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ABSTRACT sors. Matrices, which can be associated with linear opesato
Is has been shown that a best raRkapproximation of —&re tensors of order 2.

an orderk tensor may not exist wheR > 2 andk > 3. The rank of a tensoX is defined as the smallest num-

This poses a serious problem to data analysts using CaR€" of outer product tensors whose sum equild.e. the
decomp/Parafac and related models. It has been observéghallesR such that

numerically that, generally, this issue cannot be solved R

by consecutively computing and substracting best rank-1 X=75 aebrec. )
approximations. The reason for this is that subtractingsa be r;

rank-1 approximation generally does not decrease tensor

rank. In this paper, we provide a mathematical treatment Ofjence a rank-1 tensoX is the outer product of vectors
this property for real-valued 2 2 x 2 tensors, with symmet-  , 1, ¢ and has entrieX;jx = aibjc,. The decomposition of
ric tensors as a special case. Regardless of the symmetry, Wgensor into a sum of outer products of vectors and the cor-

show that for generic 2 2 x 2 tensors (which have rank 2 or responding notion of tensor rank were first introduced and
3), subtracting a best rank-1 approximation will result in asygied by [14] [15].

tensor that has rank 3 and lies on the boundary between the The multilinear rank of a 3rd order tensor is a triplet

rank-2 anq rank-3 sets. Hence, foy a typlcal tensor of ran'frl,rz,rg), wherer; denotes the rank of the set of moie-
2, subtracting a best rank-1 approximation meseasedhe  yecors. A modé-vector is obtained by varying thieh index
tensor rank. and keeping other indices fixed.
L Usefulness. Tensors play a wider and wider role in
ggzgvnagjjsitfgrqsr?wruli?\r}vgy I%Vz‘;'r:gg'éo;ppprgg'rr:fzion’ tensor hymerous application areas including blind techniques for
: TS, ' : Telecommunications [21] [10] [8], Arithmetic Complexity
AMS subject classificationd5A03, 15A22, 15A69, 49M27, [20] [28] [1] [27], or Data Analysis [22]. For instance, Inde
62H25. pendent Component Analysis was originally introduced for
symmetric tensors whose rank did not exceed dimension [4]
1. INTRODUCTION [2]. Now, it has become possible to estimate more factors

Tensorsof orderd are defined on the outer productafin-  than the dimension [13] [16] [9]. In some applications, ten-
ear spacesy?;, 1< ¢ < d. Once bases of space$ are fixed, SOrs may be symmetric only in some r_nodes [7], or may not
they can be represented tyway arrays. For simplicity, ten- P& Symmetric nor have equal dimensions [3] [22] [19)]. In
sors are usually assimilated with their array representati Most of these applications, the decomposition of a tensor in
We assume throughout the following notation: bold italie up & SUm of rank-1 terms is relevant, since tensors entering the
percase for tensorsg. X, bold uppercase for matricesg.  m0dels to fit have a reduced rank.

T, bold lowercase for vectoesg.a, calligraphic for setg.g. Matrix algebra is insufficient. The manipulation of ten-
., and plain font for scalare.g. X, T or a;, will be dis-  SOrs remains difficult, because of major differences betwee
tinguished thanks to their font. fo their properties when we go from second order to higher.

S0 %075, It achange of bases is performed in the space§® past [6],e.0. (i) tensor rank often exceeds dimensions,

Let X be a 3rd order tensor defined on the tensor produ everal of these differences have already been underlined i
i) tensor rank can be different in real and complex fields,

A, 5,3 by invertible matricesS, T, U, then the tensor

representatiorX is transformed into (iif) maximal tensor rank is not generic, and is still unkmow
in general, (iv) computing the rank of a tensor is very diffi-
~ def cult, (v) a tensor may not have a best low-rank approximate
X=(STU) X (1) [23][24][25] [12] [18] [26].

