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ABSTRACT
The purpose of this paper is to study the estimation prob-
lem of a multivariate elliptically symmetric random variable
corrupted by a multivariate elliptically symmetric noise.In
this study, the maximum a posteriori (MAP) approach is pre-
sented, extending recent works by Alecuet al. [1] and Se-
lesnick [2, 3]: (i) the estimation is performed in a multivari-
ate context, (ii) the corrupting noise is not limited to be Gaus-
sian. This paper also extends our previous work that dealt
with the minimum mean square error (MMSE) approach [4].
The MMSE is briefly recalled and the MAP is derived. Then
the practical use of the MAP in a general setting is discussed
and compared to that of the MMSE and of the Wiener es-
timator. Several examples illustrate the behaviors of these
estimators and exhibit their performances.

1. INTRODUCTION

Investigations on elliptically symmetric distributions appear
recurrently in the signal processing literature; very recent
contributions such as [1, 2, 3] are examples. The inter-
est of elliptically symmetric random vectors lies in the fact
that they can be viewed as natural extensions of multivariate
Gaussian random vectors. As a consequence, various pro-
cessings used in the Gaussian case can be naturally extended
to the class of elliptically symmetric distributions.

Among the first works on elliptically symmetric distri-
butions in signal processing, one must cite the two almost si-
multaneous papers by Chu [5] and Yao [6]; the first one deals
with the subclass of Gaussian scale mixture (GSM) distribu-
tions in the frameworks of optimal estimation, filtering and
stochastic control. The second paper provides several statis-
tical results for estimation and detection in the more general
case of elliptically symmetric distributions. A more recent
contribution can be found for example in [7, Ch. 2].

The study of such random vectors gave rise to various
applications such as radar processing [8], image processing
[9, 2], blind source separation [10] or parameter estimation
[11] to cite recent contributions.

This paper aims at extending recent results on estimation
in the elliptical context. The first study is that of Alecuet
al. which dealt with what they call the Gaussian transform of
a symmetrically distributed scalar random variable [1]. The
Gaussian transform of a GSM is nothing but the probability
density function (pdf) of the square of its mixing variable.In
their paper, Alecuet al. revisited the denoising problem in
the context of a one-dimensional GSM corrupted by a Gaus-
sian noise. The second study is that of Selesnick, in which
the denoising problem is presented in the context of a spheri-
cally invariant radial exponential or Laplacian random vector
corrupted by a Gaussian white noise [2, 3]. Laplacian or ra-

dial exponentially distributed random vector also enter into
the class of elliptically (more specifically spherically) dis-
tributed random vector and are GSM. As in [1, 2, 3], this
work can find applications in image denoising, or even in
radar data processing since radar clutter is often modeled by
GSM processes [8].

In a previous work, we have revisited the denoising prob-
lem in the general case of a (wide sense) GSM, corrupted by
a (wide sense) GSM noise [4]. The proposed approach was
based on the minimal mean square error estimator (MMSE).
The purpose of this proposal is to extend as far as possible
the denoising problem of a multivariate elliptically symmet-
ric random variable corrupted by a multivariate elliptically
symmetric noise even when one or both vectors cannot be
expressed as a (wide sense) GSM. As in [1, 3], we concen-
trate here on the maximum a posteriori estimator (MAP).

In section 2 we briefly recall the basics about elliptically
invariant random vectors we need for our approach. Then,
section 3 is devoted to the denoising problem where both the
vector to estimate and the corrupting noise are elliptically
distributed. In this section we will revisit the MAP estimator
in this elliptically distributed framework. We will show that
under an additional assumption on the covariance matrices
of X andZ, the MAP estimator reduces to a one dimensional
problem. We also give some conditions which ensure the
existence of a MAP estimator, and a possible recursive ap-
proach to determine the MAP. Finally, the shape of the MAP
estimator and its performances are exhibited, and compared
to the MMSE and to the Wiener estimator ones.

