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ABSTRACT dial exponentially distributed random vector also entéo in

The purpose of this paper is to study the estimation probth€ class of elliptically (more specifically sphericallylsd
lem of a multivariate elliptically symmetric random variab tributed random vector and are GSM. As in [1, 2, 3], this
corrupted by a multivariate elliptically symmetric noise. ~ WOrK can find applications in image denoising, or even in
this study, the maximum a posteriori (MAP) approach is pre_radar data processing since radar clutter is often modsled b
sented, extending recent works by Aleetwal. [1] and Se- GSM processes [8]. . .

lesnick [2, 3]: (i) the estimation is performed in a multivar In a previous work, we have revisited the denoising prob-
ate context, (ii) the corrupting noise is not limited to bexga /€M in the general case of a (wide sense) GSM, corrupted by
sian. This paper also extends our previous work that deaﬁ (wide sense) GSM noise [4]. The proposed approach was
with the minimum mean square error (MMSE) approach [4]. ased on the m|n|r_nal mean square error estimator (MMS_E).
The MMSE is briefly recalled and the MAP is derived. Then € purpose of this proposal is to extend as far as possible
the practical use of the MAP in a general setting is discusseld!® denoising problem of a multivariate elliptically symme
and compared to that of the MMSE and of the Wiener estC random variable corrupted by a multivariate elliptigal
timator. Several examples illustrate the behaviors ofehesSymmetric noise even when one or both vectors cannot be

estimators and exhibit their performances. expressed as a (wide sense) GSM. As in [1, 3], we concen-
trate here on the maximum a posteriori estimator (MAP).
1. INTRODUCTION In section 2 we briefly recall the basics about elliptically

invariant random vectors we need for our approach. Then,

Investigations on elliptically symmetric distributionp@ear  section 3 is devoted to the denoising problem where both the
recurrently in the signal processing literature; very réce vector to estimate and the corrupting noise are ellipticall
contributions such as [1, 2, 3] are examples. The interdistributed. In this section we will revisit the MAP estimat
est of elliptically symmetric random vectors lies in thetfac in this elliptically distributed framework. We will show al
that they can be viewed as natural extensions of multivariatunder an additional assumption on the covariance matrices
Gaussian random vectors. As a consequence, various prof X andZ, the MAP estimator reduces to a one dimensional
cessings used in the Gaussian case can be naturally extengedblem. We also give some conditions which ensure the
to the class of elliptically symmetric distributions. existence of a MAP estimator, and a possible recursive ap-

Among the first works on elliptically symmetric distri- proach to determine the MAP. Finally, the shape of the MAP
butions in signal processing, one must cite the two almest siestimator and its performances are exhibited, and compared
multaneous papers by Chu [5] and Yao [6]; the first one dealto the MMSE and to the Wiener estimator ones.
with the subclass of Gaussian scale mixture (GSM) distribu-
tions in the frameworks of optimal estimation, filtering and 2. RECALLSON ELLIPTICAL DISTRIBUTIONS
stochastic control. The second paper provides several-stat . . : - .
tical results for estimation and detection in the more gainer A _d-dlmensp_nal rand_om vect_c)t IS eI_I|pt|caIIy d_|str|buted
case of elliptically symmetric distributions. A more reten If it probability den?nxlfuncnoh Px is a function of the
contribution can be found for example in [7, Ch. 2]. quadratic form(x — p)'R™=(x— ), thatis

The study of such random vectors gave rise to various _ _
applications such as radar processing [8], image proagssin ~ Px(X) = [Rx| M2 ((x— kx)' R (= 1x)
[9, 2], blind source separation [10] or parameter estinmatio \yhere dx is a functionR, — R, called density genera-

[11] to cite recent contributions. tor, wherepy is a location parameter, and wheRg is a

