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ABSTRACT

Multilinear techniques are increasingly used in Signal Pro-
cessing and Factor Anmalysis. In particular, it is often of
interest to transform a tensor into another that is as diagonal
as possible or to simultaneously transform a set matrices into
a set of matrices that are close to diagonal. In this paper we
propose a parameterization of the general linear group. Based
on this parameterization Jacobi-type procedures for congru-
ent diagonalization and PARAFAC decomposition problems
are developed. Comparisons with an existing congruent di-
agonalization algorithm is reported.

1. INTRODUCTION

In signal processing the problem of congruent diago-
nalization of a set of matrices is a frequently occuring
problem. For instance, it occurs in Blind Source Separa-
tion (BSS) of instantaneous mixtures [11], [13], [16], in
analytical constant modulus algorithms for blind sepa-
ration of communication signals [15] and in frequency
estimation [12]. It also appears in under-determined
BSS [9], [10], e.g. via a PARallel FACtor (PARAFAC)
decomposition method, such as described in [8].

The Jacobi-like sweeping procedure for tensors was
introduced in [5]. We propose in this paper Jacobi-like
procedures that proceed pairwise, and which yield one
or several nonsingular matrices at each step of the iter-
ative congruent diagonalization. In the Tensor Approx-
imate Diagonalization (TAD) problem, each nonsingular
matrix acts on every mode of the tensor, such as to min-
imize the sum of squares of the off-diagonal entries.
Similary, In the Tensor Approximate Fitting (TAF) prob-
lem, each nonsingular matrix acts on every mode of the
tensor, so as to minimize the fit. On the other hand, in
the Joint Approximate Congruent Diagonalization problem
(JACD) a single nonsingular matrix is sought so as to
minimize the sum of squares of the off-diagonal entries
of all the matrices of interest.

The general framework we introduce is usable in at
least three different problems: first the JACD of Her-
mitian matrices, should they be positive definite as in
[14] or not; second, the JACD of invertible matrices of
general form; third, the TAD and TAF problems.

This work has been partially supported by contract ANR-06-
BLAN-0074 “"Decotes”. The work of Mikael Serensen is supported
by the EU by a Marie-Curie Fellowship (EST-SIGNAL program
: http://est-signal.i3s.unice.fr) under contract No MEST-CT-2005-
021175.

© EURASIP, 2009

500

1.1 Notations and Definitions

Let vectors, matrices and tensors be denoted by lower
case boldface, upper case boldface and upper case
calligraphic letters respectively. Let o and © denote
the outer and Khatri-Rao product respectively and let
det(), ()7, ()", ()", ()7, Re{-} and Im{-} denote the de-
terminant, transpose, conjugate, conjugate-transpose,
Moore-Penrose pseudoinverse, real part and imaginary
part of a matrix, respectively. Furthermore, GL;,(C),
SL,,(C), SO, (C) and S,;,(C) will denote the set of m xm
nonsingular matrices, nonsingular matrices with de-
terminant equal to one, unitary matrices with determi-
nant equal to one, and Hermitian matrices, respectively.
Moreover, let A € C™/, then Vec(A) € CY will denote a
column vector with the property (Vec(A));. 1= (A); e
Similary, let A € C™!, then Vecd (A) € C! denotes a col-
umn vector with the property (Vecd (A)); = (A);;. Finally,
let A € C™J, then Dy (A) € € denotes the diagonal ma-
trix holding row k of A on its diagonal.

The Frobenius norm of a tensor X € C™/*X is defined

to be
it = (Y Xl
i,k

A rank-1 tensor X € C™/*K is equal to the outer prod-
uct of some non-zero vectors a € C!, b € €/, c € CX such
that (X )l»]-k = (a); (b) i (¢)k. The rank of a tensor X is equal
to the minimal number of rank-1 tensors needed to com-
pose X. Assume that the rank of X is R, then it can be
written as

X=

R
a,ob,oc,
=1

T
where {a,} ¢ C!, {b,} c CJ and {c,} c CX. This decompos-
tion is sometimes referred to as the PARAFAC decom-

position. If we stack the vectors {a,}, {b,} and {c} into
the matrices

A = [a, ,agp | e CPR
B = [ by, ,br Je R
C = [q, ,er | € R

and let X% e €/ denote the matrix such that (X(k))ij =
(X)l]k Then

X® = AD,(C)B”.



