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ABSTRACT
Solving an under-determined system of equations for the sparsest
solution has attracted considerable attention in recent years. Among
the two well known approaches, the greedy algorithms like match-
ing pursuits (MP) are simpler to implement and can produce satis-
factory results under certain conditions. In this paper, we compare
several greedy algorithms in terms of the sparsity of the solution
vector and the approximation accuracy. We present two new greedy
algorithms based on the recently proposed complementary match-
ing pursuit (CMP) and the sensing dictionary framework, and com-
pare them with the classical MP, CMP, and the sensing dictionary
approach. It is shown that in the noise-free case, the complemen-
tary matching pursuit algorithm performs the best among these al-
gorithms.

1. INTRODUCTION
In many areas of signal processing, such as compression, denoising,
compressed sensing, error decoding, etc., one often encounters the
following problem: Given an underdetermined system of equations

Ax = b, (1)

where the matrixA is of dimensionK×N ,K < N , what is the so-
lution vector x that has the minimum number of non-zero elements?
In other words, how can we represent the given vector b as a lin-
ear sum of the fewest columns of A? The solution to this problem
is important for various reasons. For example, in the case of com-
pression, the vector b represents a signal to be compressed and the
columns of A represent a redundant set of basis signals. The solu-
tion to the above problem yields the fewest coefficients to represent
the signal under consideration thus leading to maximal compression
efficiency.

Representing a given signal as a linear sum of a few signals
from a signal set is commonly known as sparse approximation in
the signal processing literature. The signals which represent the
columns of the matrix A are commonly called atoms and the set
of atoms is called a dictionary. Since the signal set is larger than
necessary (i.e.,N > K) and the signals span RK , the signals in the
dictionary are said to form a redundant basis. The sparse represen-
tation problem thus can be posed as

min{‖x‖0 : Ax = b}, (2)

where the L0 norm denotes the number of non-zero elements. The
sparse approximation problem, which allows some approximation
error, can be posed as:

min{‖x‖0 : ‖Ax−b‖p ≤ δ}, (3)

for some δ > 0. The norm p is usually 2, but could be 1 or ∞ as
well.

The exact solutions to above problems can be found through
combinatorial optimization methods. Since such methods require

high computational complexity, most of the research activity in this
area is centered on finding approximate solutions with tractable
complexity. There are basically two approaches to arrive at a sub-
optimal solution. One is a greedy approach which approximates
the signal vector through a sequence of incremental approxima-
tions by selecting atoms suitably. Such approaches are known as
matching pursuits (MP) [1, 2]. The other is known as the basis pur-
suit (BP), which relaxes the L0 norm condition by L1 norm and
solves the problem through linear programming [3, 4, 5]. BP al-
gorithms can produce more accurate solutions than the matching
pursuit algorithms but require higher complexity. Recently, some
other iterative algorithms such as the regularized orthogonal match-
ing pursuit (ROMP) [6], the compressive sampling matching pursuit
(CoSaMP) [7], and the subspace pursuit (SP) [8] have been pro-
posed. These algorithms aim to provide the same guarantee as the
BP but with computational complexity akin to orthogonal matching
pursuit (OMP) [2]. Gradient pursuit [9] is similar to the matching
pursuit but updates the sparse solution vector at each iteration with a
directional update computed based on the gradient or the conjugate
gradient. Recently Rath and Guillemot [10] proposed the comple-
mentary matching pursuit (CMP) which is similar to the matching
pursuits, but is performed in the coefficient space rather than the
signal space. Through simulation results, they showed that by per-
forming approximations in the coefficient space, the convergence
speed and the sparsity of resulting vectors are improved. The atom
selection in the CMP can be viewed through the sensing dictionary
framework of Schnass and Vandergheynst [11].

In this paper, we present twomatching pursuit algorithms which
are derived from the CMP. In one algorithm, we select atoms as
done in the CMP, but the update step is similar to MP. In the other,
we select atoms as in MP, but the update step is similar to CMP.
We compare their performances with those of MP and CMP. We
also compare these results with the sensing dictionary approach of
Schnass and Vandergheynst [11] by using the pseudo-inverse of the
original dictionary as the sensing dictionary.

2. MATCHING PURSUIT (MP)
Matching pursuit [1] is an iterative greedy algorithm that searches
for the sparse representation of a signal through a sequence of
mono-atomic approximations. Each iteration of the algorithm con-
sists of two steps: an atom selection step and a residual update step.
The atom selection step finds the atom which has the highest corre-
lation with the current residual error, where the correlation is mea-
sured as the length of the orthogonal projection. The update step
updates the residual error by subtracting the correlated part from it.