. . _ It has been observed numerically in [17, section 7] that a
whose coordinates are given Byk = 3 pqrSp TigUkr Xpar- ~ best or "good” rankR approximation cannot be obtained by
This is known as thenulti-Inearity propertyenjoyed by ten-  consecutively computing and substractiRpest rank-1 ap-

- — all ed b ract ANR.QGAE proximations (which always exist). The reason for this & th
is work has been partially supported by contrac - - ; _ ; ;
0074 "Decotes”. A. Stegeman is supported by the Dutch Osgdion for subtracting a best rank-1 approximation generally_does not
Scientific Research (NWO), VENI grant 451-04-102 and ViDangr452- ~ decrease tensor rank. Hence, the deflation technique prac-
08-001. ticed for matrices (via the Singular Value Decomposition)
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cannot generally be extended to higher-order tensors. A spén accordance with the usual practice, we shall represent a
cial case where this deflation technique works is when th@ x p x 2 tensorX with two p x p matrix slices X; andXs,
tensor is diagonalizable by orthonormal multilinear tfans  as[X; | X2].
mation; see [17, section 7]. 1 0l0 -1

In this paper, we provide a mathematical treatment of thé> EXAMPLE 1. LetX=| o 1|1 4 |- Thenforany
(in)validity of a rank-1 deflation procedure for higher-erd .4 of non zero vectar, the matrix( X egc), obtained by
tensors. We consider 22 x 2 tensors over the real field, |inear compination of the above two matrix slices, is orthog
with symmetric tensors as a special case. First, however, al. Also, for any non zero vectdr, the matrix(Xeb)

discuss the problem of finding a best rank-1 approximate t . ) .
a 3rd order tensor. The proofs of our results will be avadabl E;retg?gonal. Hence has infinitely many rank-1 appr(<J]X|

in a forthcoming full-length version of this paper. Most tensors have multiple locally best rank-1 approxi-
mates, with one of them being better than the others (i.e., a
2. BEST RANK-1 APPROXIMATION unique best rank-1 approximate), as pointed out in Section 3
Finding the best rank-1 approximate consists of minimizing=xamples will illustrate this fact.
the criterion 1 Remark. The tensor in Example 1 has rank 3. Ten Berge
W= X— a®b®c||2 (3) etal.[29] showed thaX has no best rank-2 approximation,

_ 2 ) o the infimum of{| X — Y]|? over Y of rank at most 2 being 1.
with respect to vectors, b andc. The solution will likely A more general result was obtained by De Silva and Lim [12]
depend on the norm, and we shall restrict to the Frobeniugho showed that no 2 2 x 2 tensor of rank 3 has a best rank-
norm: || X||? = Yijk |Xij|2. Obviously there is a scale in- 2 approximation. Stegeman [23] showed that any sequence
determinacy in this problem, and we could impose two Ofsf rank-2 approximation&™ for which || X — Y"||2 con-
because the presentation would be slightly longereL.e®- |t is'shown in [11] that the stationary points of thex2 x 2

note the summation over thth index (thatis the contraction symmetric best rank-1 approximation problem are obtained
operator in thefth space). For instance, the prodieB™ 35 the roots of a 3rd degree polynomial.

between two matrices can be written&e, B; if X is a 3rd
order tensorXeqa is a matrix, andX.laOZb is a vector. 3. BEST RANK-1 SUBTRACTION
And let us rewrite criterion (3) as: '
1 1 From now on, we restrict our discussion to tensors in the real
W=21X||?— Xeaebec+=|lal|?|b||?|[c|?. (4) field. De Silvaand Lim [12, Section 7] showed that2x2
2 123 2 tensors (over the real field) can be transformed by invertibl
Proceeding as in [5], gradients with respect to the three vednultilinear matrix multiplications into eight distinct nani-

tors can be obtained: cal forms. This partitions the spaB&*?*? into eight distinct
201 112 orbits under the action of invertible transformations ictea
d¥a = *X;bgwallbll el of the 3 modes. Table 1 lists the canonical forms for each
v, — X bliall2llel 12 orbit as well as their rank and multilinear rank. These quan-
b = —AgascH [la%[ll] tities are invariant under the transformations defining an o

bit. This kind of classification is better known for symmetri
tensors or multivariate polynomials [5]. Recall the foliogy

Concerning the uniqueness of a best rank-1 approximaté?suIt stated by De Silva and Lim [12];

one may ask the following question: are there tensors fofemma 2 Let X be a2 x 2 x 2 tensor with matrix sliceX;
which the solution defined byt = ||b||7?||c|| > X e;bezc  andXs.
anddy, = dWe = 0 is not unique up to scale? We exhibitin (y |t x, X1 or XX, has real eigenvalues and is diago-
this section a family of such tensors. naIizablIe thenX isz in orbit G,.

