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ABSTRACT
Precise geolocation have attracted considerable interestin the
engineering literature. Almost all previous publicationscon-
sider small measurement errors. In this paper we discuss ge-
olocation in the presence of outliers, where several measure-
ments are severely corrupted while other measurements are
reasonably accurate. It is known that Maximum Likelihood
or Least Squares provide poor results under these conditions.
We demonstrate how using theℓ1 norm and linear program-
ming we can detect the outliers and use only the good mea-
surements for providing the final location estimate. More-
over, we provide bounds on the number of outliers that can
be detected and eliminated.

1. INTRODUCTION

This work has been motivated by a frequent problem in a
large scale commercial geolocation system mainly used for
tracking stolen luxury cars, controlling vehicle fleets andper-
sonal navigation [1]. The system consists of sensors dis-
tributed over a large geographical area, very much like rural
cellular base-stations. The stations intercept signals trans-
mitted by the mobile devices. The time synchronized receiv-
ing stations record the mobile device signal time of arrival
(TOA). The TOA measurements are transferred to a central
processing unit for obtaining an estimate of the mobile de-
vice location. Geolocation based on TOA has been known
for long time and is a standard non-linear estimation prob-
lem with known solutions [2]. However, the commercial
system mentioned above provides between 7 and 40 TOA
measurements for each mobile device where a considerable
number of these measurements (up to 20%) are unreliable
(outliers). The large errors may be the result of multipath,in-
terference, jamming, or even poor synchronization of some
stations. In order to provide a reliable location estimate it
is required to identify the outliers (or, equivalently, theset
of consistent measurements) and either correct the large er-
rors or eliminate the wrong measurements from the data se-
lected for location estimation. The identification of the out-
liers is known to be NP hard and therefore the relatively sim-
ple problem of location estimation based on TOA requires
excessive computer resources in the presence of outliers.
For example, the identification ofk (say 10) outliers out of
m (say 40) TOA measurements requires the examination of
( m

m−k

)

=
(40

30

)

= 847,660,528 subsets of measurements when
k is known. Since the number of outliers is not known in
advance it is required to examine even more subsets.
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We propose to identify the outliers by using recent re-
sults in sparse representation of signals. Consider the lin-
ear set of equationss = Br wheres is a vector that has a
representationr in the span ofB, a.k.a. as dictionary. In
some applications the sparsestr is desired. The representa-
tion is sparse if the dictionary is over complete, i.e.,B has
more columns than rows. In this case,s = Br is an under-
determined set of equations that cannot be solved uniquely
by classical methods. In recent publications, it has been
shown that if the sparsest representation is sufficiently sparse,
then not only it is unique, but it can also be easily obtained by
linear programming [3]-[5]. Conditions ensuring uniqueness
of the sparsest solution were established in [6]. The prob-
lem has been extended to a wider variety of bases in [7],[8]
including dictionaries built by concatenation of non-unitary
matrices [9],[10]. Since these approaches are all based on
ℓ1-norm minimization, the validity of sparse representation
by ℓ1-norm relaxation was also studied in [11]. The theory
of sparse signal representation has also been used for outliers
identification in [12].

Recent works have exploited these advances by formulat-
ing geolocation as a sparse representation problem involving
the signals collected at several sensors [13]. This method is
known as Compressive Sensing [14], and sparsity is consid-
ered at the level of array signal processing.

Our approach is different since we address a problem oc-
curring after the extraction of location parameters from the
received signals. We assume that TOA, Angle of Arrival
(AOA), Time Difference of Arrival (TDOA) or Received Sig-
nal Strength (RSS) measurements are available, although a
subset is severely corrupted. In a linear formulation of thege-
olocation problem, an over-determined set of equations must
be solved.

The solution that we are proposing here consists of sev-
eral ingredients. First, we write the quadratic equations of
the TOA measurements as linear equations. See [15]-[16]
for earlier applications of transforming non-linear equations
to linear equations in geolocation applications. Second, we
define an optimization problem in terms ofℓ1 norm mini-
mization. Third, we solve the optimization problem using ef-
ficient linear programming methods. As a result we get a list
of outliers, the size of each error and location estimate. Us-
ing the location estimate and the list of good measurements
one can now apply a final, non-linear, localization step using
digital terrain map (DTM) for the ultimate result.