Let ai, 1 ≤ i ≤ N , denote the ith column of the dictionary ma-
trixA. Assume that all atoms are normalized with unity magnitude,
i.e., ‖ai‖2 = 1, ∀i. At the jth iteration, the algorithm finds

αj = argmax
{ai}1≤i≤N

| < rj−1,ai > |, [MP: Atom selection] (4)

where < . > denotes the inner-product operation, and rj−1 denotes
the residual at the (j−1)th iteration with r0 = b. The inner product
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< rj−1,αj > represents the coefficient associated with the selected
atom αj . Let us denote it as cj . The algorithm then updates the
residual as

rj = rj−1 − cjαj . [MP: Residual update] (5)

The approximation at the jth iteration is given as bj =
Pj

k=1 ckαk .
The algorithm terminates when a halting criterion is satisfied,

such as when the norm of the residual falls below a desired approx-
imation error bound, or when the number of distinct atoms in the
approximation equals a desired limit.

The matching pursuit algorithm is very simple. But because of
the sub-optimality [2], it suffers from slow convergence and poor
sparsity result. The orthogonal matching pursuit (OMP) [2, 12] re-
moves this drawback by projecting the signal vector to the subspace
spanned by the selected atoms. The atom selection method in OMP
remains the same as in MP. Because of the orthogonalization, once
an atom is selected, it is never selected again in subsequent iter-
ations. Let Aj−1 denote the matrix of atoms selected up to the
(j−1)th iteration. Thus, Aj ≡ [Aj−1 αj ], where αj denotes the
atom selected in the jth iteration as in Eqn. 4. The approximation
at the jth iteration is given as

bj = AjA
†
jb ≡ Ajcj , (6)

where cj ≡ A†
jb denotes the coefficient vector at the jth iteration,

and A†
j denotes the pseudo-inverse of Aj .

In the second step, the algorithm updates the residual as

rj = b−Ajcj . [OMP: Residual update] (7)

The algorithm terminates when the halting condition is satis-
fied.

3. COMPLEMENTARYMATCHING PURSUITS
In [10], Rath and Guillemot have proposed the complementary
matching pursuit algorithm. The algorithm is similar to the MP but
is performed in the row-space of the dictionary matrix. Consider
the original system of equations: Ax = b. Since the atoms make a
redundant basis for the K-dimensional vector space RK , AAT is
an invertible matrix. As a consequence, the exact sparse solution to
this system is also an exact sparse solution to the following system
and vice versa;

AT (AAT )−1Ax = x2, (8)

where x2 ≡ AT (AAT )−1b denotes the minimum L2 norm solu-
tion of the original system of equations. Let φi ≡AT (AAT )−1ai,
1 ≤ i ≤ N , denote the transformed set of atoms. The transformed
atoms lie in the row-space of A. If we define a new dictionary ma-
trix Φ whose ith column is φi, then the above system of equations
can be rewritten as

Φx = x2. (9)

The CMP algorithm proposed in [10] is equivalent to the MP on
this modified system of equations. Similarly, the orthogonal com-
plementary matching pursuit (OCMP) is equivalent to the OMP ap-
plied to this modified system of equations. In the modified system,
the atoms are no longer normalized. The projection of x2 on the
atom φk is given as

yk =
< φk,x2 >

‖φk‖
=

aT
k (AAT )−1bq
aT

k (AAT )−1ak

. (10)

Thus the weight with respect to φk can be expressed as

ck =
φT

k x2

‖φk‖2 =
ykq

aT
k (AAT )−1ak

. (11)

The pseudo-codes for CMP and OCMP algorithms are given in Al-
gorithm 1. It is to note that, since the weights are obtained from
the projection on the new atoms φi’s, but not on the original atoms
ai’s, the residual error at any iteration in CMP may not be orthog-
onal to the immediately selected atom. Similarly, the residual error
at any iteration in OCMP may not be orthogonal to all the atoms
selected till that iteration.

Algorithm 1
CMP Algorithm:
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the
solution vector x
Initialization: r = b,
x = 0N , ∆ = diago-
nal matrix whose ith di-
agonal entry is equal to
δii = 1/

q
aT

i (AAT )−1ai.
Repeat
Selection:

y = ∆A†r

k = max
i

|y[i]|

Update:

c = δkky[k]

r = r− cak

x[k] = x[k]+ c

until halting criterion is true.

