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ABSTRACT

Enhancement of an unknown signal from distorted ob-

servations is an extremely important Engineering problem.

In addition to noise, the observation space often contains

a degrading filter component. A typical example is blind

speech enhancement, where a reverberant channel between

a stationary source and the receiver can be modeled as a

static infinite impulse response component. Particle filters

have become popular and versatile estimators for estimat-

ing the clean source signal and unknown model parameters

by sequentially drawing a large number of samples from a

hypothesis distribution. However, direct sampling of static

components leads to particle impoverishment as a dynamic

is implicitly enforced on the parameters. To circumvent

this issue, this paper proposes a novel approach by exploit-

ing analytically tractable substructures of the state space to

marginalize static components, facilitating separate estima-

tion of the static parameters using their optimal estimator.

The approach is tested for blind dereverberation of speech.

Results show that the proposed algorithm effectively removes

the effects of the static reverberant channel.

1. INTRODUCTION

State space models in various signal processing applications

are often of the conditionally Gaussian state-space (CGSS)

form

xt = Atxt−1 + Dtvt, vt ∼ N (0Q×1, IQ) , (1a)

yt = bTyt−1 + cTxt + σwtwt, wt ∼ N (0, 1) , (1b)

where xt = {xk}tk=t−Q+1 are the past Q source signal sam-

ples, At the source transition matrix, DtD
T
t the innova-

tion covariance, yt = {yk}tk=t−P+1 the past P observations,

σ2
wt

the observation noise variance, c a weighting vector,

[b]p = bp, p ∈ P are the infinite impulse response (IIR)

coefficients, and Q and P are the source and channel model

order.

In practice, only the distorted observations are available

and thus an important Engineering problem is to estimate

the trajectory of clean source signal samples and underly-

ing model parameters. As this problem is underdetermined,

prior knowledge must be incorporated. However, exact prior

knowledge is often not available. Therefore, belief about the

system is modeled by considering all unknown variables as

stochastic quantities. In order to estimate the most prob-

able restored values from this belief, particle filters (PFs)

approximate the desired unknowns by representing their tar-

get distributions by a large number of samples drawn from

hypothesis distributions. New data is used to correct and

evolve estimates in time.

As particle filters track and update the evolution of the

state trajectories with time, a dynamic is implicitly enforced

on the estimated variables. Therefore, the inclusion of a

static IIR filter, b, in the particle set leads to particle im-

poverishment. To circumvent this issue, approaches in the

literature propose to introduce an artificial dynamic on the

static parameters (see [1] and references therein). However,

this approach alters rather than solves the problem at hand.

In previous work [2], the issue of static parameter es-

timation in PFs is circumvented by utilizing the Rao-

Blackwellized PF (RBPF) [3] to separately estimate the

source signal using the Kalman filter (KF) and the IIR com-

ponent by a Bayesian update procedure. As the source signal

is dependent on knowledge of the IIR component, the esti-

mate of b is substituted into the source signal KF. However,

as the actual IIR filter parameters rather than an estimate

are assumed, implicit dependencies of the source signal in the

prediction step, as well as uncertainty introduced through

channel estimation are disregarded.

This paper proposes to analytically marginalize the IIR

component from the source signal in order to obtain a sound

framework that considers any implicit dependencies. Inter-

estingly, in this approach the maximum a posteriori (MAP)

estimate of the IIR component is itself estimated using a KF.

Therefore, by exploiting analytically tractable substructures

of the system model, the source signal as well as the static

IIR component are obtained using their optimal estimators.

An example for an application utilizing the system in

eqn. (1) is blind speech dereverberation: Acoustic signals ra-

diated in confined spaces exhibit reverberation due to reflec-

tions off surrounding obstacles. Enhancement of the signal

is extremely important for, e.g., speech recognition systems,
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gunshot detection devices, or hearing aids. Most dereverber-

ation approaches in the literature are based on inversion of an

estimated channel [4], spectral subtraction [5], or linear pre-

dictive coding (LPC) analysis [6]. However, these approaches

often either rely on prior information about the room im-

pulse response (RIR), or difficulties arise due to channel in-

version of non-minimum phase RIRs. Furthermore, online

enhancement desirable for, e.g., security surveillance appli-

cations is not supported due to batch processing. The ap-

proach proposed in this paper circumvents these issues by

i) direct source signal estimation avoiding channel inversion;

ii) Blind channel estimation avoiding the necessity of prior

knowledge of the RIR; and iii) Sequential processing facili-

tating real-time enhancement.

