17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

ACCURATE GEOLOCATION IN THE PRESENCE OF OUTLIERS USING LINE AR
PROGRAMMING

Joseph S. Picard and Anthony J. Weiss

School of Electrical Engineering - Systems Department
Tel Aviv University, Tel Aviv 69978, Israel
phone: + 97236407460, fax: + 97236405027, en{gilcard,ajw} @eng.tau.ac.il

ABSTRACT We propose to identify the outliers by using recent re-
Precise geolocation have attracted considerable inferé&  sults in sparse representation of signals. Consider the lin
engineering literature. Almost all previous publicati@asi-  ear set of equations = Br wheres is a vector that has a
sider small measurement errors. In this paper we discuss geepresentation in the span ofB, a.k.a. as dictionary. In
olocation in the presence of outliers, where several measursome applications the sparsess desired. The representa-
ments are severely corrupted while other measurements aien is sparse if the dictionary is over complete, iB.has
reasonably accurate. It is known that Maximum Likelihoodmore columns than rows. In this cases= Br is an under-
or Least Squares provide poor results under these conslitiordetermined set of equations that cannot be solved uniquely
We demonstrate how using tlig norm and linear program- by classical methods. In recent publications, it has been
ming we can detect the outliers and use only the good meahown that if the sparsest representation is sufficientyssn
surements for providing the final location estimate. Morethen not only it is unique, but it can also be easily obtained b
over, we provide bounds on the number of outliers that cafinear programming [3]-[5]. Conditions ensuring uniqussie

be detected and eliminated. of the sparsest solution were established in [6]. The prob-
lem has been extended to a wider variety of bases in [7],[8]
1. INTRODUCTION including dictionaries built by concatenation of non-amnyt

This work has been motivated by a frequent problem in

large scale commercial geolocation system mainly used fqoy ¢1-norm relaxation was also studied in [11]. The theory

tracking stolen luxury cars, controlling vehicle fleets ped of sparse signal representation has also been used fargutli
sonal navigation [1]. The system consists of sensors dis- P 9 b

tributed over a large geographical area, very much likel rure{dem'f'c"’mon in [12]. .

cellular base-stations. The stations intercept signalsstr _ Recentworks have exploited these advances by formulat-
mitted by the mobile devices. The time synchronized receivid 9€olocation as a sparse representation problem imglvi
ing stations record the mobile device signal time of arrivathe signals collected at several sensors [13]. This method i
(TOA). The TOA measurements are transferred to a centr&f?OWn as Compressive Sensing [14], and sparsity is consid-
processing unit for obtaining an estimate of the mobile de®réd at the level of array signal processing.

vice location. Geolocation based on TOA has been known Ourapproach s different since we address a problem oc-
for long time and is a standard non-linear estimation probcurring after the extraction of location parameters from th
lem with known solutions [2]. However, the commercial received signals. We assume that TOA, Angle of Arrival
system mentioned above provides between 7 and 40 TORAOA), Time Difference of Arrival (TDOA) or Received Sig-
measurements for each mobile device where a consideradi@l Strength (RSS) measurements are available, although a
number of these measurements (up to 20%) are unreliabfélbsetis severely corrupted. In alinear formulation offie
(outliers). The large errors may be the result of multipath, ~olocation problem, an over-determined set of equationg mus
terference, jamming, or even poor synchronization of somé&e solved.

stations. In order to provide a reliable location estimate i The solution that we are proposing here consists of sev-
is required to identify the outliers (or, equivalently, thet  eral ingredients. First, we write the quadratic equatioins o
of consistent measurements) and either correct the large éhe TOA measurements as linear equations. See [15]-[16]
rors or eliminate the wrong measurements from the data séer earlier applications of transforming non-linear egoias
lected for location estimation. The identification of the-ou to linear equations in geolocation applications. Secorel, w
liers is known to be NP hard and therefore the relatively simdefine an optimization problem in terms 6f norm mini-

ple problem of location estimation based on TOA requiresnization. Third, we solve the optimization problem using ef
excessive computer resources in the presence of outlieficient linear programming methods. As a result we get a list
For example, the identification &f (say 10) outliers out of of outliers, the size of each error and location estimate. Us
m (say 40) TOA measurements requires the examination ofg the location estimate and the list of good measurements