2. RECALLS ON ELLIPTICAL DISTRIBUTIONS

A d-dimensional random vectorX is elliptically distributed
if its probability density function1 pX is a function of the
quadratic form(x− µ)tR−1(x− µ), that is

pX(x) = |RX |−1/2dX((x− µX)tR−1
X (x− µX))

wheredX is a functionR+ → R+, called density genera-
tor, whereµX is a location parameter, and whereRX is a
symmetric definite positive matrix called characteristic ma-
trix [5, 6, 7]. The densitypX is also said elliptically con-
toured, in the sense that the constant probability hypersur-
faces are ellipsoidal. When defined,µX is the mean ofX .
Matrix RX is defined up to a scaling factor, however, the in-
determinacy can be removed by imposing a constraint on
RX . As an example, whenX has a covariance, imposing
∫

R+
rd+1 dX

(
r2

)
dr = Γ(d/2+ 1)/π

d
2 , whereΓ is the Euler

1More rigorously such vector are defined via the characteristic function
[7]. The elliptical property is preserved by Fourier transform [12, 6, 4], and
in this paper we restrict to vectors that admit a pdf

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 2460



Gamma function, removes this indeterminacy, implying that
RX is the covariance matrix ofX . Finally, note that for any in-
vertible matrixM, vectorMX remains elliptically distributed.

In particular, the elliptical vectorR−1/2
X X has a characteristic

matrix equal to the(d×d) identity, and is said spherically or
orthogonally invariant (or distributed).

In the sequel, without loss of generality, we will focus on
the situation whereµX = 0.

In the case where functions 7→ dX(s) admits an inverse
Laplace transform (see [5]), the pdfpX can be expressed as

pX(x) =
∫ +∞

0
fa(a)G (x|a2RX

)da (1)

whereG (x|R) = (2π)−
d
2 |R|− 1

2 exp
(
− xt R−1x

2

)
denotes thed-

dimensional zero-mean Gaussian pdf with covariance matrix
R. IntegratingpX over x shows that, provided that integra-
tion signs can be exchanged, functionfa sums to 1. More-
over, under the condition thatdX is a completely monotone
function, functionfa is nonnegative [6, 13, 14] and hence is
a pdf. In terms of random vector,X has then the stochastic
representation of a Gaussian scale mixture (GSM)2 X

d
=AN

whereA∼ fa andN is a Gaussian vector independent ofA, of
covariance matrixRX , N ∼ G (·|RX ). Equality is in the sense
of distributions. When the decomposition (1) holds butfa is
not a pdf, we will callX wide sense GSM.

Many properties of elliptically distributed random vector
can be found in [5, 6, 7].

3. RANDOM VECTOR ESTIMATION IN THE
ELLIPTICALLY FRAMEWORK

We consider the generalization of the problem of [1, 3] of
estimating ad-dimensional random vectorX elliptically dis-
tributed and with covariance matrixRX , from a noisy obser-
vation

Y = X + Z (2)

where the noiseZ is assumed independent ofX and ellipti-
cally distributed with covariance matrixRZ. As in [1, 3], we
assume that both covariance matricesRX and RZ and pdfs
pX and pZ are known. This problem generalizes [1] in the
sense that dimensiond is arbitrary and thatZ can be non-
Gaussian. It also generalizes [2, 3] which also restrictedZ
to be Gaussian andX to be radially exponential or Laplacian
respectively.

Multiplying the observation by an adequate matrix, as
done in [4], the problem can be restricted to the case where
RZ = I (pre-whitening ofZ) andRX = ∆ diagonal (adequate
rotation after the pre-whitening ofZ).

3.1 Recall on the Minimum Mean Square Estimation

The well-known Minimum Mean Square Error (MMSE) es-
timator of X based on the observationY , i.e. the vectorX̂
that minimizes the quadratic errorE[‖X̂ −X‖2], is given by
the conditional mean [15],̂Xmmse= E[X |Y ]. We have previ-
ously shown that, when bothX andZ are wide sense GSM,
with mixing functionsfa and fb respectively, the MMSE es-

2∼ means “distributed according to”

timator writes

X̂mmse=

∫

R
2
+

G (y|a2∆+b2I)a2 fa(a) fb(b)(a2∆ + b2I)−1 dadb
∫

R
2
+

G (y|a2δ+b2I) fa(a) fb(b)dadb
∆y

(3)
which requires integrations overR

2
+ instead of the integra-

tions overRd required in general.
When bothX and Z are Gaussian, one recovers the

Wiener estimator

X̂w = (∆ + I)−1∆y =
(
I + ∆−1)−1

y (4)

which is also the best linear estimator in the mean square
error (MSE) sense, for any uncorrelated vectorsX andZ [15].