The method described above can also be used for other
geolocation systems such as geolocation based on AOA or
geolocation based on RSS. The main goal of this paper is
to find the limitations of the proposed outliers identification
methods.
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2. OVERVIEW

It is well known that geolocation based on AOA, TOA,
TDOA and RSS can be based on a solution of a linear set
of N equations (more details will be provided shortly),

y = Ax+e (1)

The vectorx is the vector of unknown parameters which ob-
viously include the coordinates of the transmitter to be lo-
cated. The matrixA and the N× 1 data vectory are func-
tions of the available measurements and the known parame-
ters such as the coordinates of the sensing devices. The en-
tries of the error vectore are assumed to be zero (or “small”)
except for a few entries which are large and therefore referred
to as outliers. The distinction between “small” and “large”
errors is not obvious and therefore we assume, as a first at-
tempt to solve the problem at hand, that most of the entries
in e are zero and only few are different from zero. Thus, the
error vectore is sparse. We search for the vectorx that is
associated with the minimal number of outliers. Define [12],

(P0) : min
x

‖Ax−y‖0 (2)

(P1) : min
x

‖Ax−y‖1 (3)

where‖·‖0 stands for theℓ0 -norm (the number of vector ele-
ments that are not zero) and‖·‖1 stands for theℓ1-norm (the
sum of absolute values of the vector elements). Formally, we
look for the solution of the minimization problem(P0). Un-
fortunately, this problem is NP hard, and therefore one may
consider solving(P1). The problem(P1) can be solved by
linear programming and according to our numerical experi-
ence works amazingly well.

The challenge is to establish a condition ensuring that the
solution of the tractable problem(P1) is also the solution of
the hard problem(P0). In this paper, we derive this condition
and show that it depends on the number of outliers. The idea
is to identify a matrixF 6= 0 so thatFA = 0. Then equation
(1) reduces toFy = Fe. Define

(P′
0) : min

e
‖e‖0 s.t. Fy = Fe (4)

(P′
1) : min

e
‖e‖1 s.t. Fy = Fe (5)

In [12] it has been shown that the solutione0 of the alter-
native problem(P′

0) yields the solutionx0 of (P0). Since
theℓ0-norm problem(P′

0) is hard, it is replaced by the alter-
native problem(P′

1). Define the matrixU whose columns
are the normalized eigenvectors ofAAT associated with the
non-zero eigenvalues. We proposeF = IN−UUT whereIN
is the N×N identity matrix. We look for a condition en-
suring that the solution of(P′

1) is identical to the solution
of (P′

0). Denote bye0 the solution of(P′
0) and byS the

set of indices corresponding to non-zero entries ofe0 i.e.,
S= {i ∈ [1, ...,N]|e0(i) 6= 0}. Denote by‖.‖2 the ℓ2-norm,
by s the number of elements inSand byδ (S) thes×1 vector
obtained from a vectorδ by removing the entriesδi , i /∈ S.

Lemma 1 If any vectorδ 6= 0 that satisfiesFδ = 0 also sat-
isfies‖δ (S)‖1 < 1

2 ‖δ‖1 then the solution of(P′
0) coincides

with the solution of(P′
1).

Lemma 2 Any δ 6= 0 that satisfiesFδ = 0 also satisfies

‖δ (S)‖1 ≤ s‖δ‖1 max
ℓ

{

‖U(ℓ, :)‖2
2

}

.

For the proofs of the lemmas, see [6], [8], [17] and [18]. By
combining the two lemmas we can get a condition that guar-
antees equivalence between(P′

1) and(P′
0). This condition is

s‖δ‖1max
ℓ

{‖U(ℓ, :)‖2
2} < 1

2 ‖δ‖1which proves Theorem 1.

Theorem 1 If the number of non-zero entries, s, in the solu-
tion of (P′

0) satisfies

s<
1

2max
ℓ

‖U(ℓ, :)‖2
2

∆
= B (6)

Then(P′
1) and (P′

0) have the same solution and the outliers
can be identified exactly.

The bound above depends onU which is strongly related
to A. In the next section, we establish the structure of the
matrixA for AOA, TOA and TDOA data. Then, in sections
4, 5 and 6 we find corresponding expressions forU. The
effects of small errors on outliers identification are discussed
in section 8. Finally, numerical results are given in section 9.