Sect. §2 discusses the methodology. The background for

blind speech dereverberation and results are presented in

sect. §3. Conclusions are drawn in sect. §4.

2. METHODOLOGY

Given the stochastic model in eqn. (1), an optimal estima-

tor is sought of the source signal, x0:t. If all system vari-

ables are considered as stochastic entities, an estimate of

the source signal can be obtained by maximizing its pos-

terior probability density function (pdf), p (x0:t | y1:t,θ0:t),

where the time-varying model parameters are defined as

θ0:t ,
˘
a0:t,φv0:t ,φw0:t

¯
and are assumed known in this

section. According to eqn. (1), the posterior pdf of x0:t is

dependent upon the parameters of the RIR, b, which are

unknown in practice. Thus, in order to estimate x0:t, an

estimate of b is required, i.e.,

p (z0:t | y1:t,θ0:t) = p (x0:t | y1:t,θ0:t,b) p (b | y1:t,θ0:t)

where z0:t , {x0:t,b}. Differentiating the mean squared

error between z0:t and its estimate, bz0:t, with respect tobz0:t and setting to zero, the minimum mean-square error

(MMSE) estimate is

bz0:t = Ep( z0:t |y1:t,θ0:t) [z0:t] =

Z
z0:t p (z0:t | y1:t,θ0:t) dz0:t

=

ZZ "
x0:t

b

#
p (x0:t | y1:t,θ0:t,b) p (b | y1:t,θ0:t) db dx0:t

=

264
Z

x0:t p (x0:t | y1:t,θ0:t) dx0:tZ
b p (b | y1:t,θ0:t) db

375="Ep(x0:t | ·) [x0:t]

Ep(b | ·) [b]

#
=

"bx0:tbb
#

(2)

where Ep(u |y1:t,·) [u0:t] ,
R

u0:t p (u | y1:t, ·) du is the ex-

pected value for any function u0:t. Thus, an MMSE esti-

mate of z0:t is obtained by separately deriving the MMSE

estimates of x0:t and b. The MMSE estimator of x0:t max-

imizes the marginalized posterior pdf, p (x0:t | y1:t,θ0:t), in-

dependent of b. The posterior pdf, p (x0:t | y1:t,θ0:t,b), is

derived in sect. §2.1. p (b | y1:t,θ0:t) is obtained in sect. §2.2.

b is marginalized from p (x0:t | y1:t,θ0:t,b) in sect. §2.3.

2.1 State estimation using Kalman filtering

The Kalman filter is the optimal estimator of the source

signal for known model parameters, θ0:t, in CGSS systems

such as eqn. (1). KFs sequentially predict x0:t based on the

model parameters and correct the prediction using the most

recent measurement, i.e.,

p (x0:t | y1:t,θ0:t,b)∝
tY

k=1

p (xk | y1:k,x0:k−1,θ0:k,b)

is to be estimated. x0:t is thus recursively propagated in time

for each particle. The corresponding KF equations estimat-

ing p (xt | y1:t,x0:t−1,θ0:t,b) can be found respectively by

1) predicting the states by marginalization of the trajectory

of past states, x0:t−1, and 2) updating the estimate using yt
by applying Bayes’s theorem (similar to [7]), such that (s.th.)

p (xt | y1:t−1,θ0:t,b)= N
“
xt
˛̨
µt|t−1, Σt|t−1

”
(3a)

p (xt | y1:t,θ0:t,b) = N
“
xt
˛̨
µt|t, Σt|t

”
, (3b)

where, for each particle trajectory,

µt|t−1 = Atµt−1|t−1, (4a)

Σt|t−1 = DtD
T
t + AtΣt−1|t−1A

T
t (4b)