(™) = (30) = 847,660,528 subsets of measurements wherPne can now apply a final, non-linear, localization stepgisin

k is known. Since the number of outliers is not known indigital terrain map (DTM) for the ultimate result.

advance it is required to examine even more subsets. The method described above can also be used for other
- . wed by the Israel Sci Foundagient geolocation systems such as geolocation based on AOA or
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No. 218/08), the Institute for Future Technologies Redeaamed for the geqlocatlon b.""s‘?d on RSS. The main go_al Of thIS. pap_er IS

Medvedi, Shwartzman and Gensler Families and by the Cemtaxtisorp- O find the limitations of the proposed outliers identificati

tion in Science, Israel. methods.

atrices [9],[10]. Since these approaches are all based on
éi-:-norm minimization, the validity of sparse representation
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2. OVERVIEW For the proofs of the lemmas, see [6], [8], [17] and [18]. By
. . combining the two lemmas we can get a condition that guar-
It is well known that geolocation based on AOA, TOA, : : T
TDOA and RSS can bg based on a solution of a linear s&"ce® equwalencezbetwle@FP{) and(P{,). This condition is
of N equations (more details will be provided shortly), sliallymax{|[U(£,:)]I2} < 3 [|6]lwhich proves Theorem 1.

y=Ax+e (1)  Theorem 1 If the number of non-zero entries, s, in the solu-
) _ tion of (P)) satisfies

The vectorx is the vector of unknown parameters which ob-
viously include the coordinates of the transmitter to be lo- S< 1 Ap (6)
cated. The matriXA and the Nx 1 data vectowy are func- 2max||U(¢,:)|3
tions of the available measurements and the known parame- 4
ters such as the coordinates of the sensing devices. The €Men(P}) and (P}) have the same solution and the outliers
tries of the error vectos are assumed to be zero (or “small”) can be identified exactly.
except for a few entries which are large and therefore reflerr _
to as outliers. The distinction between “small” and “large” 1 h€ bound above dependstinwhich is strongly related
errors is not obvious and therefore we assume, as a first 42 A In the next section, we establish the structure of the
tempt to solve the problem at hand, that most of the entrie@atrix A for AOA, TOA and TDOA data. Then, in sections
in e are zero and only few are different from zero. Thus, the, 5 @and 6 we find corresponding expressionstbr The
error vectore is sparse. We search for the vectothat is effects of small errors on outliers identification are disszd

associated with the minimal number of outliers. Define [12],in Section 8. Finally, numerical results are given in setio

(Po): min||Ax —yllo (2) 3. REPRESENTATION OF GEOLOCATION BY
x LINEAR EQUATIONS
(P):  min|Ax—yl, 3)

In this section we cast the usually non-linear geolocation

where|- ||, stands for thé -norm (the number of vector ele- €guations as a set of linear equations.
ments that are not zero) afjd|, stands for the;-norm (the .

sum of absolute values of the vector elements). Formally, wg'l Geolocation based on AOA

look for the solution of the minimization proble(®). Un-  Assume thaN stations collect AOA measurements of a sin-
fortunately, this problem is NP hard, and therefore one magle target. Lep; = [xi,yi]T represent theth station coordi-

consider solvingP1). The problem(P;) can be solved by nates ancp, = [Xt,yt]T the target coordinates. Lt be the
linear programming and according to our numerical experiAOA (measured anticlockwise w.r.t. the x-axis) at ik
ence works amazingly well. station. Then, in the absence of noise, ik AOA mea-

The challenge is to establish a condition ensuring that thegyrement satisfielst — yi) cos@ = (% — %) sing. Define
solution of the tractable proble(#;) is also the solution of

the hard probleniP,). In this paper, we derive this condition s = [sing,---,singy c £ [cosq,--- ,cosqq\,]T
_and ghow_that it depends on the number of outliers. The ideaA £ [s,—c] x 2 [Xt,yt]T
is to identify a matrixF #£ 0 so thatFA = 0. Then equation y 2 [(x¢sing —y1cosgr), -, (Xn SINGN — YN cosqq\,)]T

(1) reduces t&'y = Fe. Define _
Then,y = Ax, and in the presence of errgrs= Ax +e.