3. REPRESENTATION OF GEOLOCATION BY
LINEAR EQUATIONS

In this section we cast the usually non-linear geolocation
equations as a set of linear equations.

3.1 Geolocation based on AOA

Assume thatN stations collect AOA measurements of a sin-
gle target. Letpi = [xi ,yi ]

T represent thei-th station coordi-
nates andpt = [xt ,yt ]

T the target coordinates. Letφi be the
AOA (measured anticlockwise w.r.t. the x-axis) at thei-th
station. Then, in the absence of noise, thei-th AOA mea-
surement satisfies(yt −yi)cosφi = (xt −xi)sinφi . Define

s , [sinφ1, · · · ,sinφN]T c , [cosφ1, · · · ,cosφN]T

A , [s,−c] x , [xt ,yt ]
T

y , [(x1sinφ1−y1cosφ1) , · · · ,(xN sinφN −yN cosφN)]T

Then,y = Ax, and in the presence of errorsy = Ax+e.

3.2 Geolocation based on TOA

Let mi be the measured TOA,c the propagation speed, and
t0 the known transmit time. In the absence of errors, the
i-th TOA measurement is given bymi = c−1‖pi −pt‖2 +
t0. Substituting the target and sensor coordinates we get,
c2 (mi − t0)

2 = ‖pi‖2 + ‖pt‖2−2pT
i pt . Collecting the mea-

surements fromN sensors, we gety = Ax with

y , [‖p1‖2 , · · · ,‖pN‖2]T −c2
(

m⊙m+ t2
01N −2t0m

)

A ,
[

2[p1,p2, · · · ,pN]T , 1N
]

x , [pT
t , −‖pt‖2]T

wherem⊙m is the element-wise product, and1N is anN×1
vector of ones. In the presence of errors we gety = Ax+e.

3.3 Geolocation based on TDOA

If the transmit time,t0 , is unknown the localization method
is called TDOA. In this case we have,

y , [‖p1‖2 , · · · ,‖pN‖2]T −c2(m⊙m)
A ,

[

2[p1,p2, · · · ,pN]T , 1N, cm
]

x , [pT
t , (c2t2

0 −‖pt‖2), −2ct0]T

Again,y = Ax, and in the presence of errorsy = Ax+e.
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4. NUMBER OF IDENTIFIABLE OUTLIERS IN
AOA GEOLOCATION

We now establish the bound on the number of outlierssgiven
in (6) for AOA geolocation. As shown in Section 3, we have
A = [s, −c]. The eigenvectors ofA arec/‖c‖ ands/‖s‖
provided thatcTs = 0. This orthogonality condition can
always be satisfied by rotating the coordinate system [18].
Thus,U = [s/‖s‖, c/‖c‖]. According to theorem 1,

B =
‖c‖2‖s‖2

2max
ℓ

(

‖c‖2sin2 φℓ +‖s‖2cos2 φℓ

) (7)

4.1 Application to Uniform Distribution of Sensors

Assume that the sensors are uniformly distributed within a
circular area whose radius isR and its center is at(0,0). De-
note by(rℓ,θℓ) the polar coordinates of theℓ-th sensor. The
anglesθℓ are uniformly distributed in[0,2π ] and the ranges
rℓ are distributed in[0,R] according to the probability density
function fr(r) = 2r

R2 . For largeN, ‖c‖2 and‖s‖2 tend to N
2 .

ThenB(N) = N
4 +o(N).

4.2 Application to Circular Sensor Array

The sensors are uniformly distributed on a circle with radius
R. The coordinates of theℓ-th sensor arexℓ = Rcosθℓ, yℓ =
Rsinθℓ whereθℓ = 2πℓ/N. Assume that the transmitter is
located on thex-axis at coordinates(d,0) whered > 0. We
show in [18] that for largeN the bound tends toN/4 for
a transmitter within the circle of sensors, and toN/6 for a
remote transmitter. Furthermore, for anyN, including small
N, if d ∈ [0,R] thenB(N) ≥ N

4 − 1
2.