3.2 Maximum a posteriori estimation

The MMSE estimator in its form (3) can be used only when
X and Z are wide sense GSM. When at least one of these
vectors does not satisfy this assumption, the previous deriva-
tions do not hold anymore and the MMSE estimation can
become much more complicated to derive. Such a situa-
tion occurse.g. in the case of pdfs with bounded support.
Indeed, for such pdfs, the density generator has obviously
bounded support, and hence cannot admit an analytic con-
tinuation – otherwise it would be identically zero [16, iden-
tity theorem p. 65]. However, in order to admit an inverse
Laplace transform, a function must be analytic [14, II.5 th.
5a]. The MMSE can also be difficult the implement if a mix-
ing function exists, but has no analytical expression as in the
generalized Gaussian case [4].

In such situations, the maximum a posteriori (MAP) ap-
proach is a good alternative, as shown in [1, 2, 3]. The MAP
consists in seeking the vectorX̂ that maximizes the posterior
densitypX |Y (x,y), what yields to

X̂map(y) = argmax
X

pX(x)pZ(y− x)

= argmax
X

dX(‖x‖2)dZ(‖∆− 1
2 (y− x)‖2) (5)

by the Bayes rule. Vanishing the gradient
∇xdX(‖x‖2)dZ(‖∆− 1

2 (y − x)‖2), one finally finds that
the MAP is solution inx of the nonlinear equation

x =



I +
d′

X

(
‖∆− 1

2 x‖2
)

dX

(
‖∆− 1

2 x‖2
) dZ

(
‖y− x‖2

)

d′
Z (‖y− x‖2)

∆−1




−1

y (6)

This expression looks very similar to the Wiener filter, except
that the matrix factor now depends on the solutionx itself.

In the particular case where∆ = σ2I, the rotated vector
Ct

θ X̂map(Cθ y) is solution of (6) for any rotation matrixCθ .
Thus,X̂map(y) can be sought under the form

X̂map(y) = Xmap
(
‖y‖2) y (7)

whereXmap is solution of

x =
σ2

σ2 +
d′X

(
x2‖y‖2

σ2

)

dX

(
x2‖y‖2

σ2

) dZ((1−x)2‖y‖2)
d′Z((1−x)2‖y‖2)

(8)
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Note that in this context, the MMSE and Wiener esti-
mators (3)-(4) can also be written under the formX̂mmse,w =
Xmmse,w.y [4]: in this situation, we will callX “estimator
magnitude”. One can easily see thatX̂w ∈ [0 ; 1], and that in
the strict sense GSM, the MMSE estimator magnitude is in
[0 ; 1] as well.

In the general case, solving (8) is not a trivial task. Nev-
ertheless, under additional assumptions, equation (8) canbe
numerically solved.
1. If both dX and dZ are continuously differentiable and

monotonic (necessarily decreasing), then equation (8)
has at least one solution, which, from (8), is necessar-
ily in [0 ; 1]. Indeed, writingx = G(x) whereG(x) is the
right hand-side of (8), it is immediate thatG(0) ≥ 0 and
G(1) ≤ 1, hence, from the continuity assumption, there
exists at least onex so thatx = G(x).

2. If, additionally, bothdX anddZ admit a second derivative
and are log-convex (implying thatdX ,Zd′′

X ,Z − d′2
X ,Z ≥ 0),

the fixed-point methodxk+1 = G(xk) with x0 ∈ [0 ; 1] al-
ways converges to a solution of (8), which is a maximum
of the posterior distribution (except if it is initialized at a
minimum). Deriving the expression ofG versusx and us-
ing both the fact thatx ∈ [0; 1], the negativity ofd′

X ,Z, and
the log-convexity assumption shows thatG is an increas-
ing function. Moreover, using additional algebra, one can
show that at the maxima of the posterior density versus
x, G′(x) ≤ 1: the maxima are the stable fixed points ofG
and the seriesxk+1 = G(xk) is necessarily monotonic and
bounded by the stable maxima.