A ]T

(Py): minjel|, st. Fy=Fe 4)
° 3.2 Geolocation based on TOA

Let my be the measured TOA, the propagation speed, and
to the knowntransmit time. In the absence of errors, the

(P}): minjel|; st. Fy=Fe (5)

In [12] it has been shown that the solutieg of the alter- . S 1
native problem(P}) yields the solutionxo of (Ry). Since 1th TOA measurement is given by = c||pi — ptl; +

the (o-norm problem(P}) is hard, it is replaced by the alter- to. Substgutlng th2e targeg and Tsensor coordlnates we get,
native problem(P}). Define the matrixU whose columns € (M —to)” = ||pi[|“+ [|pt||“ — 2p{ pr. Collecting the mea-
are the normalized eigenvectorsaiAT associated with the Surements fronN sensors, we get = Ax with

non-zero eigenvalues. We propdge- Iy — UUT wherely Sy 2 27T _ 21

is the N x N identity matrix. We look for a condition en- X 2 [[|21[)1” ’ “’.HPNH]T] 1 j:z(mngrt?lN_ I 2t(|,|1231T)
suring that the solution ofP}) is identical to the solution = [AP1 P2, PN AN P, —libt

of (Py). Denote byeq the solution of(Pj) and bySthe  wherem®m is the element-wise product, amg is anN x 1
set of indices corresponding to non-zero entriee@f.e., vector of ones. In the presence of errors weyget Ax +e.
S={ie[1,...,N]|eg(i) # 0}. Denote by].||2 the £2-norm,

by sthe number of elements Band byd(S) thesx 1 vector 3.3 Geolocation based on TDOA

obtained from a vectod by removing the entrie§, i ¢ S If the transmit timeto , is unknown the localization method
Lemma 1 If any vectord # 0 that satisfiedd = 0 also sat- IS called TDOA. In this case we have,

&

isfies||6(9)||; < %||5|\1 then the solution ofP) coincides v 20p,, lpn]AT - A (m e m)
. . / 3 3
with the solution of Py ). A 2 [2[p17p27 o pnlTL 1, Cm]
Lemma 2 Any  # 0 that satisfiesFd = 0 also satisfies x 2 pf, (g - |ptl%), —2cto]T
a2
169, < s|\5||1m[§1x{|\U(£, -)||2}- Again,y = Ax, and in the presence of errgys= Ax +e.
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4. NUMBER OF IDENTIFIABLE OUTLIERS IN 5.1 Application to Uniform distribution of sensors

AOA GEOLOCATION Assume that the sensors are uniformly distributed as in 4.1.
We now establish the bound on the number of outbgisen  Then||xy||? = ||yp||? = # +0(N). Thus,B(N) = %+O(N)

in (6) for AOA geolocation. As shown in Section 3, we havewithout any limitation on the location of the transmitter.
A = [s, —c]. The eigenvectors oA arec/||c|| ands/||s||

provided thatc_Ts_ = 0. This orthogonality condition can 5.2 Application to Uniform Circular Sensor Array
always be satisfied by rotating the coordinate system [18}c,nsider a uniform circular array o sensors as in 4.2.

Thus,U = [s/||s]|, ¢/||c||]. According to theorem 1, Then ||x||2 = ||yb||> = NRE/2. From (8) we obtain the
llc||2|s]|2 @) bound on the number of outliersiBs= N/6.
- _ 7
ZmEaX(HC”ZS'”ZWJF Isl[2cog @) 5.3 Application to Concentric Circular Sensor Arrays