4.3 Application to Concentric Circular Sensor Arrays

ConsiderK concentric circles. Assume thatNk sensors are
located on thek-th circle and thatNk = RkN1, whereN1 ≫ 1
is the number of sensors on the smallest circle whose radius
is R1 = 1. Further, assume thatR1 < R2 < · · · < RK . Then,
for a transmitter located at coordinates(d,0),

Ba(N) =



















N
4 d ≤ R1
N1
4

(

1
d2 ∑k−1

j=1 R3
j + ∑K

j=k Rj

)

d ∈ [Rk−1,Rk]

N
2

(

2R2
K

∑K
j=1 Rj

∑K
j=1 R3

j
+1

)−1
d ≫ RK

converges asymptotically to a bound stricter thanB(N) [18].

5. NUMBER OF IDENTIFIABLE OUTLIERS IN
TOA GEOLOCATION

As shown in section 3,A = [2xb,2yb,1N] wherexb,yb are
the x and y coordinates of all the sensors. The eigenvec-
tors ofA arexb/‖xb‖, yb/‖yb‖ and1N/

√
N provided that

1T
Nxb = 1T

Nyb = xT
b yb = 0. These orthogonality assump-

tions can always be satisfied by a coordinate system rotation
and an addition of an appropriate artificial outlier measure-
ment [18], which slightly loosens the bound but in turn yields

closed form expressions. ThenU =
[

xb
‖xb‖ ,

yb
‖yb‖ ,

1N√
N

]

. Ac-

cording to Theorem 1,

B =
‖xb‖2‖yb‖2

2max
ℓ

{

‖yb‖2x2
ℓ +‖xb‖2y2

ℓ

}

+2‖xb‖2‖yb‖2/N
(8)

5.1 Application to Uniform distribution of sensors

Assume that the sensors are uniformly distributed as in 4.1.
Then‖xb‖2 = ‖yb‖2 = NR2

4 +o(N). Thus,B(N) = N
10+o(N)

without any limitation on the location of the transmitter.

5.2 Application to Uniform Circular Sensor Array

Consider a uniform circular array ofN sensors as in 4.2.
Then ‖xb‖2 = ‖yb‖2 = NR2/2. From (8) we obtain the
bound on the number of outliers isB = N/6.

5.3 Application to Concentric Circular Sensor Arrays

ConsiderL uniform concentric circular sensor arrays cen-
tered on(0,0). Assume that theℓ-th circular array consists
of Nℓ ≥ 3 sensors. The coordinates of thek-th sensor of the
ℓ-th array of radiusrℓ are

[

rℓ cos(θℓ,k + αℓ), rℓ sin(θℓ,k + αℓ)
]

whereαℓ ∈ [0,2π ] andθℓ,k = 2πk/Nℓ for k = 1, ...,Nℓ. De-
fine r2 , 1

N ∑L
ℓ=1Nℓr2

ℓ . Then we get from (8) the bound
B = N/(4max

{

r2
ℓ/r2

}

+2) for anyN.

5.4 Application to Uniform Linear Sensor Array

Consider a uniform linear array of sensors placed on the
x axis between−R/2 andR/2. The sensor separation is
R/(N−1). Observe that‖yb‖2 = 0 and‖xb‖2 = R2 N

12
N+1
N−1.

Sinceyb = 0 the eigenvectors of the matrixA are U =
[ xb
‖xb‖ ,

1N√
N
]. Then,B = N/(6N−1

N+1 +2) andB tends toN
8 .

6. NUMBER OF IDENTIFIABLE OUTLIERS IN
TDOA GEOLOCATION

As shown in section 3,A = [2xb, 2yb, 1N, cm]. The eigen-
vectors ofA are xb

‖xb‖ , yb
‖yb‖ , 1N√

N
and m

‖m‖ provided that they
are orthogonal. These orthogonality conditions can always
be satisfied by coordinate system rotation and translation and
an addition of an appropriate artificial outlier measurement
[18]. Under these orthogonality conditions the bound is

B =
(

2max
ℓ

{

x2
ℓ

‖xb‖2 +
y2
ℓ

‖yb‖2 +
m2

ℓ
‖m‖2

}

+ 2
N

)−1
(9)

6.1 Application to Uniform Distribution of Sensors

Consider a uniform distribution of sensors as in 5.1. Without
loss of generality, selectt0 = −E{rℓ}

c . We show in [18] that
B(N) = N

18 +o(N).