µt|t = µt|t−1 +
“
yt − bTyt−1 − cTµt|t−1

”
kt (4c)

Σt|t =
“
IQ − ktc

T
”

Σt|t−1., (4d)

with residual variance, σ2
zt

, and Kalman gain, kt,

σ2
zt

= cTΣt|t−1c + σ2
wt

and kt =
1

σ2
zt

Σt|t−1c. (4e)

This marginalization of the states from the joint pdf

p (θ0:t,x0:t,b | y1:t) causes the marginalization of x0:t from

p (yt | y1:t−1,x0:t,θ0:t,b) which, by probability transforma-

tion of eqn. (1), is given as

p (yt | y1:t−1,θ0:t,x0:t,b) = N
“
yt
˛̨
bTyt−1 + cTx0:t, σ

2
wt

”
.

Marginalizing x0:t from p (yt | y1:t−1,x0:t,θ0:t,b) thus yields

p (yt | y1:t−1,θ0:t,b) =N
“
yt
˛̨
yTt−1b + µTt|t−1c, σ

2
zt

”
. (5)

By marginalizing x0:t from the joint posterior the source

signal can be estimated using its optimal estimator. How-

ever, both p (xt | y1:t,θ0:t,b) and p (yt | y1:t−1,θ0:t,b) are

still dependent on b, which is unknown in practice.

2.2 Static IIR component estimation using the KF

The static IIR component, b, does not exhibit a dynamic

over time. Predicting future values would thus be futile.

Nonetheless, belief in the static parameters can be updated

as new data becomes available. Using Bayes’s theorem, this

belief can be sequentially updated via

p (b | y1:t,θ0:t)=
p (yt | y1:t−1,θ0:t,b)p (b | y1:t−1,θ0:t−1)

p (yt | y1:t−1,θ0:t)
,
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where the posterior pdf at time t− 1, p (b | y1:t−1,θ0:t−1),

acts as the prior pdf at t to recursively update

p (b | y1:t,θ0:t). Assuming that the posterior at t−1 is Gaus-

sian with mean µb,t−1 and covariance Σb,t−1,

p (b | y1:t,θ0:t) = N
`
b
˛̨
µb,t, Σb,t

´
, (6)

where the covariance, Σb,t, and mean, µb,t, are given by

Σb,t =
“
IP − kb,t ỹ

T
t−1

”
Σb,t−1 (7a)

µb,t = µb,t−1 + kb,t

“
ỹt − ỹTt−1µb,t−1

”
(7b)

with gain, kb,t, and residual covariance, σ2
zt,b

,

kb,t=
1

σ2
zt,b

Σb,t−1ỹt−1 and σ2
zt,b

= σ2
zt

+ ỹt−1Σb,t−1ỹ
T
t−1

and where ỹt = yt − cTαt|t−1 and ỹTt−1 = yTt−1 + cTΓt|t−1.

Comparing eqns. (7a) and (7b) to eqns. (4c) and (4d),

the channel estimation is of the form of the update Kalman

equations. As more knowledge about the observations be-

comes available, the belief in the static IIR component is

updated (as opposed to predicting a dynamic into the future

and correcting using measurements as in sect. §2.1).

2.3 Marginalization of channel parameters

The Kalman equations for x0:t are dependent on the channel

parameters through µt|t (eqn. (4c)). In fact, as can be shown

by induction, µt|t is linearly dependent in b, s.th. eqn. (4c)

at t− 1 is equivalent to,

µt−1|t−1 = µt−1|t−2 +
“
ytkt − cTµt|t−1

”
kt| {z }

αt−1|t−1

− kTt yTt−1| {z }
Γt−1|t−1

b.

Inserting into the prediction in eqn. (4a) at t,

µt|t−1 = Atµt−1|t−1 = Atαt−1|t−1| {z }
αt|t−1

+ AtΓt−1|t−1| {z }
Γt|t−1

b. (8)

Thus, µt|t−1 is implicitly linear in b via µt−1|t−1. Inserting

eqn. (8) in eqn. (4c) and defining Bt , IQ−ktc
T , the update

equation is thus linear in b through the relation

µt|t = Bt αt|t−1 + ktyt| {z }
αt|t

+
h
Bt Γt|t−1 − kty

T
t−1

i
| {z }

Γt|t

b.
(9)

This linear dependency of µt|t in b facilitates marginaliza-

tion of b from p (xt | y1:t,θ0:t,b) as shown in eqn. (2).