licati i istributi £ ConsiderL uniform concentric circular sensor arrays cen-
4.1 Application to Uniform Distribution of Sensors tered on(0,0). Assume that thé-th circular array consists
Assume that the sensors are uniformly distributed within af N, > 3 sensors. The coordinates of tk¢h sensor of the
circular area whose radiusksand its center is &0,0). De-  ¢-th array of radius, are [rg cog 6k + ay),resin(6y k + ag)]
note by(ry, 6;) the polar qoo_rdinatgs of thieth sensor. The wherea, € [0,2m] and 6,y = 2rk/N, for k=1,...,N,. De-
angIeng are unlfprmly d|str|bqted in0, 2m and t.h_e ranges fine r2 £ ﬁZéLleﬂ/?- Then we get from (8) the bound
r, are distributed iri0, R according to the probability density B=N/(4max{r2/r2} + 2) for anyN

function f,(r) = Z. For largeN, ||| and||s||? tend to. - ¢ YR
ThenB(N) = %+0(N). 5.4 Application to Uniform Linear Sensor Array

Consider a uniform linear array of sensors placed on the
x axis between-R/2 andR/2. The sensor separation is
The sensors are uniformly distributed on a circle with radiu /(N — 1). Observe thafiyy||2 = 0 and||xp||? = RN N+

R. The coordinates of theth sensor arg, = Rcosf, Yy = gjncey, = 0 the eigenvectors of the matriA are U =
Rsin@, where 6, = 2r//N. Assume that the transmitter is (22 IN] ThenB = N/(6N-1 4 2) andB tends to

located on thex-axis at coordinate&d,0) whered > 0. We lIxpll” VN T N+1 8’
show in [18] that for largeN the bound tends ttN/4 for

a transmitter within the circle of sensors, and\ig6 for a 6. NUMBER OF IDENTIFIABLE OUTLIERS IN

4.2 Application to Circular Sensor Array

remote transmitter. Furthermore, for aNyincluding small TDOA GEOLOCATION

N, if d € [0,R] thenB(N) > § — 3. As shown in section 3A = [2xy, 2y}, 1n, cm]. The eigen-
Xb o ¥b AN m_ i

4.3 Application to Concentric Circular Sensor Arrays vectors ofA are [=pll* Tynll” VN and [[m]] provided that they

. . are orthogonal. These orthogonality conditions can always
ConsiderK concentric circles. Assume thblk sensors are e satisfied by coordinate system rotation and translatidn a
located on théc-th circle and thal = RN1, whereN; > 1 ap addition of an appropriate artificial outlier measuremen

is the number of sensors on the smallest circle whose I’adilf§8]_ Under these orthogonality conditions the bound is
is Ry = 1. Further, assume th&® < R, < --- < R¢. Then,
for a transmitter located at coordinates0), 2 : 2 -1

@S) &P+ ﬁP+ 3 }+%) (%

B= (2 méax{

N d<R o2 " Tyul? " Tl
4 >R
N . - , T
Ba(N) — ) ¥ (612 SRS, Rj) d € [Re1,Rd 6.1 Appllcatlgn to U.mfo_rm Plstr|but|on of Ser\sors |
N (o2 2R -1 Consider a uniform distribution of sensors as in 5.1. Withou
2 (ZRK SR + 1) d>Rq loss of generality, selett = —%”}. We show in [18] that

- N
converges asymptotically to a bound stricter tB4N) [18]. B(N) = 15+ 0(N).

6.2 Application to Uniform Circular Sensor Array
5. NUMBER OF IDENTIFIABLE OUTLIERS IN

TOA GEOLOCATION Consider a uniform circular array of sensors as in 4.2. Again
assume thaty = —@ wherer, is the range between the

As shown in section 3A = [2xp, 2y, In] Wherexp,yp are 4o namitier and thé'th sensor. We show in [18] that for
the x andy coordinates of all the sensors. The eigenvec-

. e -1
tors of A arexy/ ||xo|, yb/ ||lyn] and1n/v/N provided that N = 3 the bound i88(N) = (2 maxpae + §)  and
1fxp = 1{yb = x/ yp = 0. These orthogonality assump-

tions can always be satisfied by a coordinate system rotation N/6 d=o0
and an addition of an appropriate artificial outlier measure _ At
ment [18], which slightly loosens the bound but in turn y&eld (N)={ N/10 d=0"ord>>R 16

