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ABSTRACT
We propose a linear matrix inequality formulation of the
Bounded Real Lemma (BRL) for multivariate trigonomet-
ric polynomials with matrix coefficients. This is a gener-
alization of previous results regarding positive trigonometric
polynomials. The proposed BRL allows the formulation of
several FIR filter design problems as semidefinite program-
ming (SDP) problems. We employ the new BRL in three
applications: matrix filter design, 2-D deconvolution and de-
sign of 2-D filters with matrix coefficients. All applications
are illustrated with examples that improve on previous work.

1. INTRODUCTION

The recent developments in the field of positive trigonomet-
ric polynomials [4] concern mainly polynomials with scalar
coefficients. Although some basic results have been proven
to hold in (almost) the same form for polynomials with ma-
trix coefficients [7, 5, 1, 2, 8], there are still issues not yet in-
vestigated. Moreover, while the generalization to matrix co-
efficients may be relatively easy from a mathematical view-
point, the applicative importance of the new results shouldbe
relevant enough to deserve the investigation.

Let us consider a causal matrix polynomial (filter) ind
variables,

H(z) =
n

∑
k=0

Hkz
−k. (1)

We denotez = (z1, . . . ,zd) the complex variable andzk the
monomialzk1

1 . . .zkd
d , with k ∈ Zd. The matrix coefficients

Hk have sizeκ1×κ2; we can seeH(z) as a MIMO system
with κ2 inputs andκ1 outputs. The degree of the filter (1)
is n ∈ Zd

+ and the sum runs for all0 ≤ k ≤ n, where the
inequalities are valid elementwise. A Bounded Real Lemma
(BRL) is a characterization of the inequality

‖H(z)‖ ≤ γ, (2)

whereγ is a positive number and‖ · ‖ is a system norm. We
consider here theH∞ norm, which makes (2) equivalent to

σmax(H(ejω )) ≤ γ, ∀ω ∈ T
d, (3)

whereσmax(·) is the maximum singular value of its matrix
argument andT is the unit circle. We actually treat the more
general case where the inequality (3) is valid on a subset
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D ⊂ Td described by the positivity of some trigonometric
polynomials (and so‖ · ‖ from (2) is no longer a norm).

We provide in this paper a linear matrix inequality (LMI)
characterization of (2), which allows solving optimization
problems involving (2) via semidefinite programming (SDP).
The result can be seen as a generalization of the BRL from
[2] to the multivariate case (including frequency domains)or
of the BRL from [3] to matrix polynomials. Due to space
restrictions, we omit the proofs. We describe and give de-
sign examples for three applications: design of matrix fil-
ters [9, 13], 2-D deconvolution [11] and design of filters with
matrix coefficients [12]. Although we present our results for
polynomials with real coefficients, they can be extended eas-
ily to the complex case.

2. BOUNDED REAL LEMMA

The two main results we present in this section are intimately
related to the theory of sum-of-squares polynomials. A sym-
metric trigonometric matrix polynomial has the form

R(z) =
n

∑
k=−n

Rkz
−k, R−k = RT

k. (4)

The coefficientsRk have sizeκ ×κ . Forz ∈ Td, R(z) is a
Hermitian matrix and so it has real eigenvalues. The polyno-
mial (4) is sum-of-squares if it can be expressed as

R(z) =
ν

∑
ℓ=1

Fℓ(z)Fℓ(z
−1)T , (5)

whereFℓ(z) are causal polynomials as in (1). It is clear that
for z ∈ Td, the sum-of-squaresR(z) is a positive semidefi-
nite matrix. Conversely, all polynomials (4) withR(z) ≻ 0,
∀z ∈ Td, are sum-of-squares, see e.g. [1]; however, the de-
grees of the polynomialsFℓ(z) from (5) may be arbitrarily
high.