The rest of the paper is organized as follows. The
proposed parameterization of the general linear group
is introduced in section 2. Then pairwise procedures
for the TAF problem is discussed in section 3. Next
a pairwise procedure for the JACD problems of a set
of Hermitian matrices are described in section 4. Fi-
nally the proposed JACD algorithm is compared to an
existing one in section 5.

2. PARAMETERIZATION OF GL,,(C)

Let A € GL,,,(C), then
A = AA,

where A € SL,,(C) and A = 4/det(A)I,,. Next we pro-
pose anormalized QL factorization for any nonsingular
matrix.

Define the QL factorization A = QL, where Q €
SO, (C) is unitary and L lower triangular. We obtain
the product

A=AQL,

where det(L) = 1. Assume that A € GL,(C), then the
following parameterization is possible:

Ao Jdet(A) 0 c s || a (1) ,
0 Jdet(A) || —se ¢ || b 3

wherea,b € C, c = cos(0), s = sin(0) and 0, ¢ € R. In fact,
A being nonsingular, we necessarily have that a # 0.
Based on this factorization, we propose to factorize a
matrix A € GL,(C) into a product of elementary matrices
that differ from the Identity only in four places. This
idea has been extensively used for parameterizing uni-
tary matrices with the so-called Givens rotations [6].
Here we extend the idea to general invertible matrices
of GLy(C). Consider the elementary matrix

Alp,q] = Alp,q1Qlp.qILIp,q],

where
1 ifm=nand m ¢ {p,q}
Ay ifm=n=p
_ ) Ay ifm=n=gq
Alp.qlun =4 A, ifm=pandn=g
Ay ifm=gandn=p
0 otherwise
and

1

{/det (Alp,q])
Oxk/det(A[p,q])

1

cos(6)
cos(6)
sin(0)e'®
—sin(0)e™¢

if m=nandm¢ {p,q}
ifm=n=p
ifm=n=gq
otherwise

A[P, ‘J]mn

ifm=nandm¢{p,q}
ifm=n=p
itm=n=gq
ifm=pandn=gq
ifm=gandn=p
otherwise

Qlp, qlmn

ifm=nandm¢{p,q)
ifm=n=p

ifm=n=gq
ifm=gandn=pandm>n
otherwise

L[Pr Q]mn

OSSR, R O

It can be shown that any A € GL,;(C) can be fac-
torized as the product of the above three kinds of ele-
mentary matrices, viz, diagonal, lower triangular and
unitary or orthogonal, e.g. we can set ¢ =0 in Qlp,q].
Hence we propose to factorize a matrix A € GL,,(C) into
a product of the above parameterization Givens-type

matrices
S m-1 m
A=T]]] ] alv.as1
s=1 p=1g=p+1

where S is equal to number of sweeps executed by
the iterative procedure and the third index indicate the
sweep number.

3. TENSOR APPROXIMATE FITTING

Given a tensor 7~ € C>/*K with rank R satisfying the
inequalities R <min(I],K)and R(R-1) <I(I-1)J(J-1)/2.
Then under mild conditions it was shown in [8] that
PARAFAC decomposition problem can be reformulated
as a simultaneous matrix diagonalization problem of a
set of R complex symmetric matrices of dimension R X R.