G(x)

xm

0 x0x′0

x′M
x

1

xM

1

Figure 1: Illustration of eq. (8),
when bothdX and dZ are de-
creasing and log-convex. Points
x′M andxM correspond to two lo-
cal maxima of the MAP equa-
tion, while the second point,
xm corresponds to a minimum.
The dotted line illustrates the be-
havior of the possible sequence
xk+1 = G(xk).

In the case where bothX andZ are GSM in the strict sense,
it is clear from (1) thatd′

X ,Z ≤ 0. Moreover, by applying
the Cauchy-Schwartz inequality tod′

X ,Z(r) written under the
form (1) yields to the log-convexity ofdX ,Z: in the GSM
context, both previous conditions are thus satisfied.

Finally, for ∆ 6∝ I, one can still writeX̂map = Xmap� y,
where� is the Hadamard (or entrywise) product. Under the
monotony assumption, one hasXmap∈ [0 ; 1]d and under the
log-convexity assumption, the fixed point method converges
to a local maximum. The proof is similar, using the partial
derivative in the components ofx.

Note that since there may exist several maxima, this
fixed-point method does not guarantee that the sequence con-
verges to a global maximum. Hence, it can be preferable to
consider more efficient optimization methods (e.g. such as
the simulated annealing method).

The estimation problem addressed in [3], where a radially
exponential or a Laplace random vectorX corrupted by a
Gaussian noiseZ is to be estimated, is a special case of the
previous study. Hence, the search for the MAP proposed in
[2, 3] is a particular case of the previous result.

The next subsection aims at illustrating both the behavior
of the MAP estimator and its performances versus the sig-
nal to noise ratio. The advantage and some drawbacks of
the MAP approach will be discussed, and the MAP will be
compared with the MMSE and Wiener estimators.

3.3 Some illustrative examples

In the following, we give three illustrations where∆ = σ2I
and a fourth one where∆ 6∝ I. The performances in terms
MSE of both estimatorŝXmap, X̂mmseandX̂w will be shown

versus the signal-to-noise ratioSNR = E[‖X‖2]
E[‖Z‖2]

= Trace(∆)
d =

σ2.
The first illustration deals with a vectorX following

an exponential power distribution [17, 18]X ∼ pX (x) ∝

e− ( γxt x)
p
2 whereγ =

Γ
(

d+2
p

)

d Γ
(

d
p

) , corrupted by a Gaussian ran-

dom vector. Ad-variate exponential power random vector
is a GSM, however the mixing function is expressed via the
pdf Gα of an α-stable variable of stability indexα and to-
tally skewed to the right (with skew parameterβ = 1) [4],

fa(a) ∝ ad−3 G p
2

(
a−2(2γ)−1cos−

2
p (pπ/4)

)
. Density Gα

has no analytical expression [4] except in the particular case
of the Lévy distribution given byα = 1

2. This case corre-
sponds top = 1, and the distribution is known as the radially
exponential distribution [2].

Figure 2(left) describes the behavior ofXmap versus‖y‖,
for SNR = −5 dB, in dimensiond = 5, and for p = .7
(top) and p = 1 (bottom). The solid line corresponds to
the MAP, while the dashed line represents the MMSE and
the dotted line depicts the Wiener estimator. The MMSE
is numerically computed via (3), and the code available
at the following address [19] is used to numerically com-
pute fa when p 6= 1 [4]. Furthermore, in the casep = 1,
one can easily show that the MAP has an explicit form

[1, 2, 3]: Xmap =
(

1−
√

d+1
σ ‖y‖

)
�

[0 ; 1]

(
1−

√
d+1

σ ‖y‖

)
where

�
A

denotes the indicator function of setA. For p = .7, the MAP
was determined by a exhaustive search of the maximum of
dX(x2‖y‖2/σ2)dZ((1− x)2‖y‖2) for x ∈ [0 ; 1].