The connection between sum-of-squares and SDP is
made by expressing causal polynomials (1) using the stan-
dardd-dimensional basis

ψ(z) = ψ(zd)⊗ . . .⊗ψ(z1)⊗ Iκ , (6)

where⊗ is the Kronecker product and

ψ(zi) = [1 zi . . . zni
i ]T (7)

is the univariate basis. By stacking the matrix coefficients
of (1) in the order of the monomials from the basis (6), we
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obtain a matrixH of sizeNκ1×κ2, with N = ∏d
i=1(ni + 1)

being the number of matrix coefficients in (1). For example,
for a 2-D polynomial withn1 = 2, n2 = 1, the basis (6) is

ψ(z) = [I z1I z2
1I z2I z1z2I z2

1z2I]
T (8)

and the stacked coefficients matrix is

H = [HT
0,0 HT

1,0 HT
2,0 HT

0,1 HT
1,1 HT

2,1 ]T . (9)

Using the above ingredients, the causal filter can be ex-
pressed as

H(z) = ψ(z−1)T ·H. (10)

The parameterization of sum-of-squares trigonometric
polynomials is the following [7]. A polynomialS(z) defined
as in (4) is sum-of-squares (of ordern) if and only if there ex-
ists a positive semidefinite matrixQ of sizeNκ×Nκ (named
Gram matrix) such that

S(z) = ψ(z−1)T ·Q ·ψ(z). (11)

This relation connectslinearly the coefficients of a sum-of-
squares polynomial to the elements of a positive semidefinite
matrix.

We consider frequency domains

D = {z ∈ T
d | Dℓ(z) ≥ 0, ℓ = 1 : L} (12)

defined by the positivity of trigonometric polynomials (with
scalar coefficients). The next theorem describes trigonomet-
ric matrix polynomials that are positive definite on the do-
mainD .

Theorem 1 A matrix polynomial (4) is positive definite on
the set (12), i.e.R(z) ≻ 0, ∀z ∈ D , if and only if there exist
sum-of-squaresSℓ(z), ℓ = 0 : L, such that

R(z) = S0(z)+
L

∑
ℓ=1

Dℓ(z)Sℓ(z). (13)

Proof. The theorem can be proved similarly to the scalar
coefficients result from [3]. The starting point is a result
from [8] on multivariaterealmatrix polynomials that are pos-
itive definite on a domain described by the positivity of (real)
polynomials.

As in other results of this type, the degree of the sum-of-
squaresSℓ(z) from (13) can be arbitrarily high. Practically,
we have to bound the degrees, usually to the degree ofR(z),
which makes (13) only a sufficient stability condition. How-
ever, in the 1-D case, whenD is an interval described by
the positivity of a single polynomial, Theorem 1 holds true
for sum-of-squaresS0(z), S1(z) whose degrees are minimial
(i.e. n andn−2, respectively). (The proof has been provided
by C.W. Scherer in a personal communication.) Using the
representation (11) for the sum-of-squares appearing in (13),
polynomial positivity is expressed as an LMI.

We can now present the BRL for trigonometric matrix
polynomials.

Theorem 2 LetH(z) be a causal matrix polynomial (1) and
γ a positive real. The inequality

σmax(H(z)) < γ, ∀z ∈ D , (14)

holds true if and only if there exist sum-of-squaresSℓ(z),
ℓ = 0 : L, such that

γ2Iκ1 = S0(z)+
L

∑
ℓ=1

Dℓ(z)Sℓ(z) (15)

and
[

Q0 H

H
T

Iκ2

]

� 0, (16)

whereQ0 is the Gram matrix associated withS0(z) through
(11) and the matrixH contains the stacked coefficients of
H(z) as in (10).

Proof. The proof is similar to the scalar case treated in [3] and
uses Theorem 1, a majorization result and the Schur comple-
ment.

Some comments on Theorem 2 are necessary. Relation
(14) is equivalent to

H(z)H(z−1)T < γ2Iκ1.

Accordingly, the matrix coefficients of the polynomials from
(15) have sizeκ1×κ1. As the size of Gram matrices is pro-
portional with the size of matrix coefficients and since the
nonzero singular values ofH(z) andH(z)T are the same,
this form of the BRL is convenient whenκ1 ≤ κ2. Other-
wise, it is more efficient to rewrite Theorem 2 forH(z)T .

Similarly to Theorem 1, the degrees of the sum-of-
squares can be arbitrarily high. In our use of Theorem 2, we
will always consider the minimum degree, which e.g. implies
that the degree ofS0(z) is n. So (excepting the 1-D case),
we implement only a sufficient boundedness condition. In
the case where the degree ofS0(z) is larger, the stacked co-
efficients matrixH that appears in (16) must contain zero
coefficients (in the appropriate positions) for the monomials
with degree not smaller thann. Working with higher de-
grees of the sum-of-squares may improve the quality of the
results, but only marginally in most cases; however, the com-
plexity always increases; so, practical considerations and our
experience with the scalar coefficient case suggest to use the
minimum degree.