OCMP Algorithm:
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the
solution vector x
Initialization: Φ = A†A,
x2 = A†b, r = b, x = 0N ,
∆ =diagonal matrix whose
ith diagonal entry is equal to
δii = 1/

q
aT

i (AAT )−1ai,
I = {}.
Repeat
Selection:

y = ∆A†r

k = max
i

|y[i]|; I = I ∪{k}

Update:

c = Φ†
Ix2

r = b−AIc

x[I ] = c

until halting criterion is true.

In [11], the authors have mentioned the use of pseudo-inverse
matrix A† as a sensing dictionary. Following their method, in the
jth iteration, the atom will be selected as:

y = A†rj−1. (12)
k = argmax

1≤i≤N
|yi|, αj = ak [SD: Atom selection](13)

The update step is the same as in the OMP. Following this sensing
dictionary framework, the atom selection method of CMP or OCMP
can be interpreted as the application of a sensing dictionary where
the sensing dictionary is the weighted pseudo-inverse matrix.

4. NEW GREEDY PURSUIT ALGORITHMS

Recall that pursuit algorithms consist of two steps: atom selection
and residual update. These two steps are performed sequentially
and thus are dependent. The update step is dependent on the se-
lected atom. Similarly, the selected atom at any iteration is depen-
dent on the residual error resulting from the previous iteration. The
the final approximation depends on the joint effects of these two
steps.
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In MP and OMP, the atom selection and residual update at any
iteration are based on the minimization of the residual error. How-
ever, this optimization procedure is only based on intuition. Except
for the special case where the observation is a scalar multiple of
one of the atoms, there is no 100% guarantee that either of these
two methods will result in the sparsest solution. The authors of
CMP [10] have shown that minimizing the error in the row-space
rather than the signal space can improve the sparsity and decrease
the approximation error. The row-space optimization results in a
selected atom which may not be the closest to the current residual
error. Furthermore, the updated residual error may not be orthogo-
nal to the selected atom. The sensing dictionary approach [11] also
shows that we can select an atom which is not closest to the current
residual error, however, it can lead to sparser approximation, or less
approximation error, than the OMP.

Based on the atom selection and the update procedure of the
CMP algorithm, we present in the following two new greedy pur-
suit algorithms. In the first algorithm, we use the CMP atom se-
lection criterion, but update the residual as in MP. In the other, we
do the reverse, that is, we use the MP atom selection criterion, but
update the residual as in the CMP. We also present the orthogonal
extensions of these algorithms. Note that, for practical use, we will
consider only the orthogonal versions. The presentation of the basic
versions here is only for pedagogic completeness. We discuss the
convergence of the algorithms in the sequel.

4.1 CMP(S)-MP/OMP(U): CMP Select, MP/OMP Update

In this algorithm, we select the atom in each iteration using the
atom selection criterion in CMP. But we update the residual error
as in MP, that is, by subtracting the orthogonal projection on the se-
lected atom from it. In the orthogonal extension, we keep the atom
selection process same, but replace the update process by the up-
date process in the OMP. The pseudo-codes for the algorithms are
given in Algorithm 2. The orthogonal version falls in the sensing
dictionary framework of Schnass and Vandergheynst [11] with the
weighted pseudo-inverse matrix as the sensing dictionary.

Observe that in the basic version, as in MP, the residual up-
date step makes the new residual orthogonal to the selected atom.
However, the atom selection criterion being different, there is a pos-
sibility of the same atom being selected in the next iteration. In such
a case, the algorithm will enter into an infinite loop. In order that
such a situation is avoided, the atom selection should only include
the atoms which are not orthogonal to the new residual. Similar
comments apply to the orthogonal extension of the algorithm.

4.2 MP(S)-CMP/OCMP(U):MP Select, CMP/OCMPUpdate

In this algorithm, we select the atom in each iteration as in MP, that
is, by finding the closest atom to the current residual error. But we
update the residual error as in CMP. In the orthogonal extension,
we keep the atom selection process same, but replace the update
process by the update process in the OCMP. The pseudo-codes for
the algorithms are given in Algorithm 3.

It is to note that, in the basic version, since the residual update is
the same as in CMP, the updated residual error may not be orthog-
onal to the immediately selected atom. However, since the atom
selection step selects the closet atom, there is a possibility of the
same atom being selected again in the next iteration. If this situa-
tion arises, the algorithm will enter into an infinite loop. To prevent
this situation from happening, we need to apply a similar condition
as in the previous algorithm. Since the update follows CMP, we
need to derive the condition from the modified system of equations
in Eqn. 9. Corresponding to atom ai, there is a modified atomφi. If
in the jth iteration ai is selected, then the complementary residual
error, which is equal to A†rj , is orthogonal to φi (refer to [10] for
details). Therefore, in the atom selection step in (j +1)th iteration,
we need to exclude ak’s if the corresponding φk’s are orthogonal

Algorithm 2
Basic version: CMP(S)-MP(U)
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the
solution vector x
Initialization: r = b,
x = 0N , ∆ = diago-
nal matrix whose ith di-
agonal entry is equal to
δii = 1/

q
aT

i (AAT )−1ai.
Repeat
Selection:

y = ∆A†r

k = max
i

|y[i]|

Update:

c = aT
k r

r = r− cak

x[k] = x[k]+ c

until halting criterion is true.