If we plug the expression ai back in the equation of '
stationary values db, we get that X e3c)e1(Xezc)esb =
A b, whereA = ||a||?||b]|?||c||*, which means thab is an
eigenvector of the matrixXesc)e;(Xeszc). If the latter
matrix is proportional to the identity for any then anyb is
an eigenvector. Analogously, substituting the expres&on
a into dWe = O,Zwe %et tga(XQb) *1(Xe2b)esc=[c, g ghall use this lemma to verify the orbit of 2-dimensional
where u = ||a]|?||b|*||c||*. If (Xe2b)e1(Xeyb) is also  3rd order tensors.
proportional to the identity for any, then it follows that . ExampLE 2. Consider the tensor
any (a,b,c) with a given byd¥, = 0 is a stationary point.
Substituting the expression af into the criterion (4) then 1 0]0 =2
yields a criterion function in(b,c) for which any(b,c) is X= [ 0 1|1 o ] :
a stationary point. Hence, the function is constant and any
(b,c) is a minimizer. This yields the following proposition

d¥e = —Xeasbtcllal|b

(i) If XoX ;1 or X1X, ! has two identical real eigenvalues
with only one associated eigenvector, th¥ris in orbit

(i) If X,X ;! has complex eigenvalues, thédis in orbit
Gs.

(5)

SinceXZXIl has complex eigenvalueX is in orbit Gs. It
Proposition 1 If a tensorX is such that the matrixXe3c)  can be verified thaX has a unique best rank-1 approxima-
is orthogonal for any vectoe, and (Xe,b) is orthogonal tion

for any vectorb, then X has infinitely many best rank-1 ap- y— [ 0 0|0 -2 ]

proximates. 0 0|0 O (6)
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When Y is subtracted fronX we end up in orbiD3, since
0|0 O
111 0|’

can be transformed to the canonical form of oy by
swapping rows within each slice. <

1

Z=X-Y= [ 0 @)

Canonical Tensor Multilinear

form rank rank
Do: | o o9 O 0 (0,0,0)
D1 : :é 210 g: 1 (1LY
D, : :é 910 g: 2 (221
D, :é 210 é: 2 (122
og: [10100] 5 51y
Gy :(1) ol 2: 2 (2,2,2)
Ds: :8 sls 8: 3 (2,2,2)
Gs: [__01 2‘2 H 3 (2,2,2)

Table 1:Canonical forms of X 2 x 2 tensors for the eight orbits
under the action of invertible multilinear matrix multipéitions over

the real field. The letter® and G stand for “degenerate” (zero
volume set in the 8-dimensional space ok 2 x 2 tensors) and

“typical” (positive volume set), respectively.

For tensorsX in the orbits of Table 1, we would like to
know in which orbitX — Y'is contained, wherd” is a best
rank-1 approximation oX. We have the following result for
the degenerate orbits of ranks 1 and 2.

Proposition 3 Let X be a2 x 2 x 2 tensor, and letY be a
best rank1 approximation ofX.

(i) If Xisin orbit D1, thenX — Y'is in orbit Dy.

(if) If Xis in orbit Dy, D, or D}, thenX — Y'is in orbit D;.

For X in orbit G, or D3, the tensotX — Y is not restricted to
a single orbit.