_ This paper aims at extending recent results on estimatiogy ymetric definite positive matrix called characteristia-m
in the elliptical context. The first study is that of Aleeti /iy [5, 6, 7]. The densitypx is also said elliptically con-

al. which dealt with what they call the Gaussian transform Ofigred, in the sense that the constant probability hypersur
a symr_netncally distributed sca_lar rangjom variable [1]e'l_'h faces are ellipsoidal. When definegy is the mean oi.
Gaussian transform of @ GSM is nothing but the probability\1atrix Ry is defined up to a scaling factor, however, the in-
density function (pdf) of the square of its mixing variabie. determinacy can be removed by imposing a constraint on

their paper, Alectet al._ revis.ited the denoising problem in Rx. As an example, wheX has a covariance, imposing
the context of a one-dimensional GSM corrupted by a Gaus-. (+1dy (12) dr = (/2 + 1)/71%, wherer is the Euler

sian noise. The second study is that of Selesnick, in whichr+
the d_en0|s_|ng problem IS pres_ented in the .ConteXt ofa s«phen IMore rigorously such vector are defined via the characierishction
cally invariant radial exponential or Laplacian randomt@ec (7). The elliptical property is preserved by Fourier trasf [12, 6, 4], and
corrupted by a Gaussian white noise [2, 3]. Laplacian or rain this paper we restrict to vectors that admit a pdf
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Gamma function, removes this indeterminacy, implying thatimator writes
Rx is the covariance matrix of. Finally, note that for any in-

vertible matrixM, vectorMX remains elliptically distributed. /Rzg(wazmba )a®fa(a) fp(b)(a?A +b?) L dadb

In particular, the elliptical vecthgl/ZX has a characteristic Xmmse= — Ay
matrix equal to théd x d) identity, and is said spherically or /2 G (Y| 251021 ) fa(@) fp(b) dadb
orthogonally invariant (or distributed). Ry 3)

In the sequel, without loss of generality, we will focus on
the situation whergix = 0.

In the case where functian— dx(s) admits an inverse
Laplace transform (see [5]), the ppgf can be expressed as

which requires integrations ovmi instead of the integra-

tions overRY required in general.
When bothX and Z are Gaussian, one recovers the
Wiener estimator

+o0 & -1 -1y-1
px(X) = / fa(8)% (X 25, ) dd (1) Xu=(B+1) "0y =(1+47) Ty (4)
0 which is also the best linear estimator in the mean square
d 1 JR1 error (MSE) sense, for any uncorrelated veckendZ [15].
where¥ (x|r) = (2m) " 2|R|” 2 exp(— TX) denotes the-
dimensional zero-mean Gaussian pdf with covariance matrig-2 Maximum a posteriori estimation

R. Integratingpx overx shows that, provided that integra- The MMSE estimator in its form (3) can be used only when
tion signs can be exchanged, functifpsums to 1. More- X andZ are wide sense GSM. When at least one of these
over, under the condition thal is a completely monotone yectors does not satisfy this assumption, the previousaleri
function, functionf, is nonnegative [6, 13, 14] and hence is tions do not hold anymore and the MMSE estimation can
a pdf. In terms of random vectax has then the stochastic pecome much more complicated to derive. Such a situa-
representation of a Gaussian scale mixture (GSKH:-AN  tion occurseg. in the case of pdfs with bounded support.
whereA ~ fy andN is a Gaussian vector independenfpbf  Indeed, for such pdfs, the density generator has obviously
covariance matriRx, N ~ ¢(-|r, ). Equality is in the sense bounded support, and hence cannot admit an analytic con-
of distributions. When the decomposition (1) holds huts  tinuation — otherwise it would be identically zero [16, iden

not a pdf, we will callX wide sense GSM. tity theorem p. 65]. However, in order to admit an inverse
Many properties of elliptically distributed random vector Laplace transform, a function must be analytic [14, I1.5 th.
can be foundin [5, 6, 7]. 5a]. The MMSE can also be difficult the implement if a mix-

ing function exists, but has no analytical expression akén t
generalized Gaussian case [4].