Moreover, given a tensor 7~ € C*/*K with rank
R < min(l, ,K) then by a dimension reduction step as
explained in [7] the PARAFAC decomposition problem
can be reformulated to the estimation of the parame-
ters of a tensor X € CR*R*K_ This is typically done by
minimizing the function

K
FUV,W) = Y IXO-UD (W) VT
k=1
K
- Z IVec (X®) - (V0 U) Vecd (D (W) |12
k=1
(1)
The optimal Dy (W) can be expressed as follows:
Dy (W) = diag((VoU)" Vec(x®)), Vk. @)

Inserting (2) into (1) we obtain

K
fwU,V) = an(k)—Udiag((V@U)*Vec(x<’<>))vT||§.
k=1
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By assuming that X® =UD, (W) VT forall kand U,V €
GLg(C), then obviously

Dy (W) = diag(U~'x®vT). 3)

Inserting (3) into (1) we obtain the cost function

K
gUV) = Y IX®-Udiag(UXOVT) VT2 (4)
k=1
= g(UAU,VAv),

where Ay and Ay are arbitrary nonsingular diagonal
matrices. A first approach to reduce the number of
unknowns would be to use (2). A simpler approach
would be to make use of (4). This can be seen as a
non-symmetric version of the cost function introduced
by Afsari in [1] for JACD of Hermitian matrices but
applied on the TAF problem.

Under the assumption that Dy (W) is nonsingular
for some k, say k =1, then as proposed in [7] another
simplification can be considered which will result in a
different optimization problem. This will yield a joint
diagonalization problem by a congruence transform

Y® = x®OxOT =up,(W)D; W)Ul (5)

By the same argument as before we can from (5)
obtain the following cost function

ZHY

h (U/\U) ,

h(U) ~ Udiag(U™YOU) U2 (6)

where Ay is an arbitrary nonsingular diagonal matrix.
Due to the invariance property of the cost functions (4)
and (6) the term Alp,q] vanish and in the lower trian-
gular matrices we can set a = 1. Furthermore, since
h(UIT) = h(U), where I1is an arbitrary permutation ma-
trix the parameterization A[p,q] could be reduced to

ifm=mn
ifm=pandn=gq
ifm=gandn=gq
otherwise

A[qu]mn =

OT N =

where1—ab#0anda,b € C.

Remark that minimizing fw (U, V), g(U, V) and / (U)
will in general yield different solutions, unless the ten-
sor considered is exactly diagonalizable by invertible
transforms. An outline of a general sweeping proce-
dure addressing this kind of problems can be seen on
algorithm 1.

4. JOINT APPROXIMATE CONGRUENT
DIAGONALIZATION OF HERMITIAN MATRICES

Various BSS problems are often addressed by min-
imizing the off-diagonal terms of a set of Hermitian

matrices. Let {T(")}f:1 C Siu(C) be the matrices we at-
tempt to diagonalize. Then the minimization of the
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Algorithm 1 Outline of sweeping procedure for TAF.

Initialize: U=1,, V=1,
Step 1: Repeat until convergence
forp=1tom-1do
forg=p+1tomdo
calculate optimal Ay[p,q] and Av|p,4]
U« UAy|p,g], V< VAy[pg]
end for
end for
Step 2: Check if algorithm has converged. If not, then
go to Step 1.

Algorithm 2 Outline of sweeping procedure for mini-
mization of the off-term elements of a set of Hermitian
matrices.

Initialize: U =1,

Step 1: Repeat until convergence

forp=1tom-1do

forg=p+1tomdo
calculate Q[p,q] according to subsection 4.1.

T < Q[p,q]" TOQ[p.q]

U< Q[pq"U

calculate L[p,q] according to subsection 4.2.

TO — L[p, g TOL[p,q]"

U« L[pgq|U

end for

end for
Step 2: Check if algorithm has converged. If not, then
go to Step 1.

cost function

K
J(U) = Z luT®ut - diag(UT<k>UH) ()
k=1

have been applied in [11], [16]. This can be interpreted
as an extension of the JADE algorithm [3] to the case of
general invertible transforms.

The updating rules are T® « A[p,q]TWA [p,q]"
and U « A[p,q]U. Let us parameterize Alp,q] e C™"

as A[p,q] = Vdet(Alp,9])Q[p.q] ]. Then since
J(@U) = a*a](U), YaeC, (8)

we can infer from equation (8) that the scalar

V/det(Alp,q]) does not contribute to any diagonaliza-
tion of the matrices {T®}. . Hence we will only consider
the term Q[p,q]L[p,q] € SLu(C).