2.3.1 Marginalization of channel from state posterior

Inserting eqns. (3b) and (6) into the marginalization of b in

eqn. (2) and solving the integral using the Gaussian identity,

the marginalized posterior becomes

p (xt | y1:t,θ0:t) = N
“
xt
˛̨
µ̂t|t, Σ̂t|t

”
(10)

with marginal covariance, Σ̂t|t, and marginal mean, µ̂t|t,

µ̂t|t = αt|t + Γt|tµb,t (11a)

Σ̂t|t =
“
IQ − ktc

T
”

Σt|t−1 + Γt|tΣb,tΓ
T
t|t. (11b)

Recalling eqn. (6), the marginalized mean is thus equivalent

to inserting the MAP estimate of the channel in the KF

update in eqn. (9). As opposed to [2,8], the error covariance

and hence the uncertainty introduced by channel estimation

is taken into account through inclusion of Σb,t in eqn. (11b).

Similarly to sect. §2.1, the marginalization of b from the

joint posterior causes the marginalization of b from the like-

lihood, p (yt | y1:t−1,θ0:t,b) (eqn. (5)) s.th.

p (yt | y1:t−1,θ0:t) = N
“
yt
˛̨
µyt , σ

2
zt,b

”
. (12)

where µyt , yTt−1µb,t−1 + cT
`
αt|t−1 + Γt|t−1µb,t−1

´
.

2.4 Parameter estimation using particle filtering

In sects. §2.1 to §2.3, the model parameters, θ0:t, where as-

sumed known, but are generally unknown in practice. Thus,

similarly to eqn. (2), by appending all unknowns in an aug-

mented state space f0:t , {z0:t, θ0:t}, the posterior pdf f0:t
is given as

p ( f0:t | y1:t) = p (z0:t | y1:t,θ0:t) p (θ0:t | y1:t) (13)

such that the MMSE estimate of f0:t is given asbf0:t = Ep( f0:t |y1:t) [f0:t]

=

Z
f0:t p ( f0:t | y1:t) df0:t =

" bz0:tbθ0:t

#
(14)

Thus, θ0:t and z0:t can be estimated separately, where z0:t

can be obtained using the KFs as proposed in sects. §2.1

to §2.3. If a proposal distribution, π (θ0:t |y1:t), is avail-

able that approximates and has the same support as

p (θ0:t | y1:t), the MMSE estimate of θ0:t in eqn. (14) can

be expanded using Bayes’s theorem,

bθ0:t =

R
θ0:t p (y1:t | θ0:t) p (θ0:t) dθ0:tR
p (y1:t | θ0:t) p (θ0:t) dθ0:t

=

R
θ0:t

p(y1:t | θ0:t)p(θ0:t)
π(θ0:t |y1:t)

π (θ0:t |y1:t) dθ0:tR p(y1:t | θ0:t)p(θ0:t)
π(θ0:t |y1:t)

π (θ0:t |y1:t) dθ0:t

=

R
θ0:t wt π (θ0:t |y1:t) dθ0:tR
wt π (θ0:t |y1:t) dθ0:t

=
Eπ(θ0:t |y1:t) [θ0:twt]

Eπ(θ0:t |y1:t) [wt]
.

where the unnormalized weights, wt, are defined as

wt =
p (y1:t | θ0:t) p (θ0:t)

π (θ0:t |y1:t)
(15)

As an exercise in stochastic integration, Monte Carlo sam-

pling can be used to approximate bθ0:t by drawing N indepen-

dent and identically distributed (i. i. d.) samples, θ
(i)
0:t, i ∈ N

from the proposal pdf, leading to the MMSE estimate

θ̃0:t =
1
N

P
i∈N θ

(i)
0:tw

(i)
t

1
N

P
j∈N w

(j)
t

,
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Figure 1: Rao-Blackwellized SIR PF

where the normalized weights, w̃
(i)
t , are defined as

w̃
(i)
t , w

(i)
t

ffiX
j∈N

w
(j)
t . (16)

Thus, even though the KFs for estimation of the source sig-

nal, x0:t, and the channel parameters, b, cannot be applied

directly due to unknown model parameters, θ0:t, their esti-

mates can be obtained by evaluating an ensemble of KFs for

stochastically selected parameters using the PF (see Fig. 1).