> EXAMPLE 3. For the canonical tenscX of orbit G, in
Table 1, it can be seen th& — Y is in D;. On the other

hand, consider
0O 1|1 O
X{l o‘o 2]-

For this tensor,XZXI1 has two distinct real eigenvalues.
Hence, by Lemma 2, the tensor is@p. It can be shown
that X has a unique best rank-1 approximati¥rsuch that
X — Y equals the canonical tensor of orbi in Table 1. <

> EXAMPLE 4. Next, consider tensors in orlig:

0 1|2 O 1 0|0 1 1 0|0 2
1 0/0 O(’|0 O|2 O|”|0 O|1 O]

(8)
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Subtracting the best rank-1 approximati®rfrom these ten-
sors amounts to replacing the element 2 by zero. Hence,
X — Yisin orbitD,, D5, andD}, respectively. <

On the other hand, it can be verified numerically or ana-
lytically that for X equal to the canonical tensor of orbig
in Table 1,X — Y'is also in orbitD3. Moreover, numerical
experiments show that for a gene#Cin orbit D3, we have
X — Yin orbit D3 as well. This suggests the following

Conjecture 4 If X is in D3 and Y'is the best rank-1 approx-
imate of X, then almost all tensorX — Y are in Ds.

Tensors given in Examples 1 or 2 were both in ofkjt and
we have seen thaX — Y is in orbit D3 in Example 2. For
Example 1, this can be proven for any of the infinite best
rank-1 approximated” of X. Numerically and analytically,
we have not found anX in orbit Gs for which X — Y'is not
in orbit D3.

We have no deterministic result for tensors in orl@ts
andGs, but we still have the following result, verified almost
everywhere (hence the word “generic”):

Proposition 5 Let X be a generi@ x 2 x 2 tensor, andY be
a best rank? approximation ofX. Then almost all tensors
X — Yare in orbit Da.

Hence, for typical tensors in orlit;, subtracting a best rank-
1 approximatdéncreaseshe rank to 3. For typical tensors
in orbit Gz, subtracting a best rank-1 approximate does not
affect the rank.

However, some non typical tensors of rank 2 may have a
different behavior, as now shown.

Proposition 6 Let X be a2 x 2 x 2 rank-2 tensor with diag-
onal slices, and lefY” be a best rankk approximation ofX.
ThenX — Yis in orbit D;.

a 0jle O
> EXAMPLE 5. LetX[0 d‘O h].Then

x=(0)+(6)+(5)+(2)=(2)-(%)
Then it can be seen thaf = (I,1,T) - I, wherel denotes the

identity matrix andI the diagonal tensor tensor with ones on
its diagonal:

10
I{o o‘

This shows thatX is is orbitG,, and Proposition 6 implies
that this is an exception to Proposition 5. <

Proposition 5 states that such exceptions form a set of
null measure.

1
0

1
0

0
1

0
1

d
h

a
e

a d
e h

[eoNe)

(1)},andT{

4. SYMMETRIC TENSORS

A tensor is symmetric if its entries are invariant under arbi
trary permutations of its indices. There is a bijection besw
the space of symmetricx | x | tensors and the space of ho-
mogeneous polynomials of degree 3limariables. A sym-
metricl x | x | tensorX can be associated with the polyno-

mial
p(st;...,8) = gmk SSjS- 9)
1]



Thesymmetric ranlof an order-3 symmetric tensdf is the  Lemma 8 Let X be a symmetri@ x 2 x 2 tensor with matrix

minimal numbeR such that [6]: slicesX; and X.
o (i) If XoX;* or X;X;* has distinct real eigenvalues, then
X=Y arearea;. (o) . XisinomitG,. o .
r; (i) If XoX 7+ or X1 X5+ has two identical real eigenvalues,

thenX is in orbit Ds.
The orbits of symmetric 2 2 x 2 tensors are givenin Table 2.(jji ) If X,X;* has complex eigenvalues, théis in orbit

Gs.
canonical form polynomial sym. rank _
Next, we present an example of a symmetrig 2 x 2
) ) tensor in orbitGs, that has a unique best symmetric rank-1
Do 0 0|0 O 0 0 approximationY, such thatX — Y'is in orbitDs.
L 0 0/00 _ > EXAMPLE 7. Let
[1 0]0 0]
D110 0jo o] s ! X:[g ﬂ%é] (14)
[1 0/0 0]
Gz 10 0]0 1 S+ 2 We have
.o 111 0] 4_[ 0 1
Ds: 11 0l0 o 3sis, 3 X% [1 1}’ (15)
.| -1 0|0 1 which has complex eigenvalues. Hence, by Lemndi
Gs [ 0 1 ‘ 10 } ~S+3915+ 3 the tensor is in orbiGs.

