesion classifica-

tion. Both the theoretical ROC curves and the simulation 

results have demonstrated the potential advantage of a 

MIMO radar architecture for enhanced tissue differentiation. 
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