. « 1 Np/(4p+4)+0o(N) d=R where p=2-:33
closed form expressions. Th&h = {—b, 2o 2N Ac-

[xoll” [lyull” VN - R .
cording to Theorem 1, Further, for finiteN a good approximation fds is
2max{ [lynl|?x7 + [[xol[27 } + 2] xoll[lys]I?/N (N/10) (1-557r) d>R
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7. HIDDEN ERRORS

We show now that some measurement errors do not affect the

consistency of the linear equations set. According to secti

3, the AOAk-th linear equation i§y }k = Xk Singk — Yk COSgk

whereg is the errorless AOA measurement. In the presence

of perturbations, denote tgy thek-th measurement error and

by @ = @+ & thek-th actual measurement. We show in [18]

thate, = 2rysin(&/2) cos(&/2+ ¢ — 6).The cosine term

is zero fore, = 2(6k — @) £ 1. Theneg = 0 althoughgy # 0.

Thus, there are cases of errors in the measurements that d Il ‘ ‘ ‘

not appear as an error in the linear equations and therefore ° 1© Number of sensors N * *

do not affect the correct solution.

~ Similarly, according to section 3, and under the assumpFigure 1: The experimental boundBd), the theoretical

tion thatto = O, the exact TOA measurements amg =  pound on the number of outliers3), and its approximation,

3||px— pt/| and the corresponding linear equatiod s =  (B,), versus the numbeX of TOA sensors in the circular

[ pkl|2 — c®mg. If the k-th TOA measurementy’is impre- ~ array

cise, we haveng = my + E—C" where g is the ranging error.

Thene = —&(2|[pk — ptl + &), see [18] for details. If 9. NUMERICAL EXAMPLES

& = —2||pk — pt|| thenec = 0, meaning that this measure-

ment error does not affect the linear equations and thair sol In previous sections, we discussed a sufficient conditien en

tion. Note that this measurement error correspondgtaty  suring the identification of outliers within a set of AOA, TOA

and therefore is likely to be removed from the TOA data setor TDOA measurements by means of linear programming.

If t is unknown, as in TDOA, the error cannot be detectedlhe condition limits the number of identifiable outliers by a

easily before emitter localization. upper bound. In this section we examine the tightness of the
We have revealed the existence of hidden errors that afipper bound by numerical simulations.

fect the measurements and therefore the nonlinear estima-

tion problem, but do not affect the linear set of equations9.1 Outliers identification in TOA models

Of course, hidden errors are not likely to occur since theyrecall that a range measurement egipgenerates a linear
must satlsfy_the conditiog, = 0 described above. quever, equation errol, = —&(2r + &) wherery is the distance

the probability of small values fag may not be negligible. of the k-th sensor from the transmitter. We define an er-
Thus, we extend the concept of hidden outliers to any larggor as an outlier iflg,| > ar, with a = 0.1 Furthermore,

& for which e is small. for a given topology one can generally establish an upper
bound on the largest distance between the transmitter and th
sensors. Range measurements with excessively large errors
fan be removed before processing. Thus, one can define a
8po|ogy—dependent scalBrso that 0< ry + & < D for any

k. Thus, an outlier errog resulting fromey, satisfies

8. STABILITY IN THE PRESENCE OF SMALL e € [_D2+ rE, —a(2+ a)ra U [arﬁ, (2— a)ra (10)

ERRORS
) In the simulations the outlier error have been uniformly dis
Recall that our model in (1) assumed that the error veetor tripyted within the interval defined in (10).

consists of a few large entries called outliers and all other | this example, small errors have not been simulated.