Orthogonal version: CMP(S)-OMP(U)
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the so-
lution vector x
Initialization: r = b, x = 0N ,
∆ =diagonal matrix whose ith
diagonal entry is equal to δii =

1/
q

aT
i (AAT )−1ai, I = {}.

Repeat
Selection:

y = ∆A†r

k = max
i

|y[i]|; I = I ∪{k}

Update:

c = A†
Ib

r = b−AIc

x[I ] = c

until halting criterion is true.

to the A†rj . Similar comments apply to the orthogonal extension
of the algorithm.

5. CONVERGENCE

Having explained the two algorithms, now the question arises if they
will converge. In the first algorithm, since the update is done by
subtracting from the current residual the orthogonal projection on
the immediately selected atom ( basic version), or the orthogonal
projection on the subspace spanned by all the selected atoms till
the current iteration (orthogonal extension), the residual error mag-
nitude decreases with each new iteration. Therefore, as in MP or
OMP, the algorithm will definitely converge.

For the second algorithm, the convergence is not obvious. To
prove that the algorithm will converge, let us assume that the atom
selected in the jth iteration is ak . Now referring to Eqn. 10 and
Eqn. 11, the weight of the selected atom is given as

ck =
aT

k (AAT )−1rj−1

aT
k (AAT )−1ak

. (14)

Thus the residual error at the end of the jth iteration is given as

rj = rj−1 − ckak = (IK − aka
T
k (AAT )−1

aT
k (AAT )−1ak

)rj−1, (15)

where IK denotes the identity matrix of order K. Therefore,

‖rj‖2 = rT
j rj = rT

j−1(I − aka
T
k (AAT )−1

aT
k (AAT )−1ak

)rj−1. (16)

This implies that

‖rj−1‖2 −‖rj‖2 = rT
j−1

aka
T
k (AAT )−1

aT
k (AAT )−1ak

rj−1. (17)
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Algorithm 3
Basic version: MP(S)-CMP(U)
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the
solution vector x
Initialization: r = b,
x = 0N , ∆ = diago-
nal matrix whose ith di-
agonal entry is equal to
δii = 1/

q
aT

i (AAT )−1ai.
Repeat
Selection:

y = AT r

k = max
i

|y[i]|

Update:

c = δkky[k]

r = r− cak

x[k] = x[k]+ c

until halting criterion is true.

Orthogonal version: MP(S)-OCMP(U):
Input: Dictionary matrix A
with atoms ai, i = 1,2, . . . ,N ,
and the signal vector b
Output: Estimation of the
solution vector x
Initialization: Φ = A†A,
x2 = A†b, r = b, x = 0N ,
∆ =diagonal matrix whose
ith diagonal entry is equal to
δii = 1/

q
aT

i (AAT )−1ai,
I = {}.
Repeat
Selection:

y = AT r

k = max
i

|y[i]|; I = I ∪{k}

Update:

c = Φ†
Ix2

r = b−AIc

x[I ] = c

until halting criterion is true.

The expression on the right hand side is a positive semi-definite
quadratic form in the components on rj−1 . This is because the
equivalent matrix (the matrix in the numerator divided by the
quadratic form in the denominator) has one eigenvalue 1 and the
remaining eigenvalues are all zeros. The expression will be zero
only when rj−1 is orthogonal to either (AAT )−1ak or ak . The
first case is ruled out because of the condition in atom selection step
(to avoid the infinite loop). The second case is ruled out because
of the optimization in the atom selection. As a result, the updated
residual error magnitude is less than the original residual error mag-
nitude. This proves that the algorithm will definitely converge.

6. SIMULATION RESULTS

In order to compare the different sparse algorithms, we performed
simulations with MATLAB. First, we created a random dictionary
of 25 atoms each atom having 16 elements. The dictionary elements
were generated using the standard Gaussian random number gener-
ator with mean 0 and variance 1. The atoms were then normalized
to have unity magnitude.