In this figures, one can observe that the Wiener estima-
tor differs from the MAP and from the MMSE, while these
two last estimators behave similarly, and tend to be identi-
cal when‖y‖ is large. One can also observe that for small
‖y‖ the MAP’s magnitude is null, while it tends to unity for
large‖y‖. This can be understood considering the tails of the
distributions ofX andZ. Indeed, the tails ofpX are heavier
than those ofpZ : large (resp. small) values of the observa-
tion Y are more probably due toX (resp. Z). Finally, one
can observe a discontinuity for the casep = .7. Whatever
p, for small‖y‖, the posterior density, function ofx, is de-
creasing and the MAP is null. However, one can observe that
0 is a fixed point ofG, although the derivative of the poste-
rior density is not zero. Indeed,d′

X/dX is infinite for x = 0
and the division by this quantity to obtainG allows to re-
cover this solution here. As‖y‖ increases, one observes the
“emergence” of a local maximum. This local maximum be-
comes global for large‖y‖. For smallp the location of the
local maximum is “far” from zero, explaining the observed
discontinuity; this is not the case for “large”p. This is illus-
trated in figure 2(middle).

2462



The right figures 2 depict the behavior of the MSE nor-
malized by the variance of vectorX , MSE

dσ2 , of the MAP es-
timator, as a function of the SNR, compared to that of the
Wiener estimator and to the minimal MSE. One can observe
that although the Wiener estimator highly differs from the
MMSE, surprisingly their performances are similar. Con-
versely, the MAP’s performances differ from that of the
MMSE. This is particularly true for small SNR, and for
“small” p. An explanation comes from the fact that for large
SNR,X “dominates” the observation: thus both the MMSE
and the MAP tend to be unity even for small values of‖y‖.
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Figure 2: Left: Estimators’ magnitudesXmap (solid line),
Xmmse(dashed line) andXw dotted line) as a function of‖y‖;
Middle: Shape of the posterior density (arbitrarily rescaled)
versusx for some values of‖y‖. Right: Mean Square Error
normalized by the variance ofX , MSE

dσ2 versus the SNRσ2;
X is exponentially power distributed corrupted by Gaussian
noise, the SNR is -5dB, the dimension isd = 5 andp = .7
(upper curves) orp = 1 (lower curves).‖y‖ = 3 (solid line)
6 (dashed line) and 7 (dashed-dotted line) forp = .7 and
‖y‖ = 3,6,7 for p = 1.

The second case concerns a vectorX with d−variate
Student-t distribution embedded in Student-t noiseZ.
In this situation, the density generators writedX ,Z(r) ∝
(

1+ r
kx,z

)− d+νx,z
2

whereνx,z are the degrees of freedom and

kx,z = νx,z −2 if νx,z > 2, andkx,z = 1 otherwise3. X andZ
are GSM and their mixing variable are square root of Gamma
distributed [4].

Although this case can be treated in the general setting
previously presented, the MAP simplifies again. Indeed, one
can show that the estimator magnitude is solution of the cubic
equation(νx + νz + 2d)‖y‖2x3 − (2νx + νz + 3d)‖y‖2x2 +
(σ2kx(νz + d)+ (kz + ‖y‖2)(νx + d))x − σ2kx(νz + d) = 0.
In this particular situation the MAP can hence be sought us-
ing Cardano’s approach that finds the roots of a third order
polynomial. Moreover, the case whereX (resp.Z) is Gaus-
sian can be recovered by dividing the cubic polynomial byνx
(resp.νz) and lettingνx andkx = νx −2 (resp.νz andkz) tend
to infinity.

Figure 3 describes the behavior of the MAP magni-
tude versus‖y‖ (left) and its performances compared to
the MMSE (right). The MAP is sought using the above-
mentioned Cardano’s approach, while the MMSE magnitude

3in this caseX has infinite covariance; forν = 1 one finds a Cauchy
random vectors

is implemented from the numerical integration of (3) and us-
ing polar coordinates that simplify the integrations overR

2
+

to integrations over[0; π/2]. The same analysis as in the first
example holds concerning the estimators’ magnitudes. But in
this example, the Wiener estimator gives performances sim-
ilar to the MAP’s ones. The losses of performance of these
two estimators compared to the MMSE are large, especially
for small SNR. The only advantage of the MAP here is its
simplicity compared to the MMSE (in spite of the possible
existence of local maxima).
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Figure 3: Same as figures 2, but forX andZ Student-t dis-
tributed withνX = 2.5,νZ = 10,d = 5 and forSNR = +5dB.