In such situations, the maximum a posteriori (MAP) ap-
proach is a good alternative, as shown in [1, 2, 3]. The MAP
We consider the generalization of the problem of [1, 3] ofconsists in seeking the vectsrthat maximizes the posterior
estimating ad-dimensional random vecto elliptically dis-  densitypyy (x,y), what yields to
tributed and with covariance matrRx, from a noisy obser- N
vation Xmaply) = argmaxpx (x)pz(y —X)

Y=X+2Z (2)

3. RANDOM VECTOR ESTIMATION IN THE
ELLIPTICALLY FRAMEWORK

_1
argmaxdy ([[x]|%)dz([[A72(y—=x)[?) (5)
where the nois€ is assumed independent ¥fand ellipti- o _
cally distributed with covariance matrRz. Asin[1, 3], we by the Bayes rule. Vanishing the gradient
assume that both covariance matriégs and Rz and pdfs Dxdx(||x|\2)dz(||A*%(y —x)||?), one finally finds that

px andpz are known. This problem generalizes [1] in the the MAP is solution i of the nonlinear equation
sense that dimensiath is arbitrary and thakZ can be non- .

Gaussian. It also generalizes [2, 3] which also restricted o (HA*%XHZ) q (H —x||2)
to be Gaussian and to be radially exponential or Laplacian  y _ z 1Y -1 (6)
respectively. dy (HAf %XHZ) d, (ly—x|?)

Multiplying the observation by an adequate matrix, as
done in [4], the problem can be restricted to the case wher€his expression looks very similar to the Wiener filter, eptce
Rz = | (pre-whitening ofZ) andRx = A diagonal (adequate that the matrix factor now depends on the solutidtself.

rotation after the pre-whitening @). In the particular case where= ¢?l, the rotated vector
Ch Xmap(Cgy) is solution of (6) for any rotation matriy.
3.1 Recall onthe Minimum Mean &:]Uare Estimation Thus’)/(\map(y) can be Sought under the form

The well-known Minimum Mean Square Error (MMSE) es- G - 2

2 =X 7
timator of X based on the observatiof) i.e. the vectorX KmardY) map(Hy” ) y )
that minimizes the quadratic err&f||X — X||?], is given by ~ whereXmapis solution of
the conditional mean [15Kmmse= E[X|Y]. We have previ-

ously shown that, when botk andZ are wide sense GSM, X =
with mixing functionsf, and f, respectively, the MMSE es-

(8)

o2 4+ d’X(—z—a ) dz ((1-%)%|ly||2)

~ means “distributed according to” dx 52

2
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Note that in this context, the MMSE and Wiener esti-  The next subsection aims at illustrating both the behavior
mators (3)-(4) can also be written under the fofginsew =  Of the MAP estimator and its performances versus the sig-
Xmmsew-Y [4]: in this situation, we will callX “estimator hal to noise ratio. The advantage and some drawbacks of

’ the MAP approach will be discussed, and the MAP will be

magnitude”. One can easily see thiat [0; 1], and that in &ompared with the MMSE and Wiener estimators.

the strict sense GSM, the MMSE estimator magnitude is i

[0; 1] as well. . .
In the general case, solving (8) is not a trivial task. Nev-3-3 Someillustrative examples

ertheless, under additional assumptions, equation (8pean |, the following, we give three illustrations whefe= o2

numerically solved. and a fourth one wherA [1 |. The performances in terms

1. If both dx and dz are continuously differentiable and MSE of both estimators, & dX. will be sh
monotonic (necessarily decreasing), then equation (8) —— O "o £IMa Or&map Xmmseagmxuvzv] w TrSCSQA())Wn

has at least one solution, which, from (8), is necessanersus the signal-to-noise ra®lR = g 77 = —g — =
ily in [0; 1]. Indeed, writingk = G(X) whereG(x) is the 52
right hand-side of (8), it is immediate th&(0) > 0 and The first illustration deals with a vectot following