Using the Gram matrix representation (11) for the sum-
of-squares appearing in (15), the relations (15)–(16) are an
LMI in which the coefficients ofH(z) appear linearly. So, a
score of optimization problems can be solved via SDP. The
simplest example is the computation of theH∞ norm of a
system (1). It consists of the minimization ofγ2, subject
to (15) and (16). Since in this caseD = Td, the equality
(15) is reduced toγ2Iκ1 = S0(z) = ψ(z−1)T ·Q0 ·ψ(z). The
variables of the problem areγ2, the coefficients ofH(z) and
the Gram matrixQ0 � 0. This is an SDP problem, since all
the variables appear linearly in (15) and (16). The optimalγ
is (an upper approximation) of the desiredH∞ norm.

3. DESIGN PROBLEMS AND RESULTS

We discuss here three design applications of Theorem 2, per-
taining to matrix filters, 2-D FIR deconvolution and 2-D FIR
filters with matrix coefficients. Other possible applications,
not touched here, are in filters for MIMO sampling and re-
construction [10] or the design (for nearly perfect reconstruc-
tion) of a (multidimensional) synthesis filter bank given the
analysis bank.
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3.1 Matrix filter design

Matrix filters [9] process blocks of datax ∈ CN through the
linear transformation

y = Ax, (17)

whereA is a real (or complex) matrix of sizeN×N (we
consider square matrices only for the ease of presentation).
Such processing is useful for example in antenna arrays for
underwater acoustics.

We treat here the simplest design setup, in which we want
to design a minimax lowpass matrix filter (with real coeffi-
cients), which satisfies the conditions

‖Aψ(e− jω)−ψ(e− jω)‖ ≤ γp, ∀ω ∈ [0,ωp], (18)

‖Aψ(e− jω)‖ ≤ γs, ∀ω ∈ [ωs,π ], (19)

whereωp and ωs are the edges of the passband and stop-
band, respectively, andγp andγs are error bounds with re-
spect to the desired response. The passband desired response
is a vector of delays, see (7). The norms in (18) and (19) are
2-norms.

The matrix filter has the form

H(z) = Aψ(z−1) =
N−1

∑
k=0

akz
−k, (20)

whereak ∈ RN are the columns ofA. The polynomial (20)
hasd = 1 variable and the size of the matrix coefficients is
κ1 = N, κ2 = 1. The inequality (19) is equivalent to

σmax(H(ejω)) ≤ γs, ∀ω ∈ [ωs,π ]. (21)

This makes Theorem 2 applicable. The trigonometric poly-
nomial whose positivity definesD = [ωs,π ] is

Ds(z) = 2cosωs−z−z−1. (22)

Sinceκ1 > κ2, we apply Theorem 2 for the transposed filter.
It results that (19) holds if and only if there exist sum-of-
squares

S0(z) = ψ(z−1)TQ0ψ(z), (23)

S1(z) = ψ(z−1)TQ1ψ(z) (24)

(note that these are polynomials with scalar coefficients) such
that

γ2
s = S0(z)+Ds(z)S1(z), (25)

[

Q0 AT

A IN

]

� 0. (26)

In thed = 1 case, which applies to (23,24), the Gram matrix
parameterization (11) has the form

sk = tr[ΘkQ], (27)

wheresk are the (scalar) coefficients of the sum-of-squares
andΘk is the Toeplitz matrix with ones on diagonalk and
zeros elsewhere. Using this parameterization and the partic-
ular form of the polynomialDs(z), relation (25) becomes

γ2
s δk = tr[ΘkQ0]+ tr[(2cosωs ·Θk−Θk−1−Θk+1)Q1],

(28)
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Figure 1: Power response of the matrix filter designed in Ex-
ample 1.

for k = 0 : N−1 (δk is the Kronecker symbol). For the pass-
band, a similar reasoning transforms (18) into

γ2
pδk = tr[ΘkQ̃0]+ tr[(Θk−1 +Θk+1−2cosωp ·Θk)Q̃1],(29)

[

Q̃0 AT − IN
A− IN IN

]

� 0. (30)

The minimax optimization problem can be formulated as
follows. Given the orderN, stopband edgeωp, passband
edgeωs, minimize the maximum passband and stopband er-
ror by solving the SDP problem

min γ2
s

subject to (28),(26),(29),(30),γ2
p = γ2

s
Q0 � 0,Q1 � 0,Q̃0 � 0,Q̃1 � 0

(31)

We note that the size of the matricesQ0 andQ̃0 is N×N,
while the size ofQ1 andQ̃1 is (N− 1)× (N− 1). In (31),
the passband and stopband errors are forced to be equal. In
general, we can force a given ratio, or set one or both errors
to preset values (in the latter case, the SDP problem requires
only feasibility).