6.2 Application to Uniform Circular Sensor Array

Consider a uniform circular array of sensors as in 4.2. Again,
assume thatt0 = −E{rℓ}

c whererℓ is the range between the
transmitter and theℓ-th sensor. We show in [18] that for

N ≥ 3 the bound isB(N) =
(

2max
ℓ

m2
ℓ

‖m‖2 + 6
N

)−1
and

B(N)=







N/6 d = 0
N/10 d = 0+ or d ≫ R
Np/(4p+4)+o(N) d = R where p = 2− 16

π2

Further, for finiteN a good approximation forB is

Ba(N) =

{

(N/10)
(

1− 1
3

d
R

)

0 < d ≤ R
(N/10)

(

1− R
5d−2R

)

d > R
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7. HIDDEN ERRORS

We show now that some measurement errors do not affect the
consistency of the linear equations set. According to section
3, the AOAk-th linear equation is{y}k = xk sinφk−yk cosφk
whereφk is the errorless AOA measurement. In the presence
of perturbations, denote byεk thek-th measurement error and
by φ̂k = φk+εk thek-th actual measurement. We show in [18]
that ek = 2rk sin(εk/2)cos(εk/2+ φk−θk).The cosine term
is zero forεk = 2(θk−φk)±π . Thenek = 0 althoughεk 6= 0.
Thus, there are cases of errors in the measurements that do
not appear as an error in the linear equations and therefore
do not affect the correct solution.

Similarly, according to section 3, and under the assump-
tion that t0 = 0, the exact TOA measurements aremk =
1
c‖pk−pt‖ and the corresponding linear equation is{y}k =

‖pk‖2 − c2m2
k. If the k-th TOA measurement ˆmk is impre-

cise, we have ˆmk = mk + εk
c whereεk is the ranging error.

Then ek = −εk(2‖pk − pt‖+ εk), see [18] for details. If
εk = −2‖pk−pt‖ thenek = 0, meaning that this measure-
ment error does not affect the linear equations and their solu-
tion. Note that this measurement error corresponds to ˆmk < t0
and therefore is likely to be removed from the TOA data set.
If t0 is unknown, as in TDOA, the error cannot be detected
easily before emitter localization.

We have revealed the existence of hidden errors that af-
fect the measurements and therefore the nonlinear estima-
tion problem, but do not affect the linear set of equations.
Of course, hidden errors are not likely to occur since they
must satisfy the conditionek = 0 described above. However,
the probability of small values forek may not be negligible.
Thus, we extend the concept of hidden outliers to any large
εk for whichek is small.

Proposition 2 Robustness to Hidden Outliers- In the pres-
ence of small errors, solving nonlinear localization problems
by means of a linear set of equations ensures robustness to
hidden outliers.

8. STABILITY IN THE PRESENCE OF SMALL
ERRORS

Recall that our model in (1) assumed that the error vectore
consists of a few large entries called outliers and all other
entries are zero. This model assumes that small errors do not
exist. The original problem can be written as(P′

1,0) where

(P′
1,ε) : min

e
‖e‖1 s.t. ‖Fy−Fe‖2

2 ≤ ε

In the presence of small errors we add a non-sparse vector
n, y = Ax+ e+n. Assuming bounded small errors, pro-
jection usingF yieldsFy = Fe+Fn and‖Fn‖ ≤ ε. Thus
we are interested in solving(P′

1,ε) with ε > 0. Denote bye
anden the solutions of(P′

1,ε) in the absence and in the pres-
ence of small errors. By continuity of the penalty and con-
straint functions, we can justify the existence of a function
f (ε) so that lim

ε→0
f (ε) = 0 and|e(k)−en(k)|< f (ε) for anyk.

For a non-outlier entry we havee(k) = 0 and|en(k)| < f (ε).
Thus, the solutionse anden have identical support provided
that all the entries ofen satisfying|en(k)| < f (ε) are set to
0. Therefore, outliers identification in the presence of suffi-
ciently small errors can be achieved by linear programming.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Number of sensors N

B
ou

nd
 o

n 
th

e 
nu

m
be

r o
f o

ut
lie

rs

 

 
B

e

B
B

a

Figure 1: The experimental bound, (Be), the theoretical
bound on the number of outliers, (B), and its approximation,
(Ba), versus the numberN of TOA sensors in the circular
array

9. NUMERICAL EXAMPLES

In previous sections, we discussed a sufficient condition en-
suring the identification of outliers within a set of AOA, TOA
or TDOA measurements by means of linear programming.
The condition limits the number of identifiable outliers by an
upper bound. In this section we examine the tightness of the
upper bound by numerical simulations.