G(1) < 1, hence, from the continuity assumption, there

exists at least oneso thatk = G(X). o (M)
2. If, additionally, bottdy anddz admit a second derivative e~ ("X? wherey = —>=2 corrupted by a Gaussian ran-

and are log-convex (implying thalk zdy , — d;ﬁz > 0), P

the fixed-point methos.; = G(X) with Xo € [0; ] al-  dom vector. Ad-variate exponential power random vector

ways converges to a solution of (8), which is a maximumS @ GSM, however the mixing function is expressed via the

of the posterior distribution (except if it is initializeda  Pdf %a of an a-stable variable of stability indea and to-

minimum). Deriving the expression Gfversuskand us-  tally skewed to the right (with skew paramef@r= 1) [4],

ing both the fact that € [0; 1], the negativity ol 7, and  f,(a) O a3 gg (a*2(2y)*l cos P (pr[/4)). Density 94

the log-convexity assumption shows tiG&is an increas-  paq no analytical expression [4] except in the particulaeca

ing function. Moreover, using additional algebra, one Cany the Levy distribution given byr — 1. This case corre-

show that at the maxima of the posterior density versu _ AT S .
X, G'(X) < 1: the maxima are the stable fixed point<f Eggggzg?al_d:ils’tﬁggt%gﬁ <[12|istr|but|on |sﬁ<nown as the radially

and the serie®.1 = G(X«) is necessarily monotonic and . , Lo
; Figure 2(left) describes the behaviorXfap versusl|y||,
bounded by the stable maxima. for SNR = —5 dB, in dimensiond = 5, and forp = .7
Figure 1: lllustration of eq. (8), (top) andp = 1 (bottom). The solid line corresponds to

an exponential power distribution [17, 18] ~ px(x) O

T when bothdy and d, are de- the MAP, while the dashed line represents the MMSE and
ey creasing and log-convex. Points the dotted line depicts the Wiener estimator. The MMSE

: X, andxy correspond to two lo- is numerically computed via (3), and the code available

%t cal maxima of the MAP equa- at the following address [19] is used to numerically com-

3 tion, while the second point, Pute fa when p # 1 [4]. Furthermore, in the casp= 1,
A Xm corresponds to a minimum. ©one can easily show that the MAP has an explicit form

AT The dotted line illustrates the be- [1, 2, 3]: Xmap = (1_ @) 1o (1_ @) wherel,
- x havior of the possible sequence > alyl ) “10:4 i

Rer1 — G(Xe). denotes the indicator function of sét For p =7, the MAP

k+1 K was 2detezrmlged by a exzhaugtlve search of the maximum of
In the case where botk andZ are GSM in the strict sense, dx ()I(n|‘tﬂ!s/fiaggrdezs(((1)r:exzza|1|r¥”ok))sfg;\j(e€tr[1%i tll]'e Wiener estima
. . / 1 L) .
itis clear from (1) th?‘dxaz S.O' Moreovgr, by applying tor differs from the MAP and from the MMSE, while these
the Cauchy-Schwartz inequality ¢t} 7(r) written under the |55t estimators behave similarly, and tend to be identi-
form (1) yields to the log-convexity ofix z: in the GSM  ¢a| when|jy|| is large. One can also observe that for small
context, both previous conditions are thus satisfied. |ly|l the MAP’s magnitude is null, while it tends to unity for

Finally, for A [/ 1, one can still writeXmap= Xmap®y, large||y|. This can be understood considering the tails of the
where® is the Hadamard (or entrywise) product. Under thedistributions ofX andZ. Indeed, the tails opx are heavier
monotony assumption, one h¥gap € [0; 19 and under the than those ofy;: large (resp. small) values of the observa-
log-convexity assumption, the fixed point method convergetion Y are more probably due t& (resp. Z). Finally, one
to a local maximum. The proof is similar, using the partialcan observe a discontinuity for the case- .7. Whatever
derivative in the components &f p, for small|ly||, the posterior density, function &f is de-