Next, we compute the best symmetric rank-1 approxima-
Table 2:Canonical forms of symmetric22 x 2 tensors and asso- tion Y'to X, which has the form
ciated polynomials, for the three orbits under the actiomedrtible ) 5 5
multilinear transformations over the real field. The lett@randG y— X% XIX2 | X{X2 X1X5 (16)
stand for “degenerate” (zero volume set in the 4-dimensispace - %XZ X1X% X1X% x% :
of symmetric 2< 2 x 2 tensors) and “typical” (positive volume set),
respectively. After some manipulations, it can be shown that the minimum
_ _ _ _of || X~ Y]|?is obtained for3 = x3 = 3/4, that is
The symmetric rank of symmetric tensors of dimension

2 can be obtained from the Sylvester Theorem, at any order. 173 3|3 3
This Theorem is formulated below in the case of third order Y=7 [ 3 3 ‘ 3 3 } 7)
tensors.
Theorem 7 (Sylvester)A symmetric2 x 2 x 2 tensor with By subtraction, we obtain
associated polynomial P Y:} [ _13 1 ‘ 1 _13 } | 8
Ps1.%2) = S +3pSs +3uss s, (11) 4
has a symmetric rank-R decompositith0) if and only if 1 | 0 1
there exists a vecta = (go,...,gr)" such that and  ZoZyt=1 3 | (19)
oo R which has a double eigenvaluel. Hence, by Lemma i)
the tensoiZ is in orbit D3. <
i WRn In our next example, the symmetric<2 x 2 tensor is in
g=0, (12)  orbit Gy, and has a unique best symmetric rank-1 approxi-
: mation Y, such thatX — Y'is in orbitD3.
VoR Vs > EXAMPLE 8. Let
d if the pol ial = gr} SR x=|3 11 (20)
and if the polynomial (s1, ;) = grSy +9r-1 S+ 4 =11 1/1 3"

015153 1+ goSK has R distinct real roots.

> EXAMPLE 6. Using Sylvester’'s Theorem, one can obtainV€ have

the following decomposition for the representative of brbi XZXIl = { f)l }1 } , (21)
D3 given in Table 2:
which has real and distinct eigenvalues. Hence, by Lemma 8
659 = (514 9)°+ (—s1+ %)% - 255. (13) (i) the tensor is in orbiG,.
, , Next, we compute the best symmetric rank-1 approxima-
In other words, the associated tensor can be W8 41 yto X. It can be shown that the minimum P& — Y12

a®3 4+ b®3 —2¢®3, wherea = [1, 1|7, b= [-1, 1T and 5 yptained for
c=10,1]". <

We have the following analogue of Lemma 2 to verify the y— 31 1|11 1 29
orbit of symmetric tensors of dimension 2. 21 1j1 1} (22)

508



By subtraction, we obtain [13]
13 -1|-1 -1
Z=X-Y=_ 2
2[1 “1] -1 3}7 (23) (14]
and  ZyZ;l= { Pl 712 } ; (24)
(15]

which has a double eigenvaluel. Hence, by Lemma 8i)
the tensoiZ is in orbitD3. <
Finally, we have the following analogue of Proposition 5-[16]

Proposition 9 Let X be a generic symmetriz x 2 x 2 ten-
sor, andY be a best ranktapproximation ofX. Then almost
all tensorsX — Y are in orbit Ds.

(17]

Hence, for typical symmetric 2 2 x 2 tensors with symmet-
ric rank 2, subtracting a best rank-1 approximatreases
the symmetric rank to 3. For typical symmetric tensors with
symmetric rank 3, subtracting a best rank-1 approximatéls]
does not affect the symmetric rank.
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