Example 1. We consider the specifications of the last ex-
ample from [13], namelyN = 15, ωp = 0.2π , ωs = 0.3π .
The power response of the filter designed by solving (31) is
shown in Figure 1. The optimal error isγs/

√
N = −14.5 dB.

In [13], the stopband error was set to−12 dB, using semi-
infinite optimization techniques. However, in [13] the pass-
band error energy was optimized. Since this energy is a pos-
itive quadratic function of the elements of the matrixA, it is
easy to insert its optimization in the SDP problem (31). The
time required for solving (31) was of about 4 seconds on a
dual core PC at 1.86 GHz, with 4Gb memory.

3.2 2-D FIR deconvolution

In the general deconvolution scheme shown in Figure 2, the
signals passes through the channelG(z), whose model is
known, and is contaminated by the noiseη . We want to de-
sign a filterX(z) whose output ˆs approximates the ideal out-
putDs. We assume that all filters are FIR. The output error
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Figure 2: General deconvolution scheme.

is

ε = ŝ−Ds = (X[G I]− [D 0])

[

s
η

]

∆
= H

[

s
η

]

. (32)

The error functionH(z) has the general form

H(z) = X(z)A(z)−B(z), (33)

where A(z), B(z) are given; in (32) we haveA(z) =
[G(z) I], B(z) = [D(z) 0]. Lacking knowledge on input
and noise signals, the best way to control the output error isto
minimize the norm ofH(z), using inequalities like (2). Since
the coefficients ofH(z) depend linearly on those ofX(z), the
use of Theorem 2 transforms (2) into an LMI. Equality (15)
does not depend onX(z), while in (16) H is replaced by
L (X) whereL is the linear transformation that maps the
coefficients ofX(z) into those ofH(z).

The optimization scheme outlined above can be used for
several problems. Let us illustrate it for the case of 2-DH∞
deconvolution of SISO systems. In this case, we haved = 2,
κ1 = 1, κ2 = 2. We assume thatG(z) is FIR of orderng. We
want to design the FIR filterX(z) of ordernx such that the
error norm inequality (2) hold for the smallest possible value
γ. Taking into account the generalization of the parameteri-
zation (27) to the 2-D case (see [7, 3]), the use of Theorem 2
leads to the following optimization problem

min γ2

s.t. γ2δk1k2 = tr[(Θk2 ⊗Θk1)Q], −n≤ (k1,k2) ≤ n
[

Q L (X)
L (X)T I2

]

� 0

(34)
wheren = ng +nx is the degree of the error filterH(z).

Example 2.We consider the example from [11], with

G(z1,z2) = 0.1(z−1
1 +z−1

2 )3 +0.1z−2
2 +0.1z−1

2 +8

= [1 z−1
1 z−2

1 z−3
1 ]







8 0.1 0.1 0.1
0 0 0.3 0
0 0.3 0 0
0.1 0 0 0















1
z−1
2

z−2
2

z−3
2









and D(z) = 1. Solving (34) withnx = (2,2), we obtain
an optimal value of theH∞ error norm ofγ = 0.1379=
−17.2 dB. The error frequency responseσmax(ejω) is shown
in Figure 3. Increasing the degree ofX(z) does not improve
the result. For comparison, the state-space approach from
[11] gives an error of 0.15 for a system of degree(3,3).

In this example we have used a global error bound, i.e.
D = Td in Theorem 2, as so the error surface from Figure 3 is
equiripple. By enforcing equalities (2) with different values
of γ on different domains, it is possible to shape the error.

Figure 3: Frequency response of input-output error in the
deconvolution scheme optimized in Example 2.