Note that since there may exist several maxima, thigreasing and the MAP is null. However, one can observe that
fixed-point method does not guarantee that the sequence cdhis a fixed point ofG, although the derivative of the poste-
verges to a global maximum. Hence, it can be preferable tdor density is not zero. Indeed; /dx is infinite forx = 0
consider more efficient optimization methodsy( such as and the division by this quantity to obta allows to re-
the simulated annealing method). cover this solution here. Ay|| increases, one observes the

The estimation problem addressed in [3], where a radiallyemergence” of a local maximum. This local maximum be-
exponential or a Laplace random vectrcorrupted by a comes global for largdy||. For smallp the location of the
Gaussian noisg is to be estimated, is a special case of thdocal maximum is “far” from zero, explaining the observed
previous study. Hence, the search for the MAP proposed idiscontinuity; this is not the case for “largg@’ This is illus-
[2, 3] is a particular case of the previous result. trated in figure 2(middle).

7 T
0 0 % 1
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The right figures 2 depict the behavior of the MSE nor-is implemented from the numerical integration of (3) and us-
malized by the variance of vectos, %, of the MAP es- ing polar coordinates that simplify the integrations oﬁ;r_
timator, as a function of the SNR, compared to that of thd® integrations ove0; 77/2]. The same analysis as in the first
Wiener estimator and to the minimal MSE. One can observ€Xample holds concerning the estimators’ magnitudes.rButi
that although the Wiener estimator highly differs from thethis example, the Wiener estimator gives performances sim-
MMSE, surprisingly their performances are similar. Con-ilar to the MAP’s ones. The losses of performance of thfese
versely, the MAP's performances differ from that of the tWo estimators compared to the MMSE are large, especially
MMSE. This is particularly true for small SNR, and for for small SNR. The only advantage of the MAP here is its
“small” p. An explanation comes from the fact that for large Simplicity compared to the MMSE (in spite of the possible
SNR, X “dominates” the observation: thus both the MMSE existence of local maxima).

and the MAP tend to be unity even for small valued|yif. L
0.8
1 yiey 1
o8 i3 08 " o6
06 P K 0.4p-"
< l’ 5 ! 4 H(\é} - ~
™ o4 / 5058 Lo 21:2: 02 02 J
0.2L-" 0;\‘/7 \\\\\::\ 02 0 5 H)}ﬂ 15 -10 §\IR 10
K w2 °o 95 1 B Figure 3: Same as figures 2, but #§randZ Student-t dis-
08 1 1 tributed withvx = 2.5, vz = 10,d =5 and forSNR = +5dB.
06 \\,f/ 0-3\\\ . . .
woal Soe \A By os The third example aims to show that the previous re-
. . =< 0. I . sSis

sults still hold even ifX, although elliptically distributed,
) is not a (wide-sense) GSM. To this end, we consider the

T — O T ] 5 5 - example of a Student-r random vectdr corrupted by a

] % SR Gaussian noise. The density generatoKafrites dx (r) O

. . . H ’ H VA H H —d
B e (010 ) (1-512) Lo..a(0) I I examplc does o

mmse w ’ I i i I i
Middie: Shape of the posterior density (arbitrarily rescal admit a Gaussian scale mixture form as mentioned in the

< f | Right: M S E introduction of the MAP estimation. Thus, since devel-
versus for some values ofy||. Right: Mean Square Error oping the MMSE estimator is difficult, even computation-

normalized by the variance of, 5 versus the SNR'? gy, in this example, only the MAP and Wiener estima-
X is exponentially power distributed corrupted by Gaussianion will be illustrated. Moreover, in this situation agahe
noise, the SNR is -5dB, the dimensionds=5 andp=.7  MAP can be sought easily since it satisfies the cubic equa-
(upper curves) op = 1 (lower curves) |y|| = 3 (solid line)  tion||y||?x3— ||y||?%? — (v+ 2)s?+ v —d) X+ (v+2)£ =0,
6 (dashed line) and 7 (dashed-dotted line) for=.7 and  which can be solved via Cardano’s approach.
[yl =3,6,7forp=1. The results are exhibited in figure 4. The same inter-
pretation of the estimator's magnitude behavior holds (but
The second case concerns a vecXowith d—variate here, the noise pdf has heavier tails than that of the pdf of
Student-t distribution embedded in Student-t noide the vector to estimate). In this example, the performantes o
In this situation, the density generators writg z(r) O  the MAP are highly better than that of the Wiener estimator.
Sz Moreover an important advantage of the MAP in this exam-
(1+ &) wherev, ; are the degrees of freedom and ple is that the MMSE cannot be implemented in the general
’ setting of [4].