The performance of particle filters is highly dependent

on the choice of π (θ0:t |y1:t). The optimal importance

function minimizes the variance upon θ
(i)
0:t and the obser-

vations [9]. However, generally θ
(i)
0:t are non-linear in the

likelihood and w
(i)
t cannot be evaluated. Sampling from the

prior, p (θt | θt−1), is often used instead, s.th. eqn. (15) re-

duces to

w
(i)
t = w

(i)
t−1 × p

“
yt | y1:t−1,θ

(i)
0:t

”
. (17)

As discussed in sects. §2.1 to §2.3, p
“
yt | y1:t−1,θ

(i)
0:t

”
is ob-

tained by marginalizing the source signal and channel from

p (yt | y1:t−1,θ0:t,x0:t,b), as given in eqn. (12).

As π (θ0:t |y1:t) only approximate p (θ0:t | y1:t), the dis-

crepancy between the proposal and the posterior pdf in-

creases stochastically with time. After few iterations all but

one importance weight are close to zero and computational

effort is dissipated to tracking particle trajectories not con-

tributing to the final estimate. Resampling ensures that only

statistically relevant samples are retained [9]. The complete

algorithm is summarized in Algorithm 1.

3. EXPERIMENTS

3.1 Application: Blind speech dereverberation

In this section, blind speech dereverberation is considered

as an example for a dynamic state space model in order to

evaluate the performance of the proposed algorithm.

Algorithm 1 PF with marginalized channel parameters

1: for t = 1, . . . , number of samples do
2: for i = 1, . . . , number of particles do
3: Importance sampling of θ0:t (eqs. (18), (19)).
4: KF prediction of µt|t−1, Σt|t−1 (eqs.(4b), (4a)).

5: Evaluate αt|t−1, Γt|t−1, αt|t, Γt|t (eqs. (8), (9)).
6: KF estimation of µb,t and Σb,t (eqs. (7a), (7b)).
7: KF correction of µt|t, Σt|t (eqns. (11a), (11b)).

8: Evaluation of weights wt (eqs. (12), (17)).
9: end for

10: Normalization of importance weights (eqn. (16)).
11: Resampling.
12: end for

3.1.1 Source model

Autoregressive (AR) processes are a popular approach for

modeling the vocal tract of a speaker due to their accu-

rate modeling of the short-term spectrum of speech. How-

ever, stationary AR processes result in poor modeling of

speech signals due to the continually changing nature of the

vocal tract. To reconcile this time-variance, time-varying

AR (TVAR) processes can be used. The source transition

matrix, At, in eqn. (1a) can thus be expressed as

At ,

"
aTt

IQ−1 0Q−1×1

#
.

where [at]q = {aq} , q ∈ Q are the TVAR source parameters.

The square root of the innovation covariance is given as Dt ,h
σvt 01×Q−1

iT
, and cT ,

h
1 0 . . . 0

i
.

The time-varying behavior of the process is determined

by the dynamic of at. A model on at that facilitates the use

of PFs is a random walk on at and φvt [3],

p (at | at−1) ∝ N
`
at
˛̨
at−1, ∆a

´
IAQ(at) (18a)

p
`
φvt | φvt−1

´
= N

`
φvt

˛̨
φvt−1 , δ

2
v

´
(18b)

where1 φvt = lnσ2
vt

, IAQ(at) denotes the indicator func-

tion for the region of support, AQ, of the source pa-

rameters. The initial states are given by p (a0) ∝
N
`
a0

˛̨
0Q×1, ∆a0

´
IAQ(a0) and p (φv0) , N

`
φv0

˛̨
0, δ2e0

´
.