The third example aims to show that the previous re-
sults still hold even ifX , although elliptically distributed,
is not a (wide-sense) GSM. To this end, we consider the
example of a Student-r random vectorX , corrupted by a
Gaussian noise. The density generator ofX writes dX(r) ∝
(
1− r

ν+2

) ν−d
2

�

[0 ;ν+2](r). In this example,dX does not
admit a Gaussian scale mixture form as mentioned in the
introduction of the MAP estimation. Thus, since devel-
oping the MMSE estimator is difficult, even computation-
ally, in this example, only the MAP and Wiener estima-
tion will be illustrated. Moreover, in this situation againthe
MAP can be sought easily since it satisfies the cubic equa-
tion‖y‖2x3−‖y‖2x2−

(
(ν +2)s2+ ν −d

)
x+(ν +2)s2 = 0,

which can be solved via Cardano’s approach.
The results are exhibited in figure 4. The same inter-

pretation of the estimator’s magnitude behavior holds (but
here, the noise pdf has heavier tails than that of the pdf of
the vector to estimate). In this example, the performances of
the MAP are highly better than that of the Wiener estimator.
Moreover an important advantage of the MAP in this exam-
ple is that the MMSE cannot be implemented in the general
setting of [4].
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Figure 4: Same as figure 2, but for the non wide-sense
GSM above-presented. The parameters areν = 6, d = 5 and
SNR = −5dB.

The last example concerns the estimation of a gen-
eralized Laplacian vector of density generatordX(r) ∝
r

ν−d
4 Kν−d

2
(
√

νr) [12], embedded in Gaussian noise, but in

the context where∆ = σ2

3

(
1 0
0 5

)
. Figures 5 depict the be-

havior of each components ofXmap versusy. These figures
clearly show that the estimators do not remain functions of
a quadratic form since the constantX levels seem to be el-
lipsoidal, but with eccentricities that depend on the level.
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Mainly, the same behavior with the same interpretation as
for the previous examples hold.
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Figure 5: MAP estimator magnitudes (first and second com-
ponent) as a function ofy, in the context of a 2-variate ran-
dom Laplacian vector (ν = 3), corrupted by Gaussian noise.
σ = 1, so that the SNR is 0dB.

4. DISCUSSION

In this paper we have revisited the estimation of an ellipti-
cally distributed random vector corrupted by an elliptically
distributed random noise. This study extends: (i) the ap-
proach of [1], that deals only with scalar GSM (and with a
Gaussian corrupting noise); (ii) the study of [2, 3] where the
dimension is not restricted to 1, but where the noise is still
considered Gaussian and the vectors to estimate restrictedto
Laplacian or radially exponential distributed. Here, the vec-
tor to be estimated and the noise are both assumed elliptically
distributed, without restricting their statistics, and the MAP
approach is developed. As for the MMSE, previously studied
in [4], the MAP simplifies when both the vector to estimate
and the noise are spherically invariant (or with proportional
covariance matrices). The MAP is solution of a nonlinear
equation, that has not always an analytical solution. But un-
der the assumption that the density generators are decreasing
and log-convex, a fixed-point approach allows an easy nu-
merical determination. A drawback of this approach is that
it can converge to a local maximum for the posterior density
instead of the global one. Thus, more refined approaches can
be envisaged, but such studies are left as perspectives.

Obviously, the MMSE estimator is the approach to con-
sider in order to ensure minimum mean square error. More-
over, the integral form of this estimator can still exist even
if the MSE does not exist (e.g. vector with infinite vari-
ance). The interest of the MMSE is that it can be systemat-
ically implemented when the mixing densities are known or
can be numerically evaluated. However, the MMSE suffers
from limitations. In situations where no mixing functions
exists, such as in the Student-r case (bounded support pdf),
the MMSE cannot be implemented in the general setting of
[4] and its evaluation can become much more complicated.
Instead, the use of the MAP allows to solve the estimation
problem in a systematic way. Moreover, implementing the
MAP does not need numerical integrations. Thus, the com-
putational cost can be reduced (provided a fast algorithm is
used to solve the nonlinear equation that gives the MAP).

In terms of performances, the various examples show
that, apart the MMSE, there is no universal “best” estima-
tor between the MAP and the Wiener estimator.
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