7 © AN 0.4
0.2 FANR

\
A 0.2

kez = Vxz — 2 if vxz > 2, andky, = 1 otherwisé. X andZ

are GSM and their mixing variable are square root of Gamma 06 08
distributed [4]. os
Although this case can be treated in the general setting I 0.4 g%o
. . g A 4
previously presented, the MAP simplifies again. Indeed, one
can show that the estimator magnitude is solution of theacubi 02 °'2¥
equation(vx+ Vz + 2d)|\y||2>‘(3 — (ZVX—i— VZ—|—3C|) ||y|\2>‘<2 + 0o s H)}H 15 Eh &R P

(02ke(vz+d) + (kz+ [ly|I?) (vx +d)) X — 02ke(v;+d) = 0. _ _ _ _
In this particular situation the MAP can hence be sought usEigure 4: Same as figure 2, but for the non wide-sense
ing Cardano’s approach that finds the roots of a third orde?SM above-presented. The parameters/are6,d =5 and

pplynomial. Moreover, the.c.as_e whe‘(e(re_sp.Z) is Gaus- SNR= —5dB.
sian can be recovered by dividing the cubic polynomiabpy The last example concerns the estimation of a gen-

g(r)eii%.r\]/ﬁi/and lettingvy andk, = vx—2 (resp.v; andk,) tend eralized Laplacian vector of density generaty(r) O

. v—d . . . .
Figure 3 describes the behavior of the MAP magni—fTKL;g(ﬁ) [12], embedded in Gaussian noise, but in
tude versug|ly|| (left) and its performances compared to _d%/10 - : )
the MMSE (right). The MAP is sought using the above-the context wherd = 5 (0 5_) Figures 5 depict the be

mentioned Cardano’s approach, while the MMSE magnituggavior of each components Ximap versusy. These figures
clearly show that the estimators do not remain functions of

3in this caseX has infinite covariance; fov = 1 one finds a Cauchy @ quadratic form since the constafitevels seem to be el-
random vectors lipsoidal, but with eccentricities that depend on the level
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Mainly, the same behavior with the same interpretation as[2] F. Shi and I. W. Selesnick, “An elliptically contoured
for the previous examples hold. exponential mixture model for wavelet based image
denoising,” Appl. Comput. Harmo. Anal., vol. 23,
pp. 131-151, July 2007.

[3] I. W. Selesnick, “The estimation of Laplace random
vectors in additive white Gaussian noiskEEEE Trans.
on Sg. Proc., vol. 56, pp. 3482—-3496, Aug. 2008.
10 [4] S. Zozorand C. Vignat, “Revisiting the denoising prob-
lem in the context of elliptical distributions,” iEU-
Figure 5: MAP estimator magnitudes (first and second com- g PCO, (Lausanne, Switzerland), 25-29 Aug. 2008.

ponent) as a function of, in the context of a 2-variate ran- 15« ¢ chy, “Estimation and decision for linear systems
dom Laplacian vector(= 3), corrupted by Gaussian noise. with elliptical random processedEEE Trans. on Auto.