In the first experiment, we compared the various algorithms in
terms of sparsity. Using the dictionary, we created signal vectors
from linear combinations of different number of atoms. The num-
ber of generating atoms was varied from 1 to 8 and the atoms were
randomly selected from the dictionary. The weights of the atoms
were randomly generated using a Gaussian random number gener-
ator with mean zero and variance 1. For each number of generating
atoms, we created 10000 signal vectors, and the algorithms were
tested for sparsity by averaging the results over these 10000 sig-
nals. We implemented the algorithms without any constraint on the
number of atoms in the linear approximation, but giving a resid-
ual error bound of 0.001 per component. The plots in Fig. 1 show
the average number of nonzero samples in the solution vector ver-
sus the number of atoms used to generate the signals. The average
was made over 10000 signals generated for the particular number
of atoms. We observe that the first algorithm performs better than
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Figure 1: Sparsity of different algorithms. Residual error bound per
component is 0.001. SD(S)-OMP(U) is the pseudo-inverse based
sensing dictionary approach.

1 2 3 4 5 6 7 8 9 10 11 12

10!4

10!3

10!2

10!1

100

sparsity level

M
ea

n 
sq

ua
re

 re
sid

ua
l e

rro
r (

pe
r c

om
po

ne
nt

)

 

 
OMP
OCMP
MP(S)!OCMP(U)
CMP(S)!OMP(U)
SD(S)!OMP(U)

Figure 2: Residual error versus sparsity level. Number of generating
atoms is 6.

the second. The performance of the sensing dictionary approach
is better than the second algorithm but is worse than the first algo-
rithm. The orthogonal CMP however performs the best among the
five algorithms.

In the second experiment, we compared the approximation ac-
curacy of the algorithms as given by the residual error energy at a
given sparsity level. We generated 10000 signals with random com-
binations of 6 atoms as before. For different sparsity levels of the
resulting sparse vector, we measured the residual error energy. The
plots in Fig. 2 show the mean square error per component averaged
over 10000 examples. Notice that, for sparsity level 1, the OMP
produces the minimum error. This is obvious since it chooses the
nearest atom. However, as the sparsity level is increased, other al-
gorithms show better performance than the OMP. Among the two
proposed algorithms, the first algorithm again performs better than
the second, and also better than the pseudo-inverse based sensing
dictionary approach. However, the complementary matching pur-
suit still produces the minimum residual error for sparsity levels 6
and higher.
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Figure 3: Sparsity of different algorithms with noisy observations.
Additive noise is Gaussian with mean 0 and standard deviation
0.001. Residual error bound per component is 0.001.

In the final experiment, we repeated the above two experiments
but with additive Gaussian noise of mean zero and standard devi-
ation 0.001. The average sparsity results for different algorithms
are shown in Fig. 3. We notice that the second algorithm and the
OCMP perform poorly for small number of generating atoms. But
as the number of atoms is increased, the performance of the OCMP
improves gradually. The relative performances of the other three
algorithms remain more or less similar except for signals generated
with one or two atoms. The first algorithm continues to perform
better than the pseudo-inverse based sensing dictionary approach
for signals with higher number of generating atoms. The sensitive-
ness of the CMP to noisy observations has been mentioned in [10].
The impact of the additive noise gets less as the number of gener-
ating atoms is increased; therefore the performance of the OCMP
improves gradually. Fig. 4 shows the residual error energy at dif-
ferent sparsity levels when the number of generating atoms is 6 and
the additive noise is Gaussian with mean zero and standard devi-
ation 0.001. We notice that the second algorithm performs worse
than the OMP algorithm. The OCMP algorithm produces the mini-
mum residual error if the sparsity is increased beyond 6.

7. CONCLUSIONS
In this paper, we have presented a comparative study of several
greedy algorithms. Based on the recently proposed complementary
matching pursuits, we have presented two new algorithms where
we perform either the atom selection or the residual update as in
the CMP. The remaining steps are similar to those in the classical
matching pursuit algorithm. We compared these two algorithms
with the orthogonal matching pursuit, orthogonal complementary
matching pursuit and the pseudo-inverse based sensing dictionary
approach. We observed that, for observations obtained from pure
linear sums of atoms, the complementary matching pursuit per-
forms the best in terms of sparsity and approximation accuracy.
Among the two presented algorithms, the algorithm with atom se-
lection as in CMP has a better performance. In the presence of addi-
tive noise, this algorithm shows better sparsity results than even the
complementary matching pursuit. Based on these results, we can
guess that with practical signals, this algorithm may have a better
sparsity than any of the other discussed algorithms. This needs to
be verified with practical applications.
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