9.1 Outliers identification in TOA models

Recall that a range measurement errorεk generates a linear
equation errorek = −εk(2rk + εk) whererk is the distance
of the k-th sensor from the transmitter. We define an er-
ror as an outlier if|εk| ≥ αrk with α = 0.1 Furthermore,
for a given topology one can generally establish an upper
bound on the largest distance between the transmitter and the
sensors. Range measurements with excessively large errors
can be removed before processing. Thus, one can define a
topology-dependent scalarD so that 0≤ rk + εk ≤ D for any
k. Thus, an outlier errorek resulting fromεk, satisfies

ek ∈
[

−D2 + r2
k, −α(2+ α)r2

k

]

∪
[

αr2
k, (2−α)r2

k

]

(10)

In the simulations the outlier error have been uniformly dis-
tributed within the interval defined in (10).

In this example, small errors have not been simulated.
Consider a uniform circular array of TOA sensors. Assume
the array has a radius of 1 distance unit [DU] and that the
emitter is located within this array. The maximum distance
between the transmitter and the sensors is 2 [DU]. Thus,
D = 2 [DU]. The boundBa = N/6 is independent of the
transmitter location. For each of theNe = 200 experiments
the transmitter location is selected at random within the cir-
cular area of the sensor array, and we identify the smallest
number of outliers for which identification fails. The result
of the i-th experiment is denoted byki . The experimental
bound isBe = min

1≤i≤Ne
ki . Denote by ˆe the estimate ofe by

solving (P′
1) using linear programming. We define failure

when some outliers are not identified or some good measure-
ments are classified as outliers. Since the experiments are
based on numerical solutions, we define perfect outliers iden-
tification when max

1≤i≤N
|êi −ei | < 10−6. In Fig. 1, we plotted

the boundsBe, B andBa versusN. The boundB appears to
be rather tight.
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Figure 2: RMSE of LS location estimates versus standard
deviation of ranging small errors. Thin lines show results of
straightforward LS while thick lines show results with out-
liers removal step.

9.2 Localization in the Presence of Small Errors and
Outliers

In this section we examine the precision of least squares (LS)
location estimates with and without outliers identification.
The measurements in the presence of noise (small errors) and
outliers are given byy = Ax+e+n. The LS estimate ofx
is given byx̂0 = A†y whereA† is the pseudo-inverse ofA.
A better way to estimatex may be to first apply linear pro-
gramming in order to estimate the error vector̂e+n. Then
apply LS to the modified data ˆxe = A†(y− ê+n).

We performed 200 experiments with a uniform circular
array of radius 1 [DU] consisting ofN = 30 TOA sensors.
The number of outliersswas successively set to 0, 5 and 10,
corresponding to 0%, 16% and 33% of the equations. The
outliers size correspond to (10). The small ranging errors
are realizations of zero-mean gaussian random variables with
standard deviationσ . Fig. 2 shows the RMSE of location
estimates versusσ . Note thatσ = 0.3 [DU] is not negligi-
ble compared with the error-free measurements and therefore
the number of outliers is occasionally increased. According
to Fig. 2, in the presence of 5 or 10 outliers, it is always
significantly advantageous to remove the outliers by linear
programming before LS estimation, regardless of the noise
variance. In the absence of outliers, a slight performance
degradation may be observed if preprocessing is used. Note
however that if no outlier is found the preprocessing can be
ignored.

10. CONCLUSION

We have invoked the theory of sparse signal representation
in the context of positioning. We have shown that in the ab-
sence of noise, AOA, TOA and TDOA data sets corrupted
by unknown outliers can be corrected using linear program-
ming, provided that the number of outliers does not exceed
a limit given in Theorem 1. In Sections 4, 5 and 6 the limit
given in (6) has been evaluated for several geometries. For
each case, the exact expression of the bound and simple ap-
proximations were presented. In followup work we focus on
outliers in the presence of small errors.
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