0 =1, sothatthe SNR is 0dB. Control, vol. 18, pp. 499-505, Oct. 1973.
[6] K. Yao, “A representation theorem and its applica-
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4. DISCUSSION tions to spherically-invariant random processésFE
) o ) ) o Trans. on Info. Theory, vol. 19, pp. 600-608, Sept.
In this paper we have revisited the estimation of an ellipti- 1973.

cally distributed random vector corrupted by an elliptigal [7]
distributed random noise. This study extends: (i) the ap- : D
proach of [1], that deals only with scalar GSM (and with a varéate at?d rseéatfd déstn.bgt;]ons Mogogrﬁpgggg stat.
Gaussian corrupting noise); (ii) the study of [2, 3] where th and proba. 56, London: _ apman & Ha N '
dimension is not restricted to 1, but where the noise is still [8] M. Rangaswamy, D. Weiner, and Aztirk, “Non-
considered Gaussian and the vectors to estimate restticted Gaussian random vector identification using spherically
Laplacian or radially exponential distributed. Here, tieev invariant random processes$EEE Trans. on Aero. and

tor to be estimated and the noise are both assumed elligtical Elect. Syst., vol. 26, pp. 111-124, Jan. 1993.
distributed, without restricting their statistics, ane thAP [9] J. Portilla, V. Strela, J. Wainwright, and R. P. Simon-
approachis developed. As for the MMSE, previously studied celli, “Image denoising using scale mixtures of gaus-
in [4], the MAP simplifies when both the vector to estimate sians in the wavelet domainlEEE Trans. on Image
and the noise are spherically invariant (or with proporion Proc., vol. 12, pp. 1338-1351, Nov. 2003.

covariance matrices). The MAP is solution of a nonlinear[lo] K. Todros and J. Tabrikian, “Blind separation of inde-
equation, that has not always an analytical solution. But un pendent sources using Gaussian mixture modEEE

der the assumption that the density generators are demgeasi  Tyans, on Sig. Proc., vol. 55, pp. 3645-3658, July 2007.
and log-convex, a fixed-point approach allows an easy nu{-

merical determination. A drawback of this approach is thatL 1] Y- Chitour and F. Pascal, *Exact maximum likelihood

it can converge to a local maximum for the posterior density estimates for SIRV covariance matrix: Existence and

instead of the global one. Thus, more refined approaches can algorithm analysis,TEEE Trans. on Sig. Proc., vol. 56,

be envisaged, but such studies are left as perspectives. pp. 4563-4573, Oct. 2008. ] o
Obviously, the MMSE estimator is the approach to con{12] R. Lord, “The use of the Hankel transfqrm in statistics

sider in order to ensure minimum mean square error. More-  |. General theory and example&iometrika, vol. 41,

over, the integral form of this estimator can still exist eve pp. 44-55, June 1954.

if the MSE does not existe(g. vector with infinite vari-  [13] W. Feller,An Introductionto Probability Theory and Its

ance). The interest of the MMSE is that it can be systemat- ~ Applications, vol. 2. New-York: Wiley & Sons, 1971.

ically implemented when the mixing densities are known of 14] D. V. Widder, The Laplace Transform. Princeton Math-
can be numerically evaluated. However, the MMSE sufferé ematical Series. Princeton Univers'ity Press. 1946.

from limitations. In situations where no mixing functions i i
; : g 5] S. M. Kay, Fundamentals for Satistical Sgnal Pro-
exists, such as in the Student-r case (bounded support pdﬁ, cessing: Estimation Theory. vol. 1, Upper Saddle

the MMSE cannot be implemented in the general setting of . ; ,

[4] and its evaluation can become much more complicated.  IVer, NJ: Prentice Hall, 1993.
Instead, the use of the MAP allows to solve the estimatiof16] G. F. Carrier, M. Krook, and C. E. Pearséiunction of
problem in a systematic way. Moreover, implementing the ~ a Complex Variable: Theory and Technique. Philadel-
MAP does not need numerical integrations. Thus, the com-  phia: SIAM, 2005.

putational cost can be reduced (provided a fast algorithm ig17] M. Bilodeau and D. BrenneiTheory of Multivariate
used to solve the nonlinear equation that gives the MAP). Statistics. New-York: Springer, 1999.

In terms of performances, the various examples Sho"[’18] T J. Kozubowski. “On the vertical densit
: X A o N , y of the
that, apart the MMSE, there is no universal "best” estima- multivariate exponential power distributiorftatistics,
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