The set of Markov parameters
˘
∆a, ∆a0 , δ

2
v, δ

2
v0

¯
is as-

sumed known and constant.

3.1.2 Channel model

The solution of the acoustic wave equation indicates that

a room transfer function can be modeled by a conventional

pole-zero model [10]. Due to identifiability issues of poles

and zeros, all-zero models are often used instead. How-

ever, all-zero models require large numbers of coefficients

and may be effective only for a very limited spatial combina-

tion of source and receiver positions, as all-zero models lead

to large variations in the room transfer function (RTF) for

even small changes in source–observer positions [10]. All-

pole models are widely used instead, requiring significantly

fewer parameters for approximating RTFs and having lower

sensitivity to changes in source-observer positions. Distor-

tion by a P th order all-pole channel and white Gaussian

noise (WGN) can be expressed by eqn. (1b). Similar to

σ2
vt

, the logarithm of the variance on the measurement noise,

σ2
wt

= expφwt , can be modeled as a random walk with initial

pdf p (φw0) , N
`
φw0

˛̨
0, δ2w0

´
, i.e.,

p
`
φwt | φwt−1

´
, N

`
φwt

˛̨
φwt−1 , δ

2
w

´
. (19)

3.2 Results

Algorithm 1 is tested on a synthetic source signal gen-

erated according to the speech model in sect. §3.1.1 and

compared against the KF assuming known θ0:t for 1000

samples, Q = 4 parameters,
˘

∆a0 , δ
2
v0

¯
= 0.5 × IQ, and

1Positive variances are enforced by sampling from lnσ2
vt

.
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Figure 2: SBM degradation with increasing channel order
mismatch and SNR for the KF ( ) for known
θ0:t, the proposed PF ( ) for unknown θ0:t,
and the observed signal ( ) for a synthetic
source signal of order Q = 4.˘

∆a, δ
2
v

¯
= 5 × 10−4. The signal is filtered through an

8th order horn channel [11] and distorted by WGN with

δ2w0 = 5 × 10−3 and δ2w = 5 × 10−4. In Fig. 2b, the signal-

based measure (SBM)2 performance of the PF is tested for

increasing SNR of the measurement noise for 200 particles

and 30 Monte Carlo iterations using synthetic data. The PF

provides an SBM improvement of approximately 12dB. At

high SNRs, the PF approaches the performance of the KF,

however, at the expense of increased estimate variance. This

is due to a narrow likelihood at high SNRs: If the variance

on the prior is too broad or the prior lies in the tail of the

likelihood, sampling of the particles leads to poor results.

The model order is generally unknown and a channel

order estimate, Pest, is used. As illustrated in Fig. 2a, un-

dermodeling (Pest < P ) leads to a SBM degradation of up to

8dB as high-energy taps of the channel model are potentially

ignored. In contrast, overmodeling (Pest > P ) only causes

a SBM degradation of up to 1dB. Using channel order esti-

mates thus does not cause significant deterioration as long

as the channel is not undermodeled.

The PF is also applied to a 1.9s speech signal sampled at

8kHz, distorted by a 72nd order horn channel [11] as well as

WGN. The resulting speech waves of the estimated, source,

and observed signal are shown in Fig. 3 and online3. Al-

though musical noise is introduced, the intelligibility of the

speech signal is clearly improved over the distorted signal.

2SBMdB = 10 log10

„
‖x0:t−1‖2

ffi
‖x̃0:t−1 − x0:t−1‖2

«
, where

x̃0:t−1 is either the estimated or the distorted signal sequence.
3http://www.christine-evers.com/EUSIPCO2009/

4. CONCLUSIONS

This paper proposed a generic approach applicable to various

state space models and applications that circumvents issues

due to static IIR components in PFs. The source signal

and static parameters are marginalized from the remaining

unknown variables in the model and can thus be separately

estimated using the KF rather than by importance sampling.

Performance of the proposed method was demonstrated for

blind dereverberation of speech. Results for both synthetic

and real data verified the effectiveness of the approach.
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Figure 3: Results for speech distorted by a horn channel.
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