Due to the computational complexity of the prob-
lem, we calculate and update only one matrix at a time:
either the unitary matrix or the triangular one. An out-
line of the proposed sweeping procedure can be seen
on algorithm 2.

4.1 Algebraic Solution for the Unitary Matrix

The algebraic solution for the wunitary Jacobi-
subproblem was solved in [3], [4] known as the JADE
problem and therefore the JADE algorithm can be used



to solve the problem. Let U = Q[p, g], then due to the in-
variance property of the Frobenius norm wrt. any uni-
tary operator, the unitary Jacobi-subproblem is equiva-
lent to maximizing the quadratic form

K
F(Qip,ql) = ) Idiag(Qlp,q1" TV Qlp,q1) 12 =
k=1
271 Re{y>} Im{y>}
Re{y2} ys+2Relys)  2Im{ys} s,
Im{y>}  2Imf{ys}  ys5—2Refy4}
where
s = [cos(ZQ) sin(ZQ)cos(qb),sin(ZQ)sin(qb)]T
2
_ (k) (k)
" = ZIT +[r
K
_ (k)* (k) (k)* (k) (k)% (k) (k)* (k)
V2 = ZT qq qu +qu qu _Tpp qu _qu TPP
k=1
- ®r® , [rOP o | ®
ys = ) 2Re(TW TR+ [T +[15)|
k=1
K
2 ZTk)*
Ys = 7/1 +7/3

Hence the problem amounts to find an eigenvector as-
sociated to the largest eigenvalue of the above matrix.

4.2 Algebraic Solution for the Lower Triangular Ma-
trix

Let U=L[p,q] and a = ab, then

J(Lp.gl) = Praa”+pra+pia’+po = f(a,a’),
where

K

b= Yoo
k=1
K

pro= ) (T +TyT)
k;l 2

fo = Y2y

o~
Il
—_

Let us apply the formal partial derivatives [2], then the
stationary points of f (a,a") can be found to be

f (a,a” :
—fg;*a) - ﬁza+ﬁ§=0@a=—‘§—;,

which exists when ; # 0. Furthermore, when it exists
it is a global minimum since

*f(a,a")

da*da p2>0.
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i
B2
will be used. On the other hand, when no solution
exists then we make useof a=1and b =0.

When a solution exists the paira=1 and b= -

5. COMPUTER RESULTS

The comparison of the proposed algorithm, here called
SL,and the method by Li[11], called FA]D, will be on the
test data {Tk}igl c S5(C), where T, = UD, U +ﬁEkHEk,
U € €, E; € S5(0), B € R and Dy are diagonal matrices
with (Dy);; € R. The real and imaginary parts of the
involved matrices are randomly drawn elements from
a uniform distribution with support over the interval
[-1,1].

In order to avoid degenerate solutions Li proposed
to add the term log (det(U)) to the functional J(U). This
additional term will penalize ill-conditioned solutions
consisting of small singular values. A measure on how
well-conditioned a given solution is, is given by the

ratio
Imax (U)
Omin (U)
where 0, (U) and 0,,;, (U) denotes the maximal and
minimal singular values of U respectively.
In the SL method an iteration is equal to one sweep
while in the FAJD method an iteration corresponds to

an update of all the parameters of the transform matrix.
Let

x(U) =

20 Hj;2

1 IUD U

snr =10log Lic i 5
Z 1||/3Ek||

and

Y2 Ut Ut - dlag(UTkUH)||2
Z IIUTkUHII2

Jn(U) =

Then the mean and median convergence of the algo-
rithms over 100 trials after 100 iterations as measured
by J,, when snr varies from 0 to 20 with a hop factor 5 can
be seen on figure 1 and 2 respectively. Furthermore the
mean and median condition numbers of the solutions
can be seen on figures 3 and 4 respectively.

6. SUMMARY

A new parameterization of the general linear group has
been proposed. Based on this parameterization sweep-
ing algorithms for PARAFAC estimation and congruent
diagonalization of a set of matrices have been proposed.
Preliminary comparisons with an existing congurent di-
agonalization algorithm have been reported.
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