3.3 Design of 2-D MIMO filters

The design of lowpass MIMO multidimensional filters was
discussed in [12] in the following setup. Given a desired re-
sponseD(z) and a passband error boundγp and assuming
that the passband and stopband have rectangular shapes de-
fined by only two frequencies,ωp andωs, find the optimal
minimax filter (1) which is the solution of the problem

min γs

s.t. σmax(H(ejω)−D(ejω)) ≤ γp, ∀|ωi | ≤ ωp, i = 1 : d
σmax(H(ejω)) ≤ γs, ∃i ∈ 1 : d, |ωi | ≥ ωs

(35)
If D(z) is a FIR system (typically a constant matrix or a de-
lay matrix), this problem can be expressed in SDP form using
Theorem 2. The passbandDs can be described by a set (12)
with Dℓ(z) = zℓ +z−1

ℓ −2cosωp, ℓ = 1 : d. The stopband is
a union

Ds =
d

⋃

i=1

Ds,i ,

with
Ds,i = {z ∈ T

d | Ds(zi) ≥ 0}, i = 1 : d,

whereDs(·) is the polynomial (22). The problem (35) is
equivalent to

min γs
s.t. σmax(H(z)−D(z)) ≤ γp, ∀z ∈ Dp

σmax(H(z)) ≤ γs, ∀z ∈ Ds,1
...
σmax(H(z)) ≤ γs, ∀z ∈ Ds,d

(36)

Each of the constraints of (36) can be transformed into an
LMI via Theorem 2. We note that similar problems can be
obtained for passband and stopbands that are not rectangular
(see [3] for examples of other shapes), while the results from
[12] cannot be apparently generalized.

Example 3. The particular case treated in [12] is 2-D
(d = 2), with D(z) = I2. So, the MIMO systems hasκ1 =
2 inputs andκ2 = 2 outputs. The design specifications are
γp = 0.1, ωp = 0.4π , ωs = 0.9π . Due to the form of the
desired response, the intuitive solution of (35) should be a
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Figure 4: Frequency response of 2-D scalar filter lying on the
diagonal of the optimal MIMO filter designed in Example 3.

diagonal filter, with identical scalar filters on the diagonal.
This is indeed what we have obtained by solving (36). The
frequency response of such a scalar filter of ordern = (4,4)
is shown in Figure 4. The optimal stopband error isγs =
0.44. The responses of the ”cross-channels” filters (input 1
to output 2 and input 2 to output 1) are negligibly small. In
contrast, the FIR filters designed in [12] are not diagonal and
the optimal error is larger than 0.7. (The results in [12] are
based on a state space implementation and so are difficult to
compare to ours other but by examples.) Of course, it is more
sensible to chooseD(z) = diag(z−τ1

1 z−τ2
2 ); by takingτ1 =

τ2 = 2, the optimal solution (again diagonal) has an error
γs = 0.028.

3.4 Implementation details

We have implemented the SDP problems discussed in this
section using the convex optimization library CVX [6]. We
have taken advantage of the possibility to describe convex
sets in CVX, and built functions for sum-of-squares polyno-
mials, polynomials that are positive on domains (as in The-
orem 1) and for the BRL described by Theorem 2. In the
latter case, the variables areγ2 and the (vectorized) coeffi-
cients of the filter (1). Although it might add a small compu-
tational overhead, this hierarchical construction leads to the
very easy programming of end user applications. For exam-
ple, the CVX program designing matrix filters based on the
constraints (18) and (19) has only 12 easily readable lines.
The direct implementation of the SDP problem (31) would
have more than hundred lines.

4. CONCLUSIONS

We have presented a Bounded Real Lemma for trigonometric
polynomials with matrix coefficients, as described by Theo-
rem 2. Its LMI form allows the transformation of several op-
timization problems involving FIR filters into SDP form. We
have given three examples of applications (matrix filter de-
sign, 2-D deconvolution and 2-D MIMO filter design), which
cover several features of our BRL. In the first example, the
filters depends on a single variable, while in the others there
are two variables. In the second example, the BRL is global
(holds onTd), while in the others the BRL holds on fre-

quency domains (intervals in the first example). Finally, the
implementation is modular and further applications can be
programmed without intimate knowledge of the theory de-
scribed here.

Further work will be devoted to a Positivstellensatz for
polynomials with matrix coefficients, i.e. towards an LMI
form of the condition detH(z) 6= 0, ∀z ∈ D , without com-
putation of the determinant.
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