[
o

T
L] o—B,
—=—B

’—E—Ba

Bound on the number of outliers
= N w A~ 0 [} N o ©

o

Proposition 2 Robustness to Hidden Outliersn the pres-
ence of small errors, solving nonlinear localization pretvis
by means of a linear set of equations ensures robustness
hidden outliers.

exist. The original problem can be written @ ) where the array has a radius of 1 distance unit [DU] and that the
emitter is located within this array. The maximum distance
(Pl¢): minfle], st [|Fy—Fe|5<¢ between the transmitter and the sensors is 2 [DU]. Thus,

D = 2 [DU]. The boundB,; = N/6 is independent of the
pnsmitter location. For each of tiNy = 200 experiments
e transmitter location is selected at random within the ci
cular area of the sensor array, and we identify the smallest
; ; Y ; number of outliers for which identification fails. The resul
we are mterest_ed n SOIY'”@“) with € > 0. Def“’te bye of thei-th experiment is denoted . The experimental
ande, the solutions of Py ,) in 'Fhe.absence and in the pres- p o114 isBe — min k. Denote byethe estimate o by
ence of small errors. By continuity of the penalty and con- 1<i<Ne
straint functions, we can justify the existence of a functio solving (P;) using linear programming. We define failure
f (&) so that limf () = 0 and|e(k) —en(K)| < f (&) for anyk. when some outliers are not identified or some good measure-
€0 ments are classified as outliers. Since the experiments are
based on numerical solutions, we define perfect outlierside

tification whenl<m<a}\lx|é —e|<10°%. InFig. 1, we plotted
1<

In the presence of small errors we add a non-sparse vect
n, y = Ax+e+n. Assuming bounded small errors, pro-
jection usingF yieldsFy = Fe + Fn and||Fn|| < €. Thus

For a non-outlier entry we hawgk) = 0 and|e, (k)| < f(¢).
Thus, the solutions andep have identical support provided
that all the entries oé,, satisfying|en(k)| < f(&) are set to <
0. Therefore, outliers identification in the presence ofisuf the bound®e, B andB; versusN. The bound appears to
ciently small errors can be achieved by linear programmingbe rather tight.
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0.5

0 outliers, LS
0 outliers, LP+LS 2
5 outliers, LS
—©— 5 outliers, LP+LS |
—&— 10 outliers, LS

—+&— 10 outliers, LP+LS

(1]
(2]

0.4

(3]

(4]

RMSE of location estimates [DU]

(5]

0.05 0.1 0.15 0.2 0.25
Standard deviation o of ranging measurement noise [DU]

03

(6]
Figure 2: RMSE of LS location estimates versus standard
deviation of ranging small errors. Thin lines show resufts o
straightforward LS while thick lines show results with out- [7)
liers removal step.

(8]

9.2 Localization in the Presence of Small Errors and
Outliers

In this section we examine the precision of least square} (LS
location estimates with and without outliers identificatio ]
The measurements in the presence of noise (small errors) anL?
outliers are given by = Ax+e+n. The LS estimate ok

is given byxo = ATy whereAT is the pseudo-inverse .

A better way to estimate may be to first apply linear pro-
gramming in order to estimate the error veator n. Then
apply LS to the modified datec= Af(y —e+n).

We performed 200 experiments with a uniform circular
array of radius 1 [DU] consisting dfl = 30 TOA sensors.
The number of outlierswas successively setto 0, 5 and 10,
corresponding to 0%, 16% and 33% of the equations. The
outliers size correspond to (10). The small ranging errors
are realizations of zero-mean gaussian random variabths wil12]
standard deviatiow. Fig. 2 shows the RMSE of location
estimates versug. Note thato = 0.3 [DU] is not negligi-
ble compared with the error-free measurements and therefofl13]
the number of outliers is occasionally increased. Accaydin
to Fig. 2, in the presence of 5 or 10 outliers, it is always
significantly advantageous to remove the outliers by linear
programming before LS estimation, regardless of the noisg 4
variance. In the absence of outliers, a slight performance
degradation may be observed if preprocessing is used. Note
however that if no outlier is found the preprocessing can bflS]
ignored.

(10]

(11]

10. CONCLUSION
[16]

We have invoked the theory of sparse signal representation
in the context of positioning. We have shown that in the ab-
sence of noise, AOA, TOA and TDOA data sets corruptiiﬂ]
by unknown outliers can be corrected using linear program-
ming, provided that the number of outliers does not exceed

a limit given in Theorem 1. In Sections 4, 5 and 6 the limit
given in (6) has been evaluated for several geometries. For
each case, the exact expression of the bound and simple 26—8]
proximations were presented. In followup work we focus on
outliers in the presence of small errors.
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