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ABSTRACT 

This paper proposes a new statistical approach based on 

frequency singular value decomposition (SVD) to enhance 

the SNR of the noisy multicomponent seismic wavefield. Our 

filtering algorithm consists of three main steps: Firstly, the 

frequency transformed multicomponent seismic wavefield 

data is rearranged into one long vector containing informa-

tion on all frequencies and all component interactions. Sec-

ondly, the reduced dimensional spectral covariance matrix 

of the long vector data is estimated by means of singular 

value decomposition. Finally, the separation of the primary 

seismic waves from the noise is achieved by projecting the 

dominant eigenvector that has the highest eigenvalue of the 

reduced dimensional covariance matrix onto the long data 

vector.  The experimental results have shown that the pro-

posed algorithm outperforms the conventional separation 

technique in terms of accuracy and complexity. 

1. INTRODUCTION 

In seismic exploration, a seismic wavelet is sent to the earth 

layers and seismic wavefield is recorded by linear arrays of 

multi-component antenna due to the impedance mismatches 

between different geological layers [1]. The recorded geo-

physical data is often contaminated by multiple interference 

and random noise. The main objective of seismic data proc-

essing is to enhance the signal to noise ratio, as well as iden-

tify different wave fields to obtain a better image of the earth 

reservoir [2]. In the case of single component sensors arrays, 

many techniques have been developed. Firstly, Radon trans-

form can be used to enhance reflection events in a seismic 

wave-field [3]. Moreover, F-K transform technique trans-

forms the seismic wavefield data into the frequency–wave 

number domain where the plane waves can be easily identi-

fied [4]. However, these two techniques as well as τ -p trans-

form technique [5] in multicomponent case have poor per-

formance in case of short arrays or in the presence of non-

plane waves. The basic Singular Value Decomposiion (SVD) 

approach to remove noise from a seismic wavefield is given 

in [6]. As multicomponent sensor array technology has been 

dramatically used in seismic exploration. In particular filter-

ing techniques are required for a multicomponent seismic 

wavefield data profile. For example, singular value decom-

position of quaternion matrices [7] and SVD compound with 

partial Independent Component Analysis [8] are capable of 

separating such multicomponent seismic wavefield from 

contaminated noise. Nevertheless, these techniques require a 

pre-processing step such as wave alignment. When filtering 

is performed in the frequency domain, the method is called 

spectral-matrix filtering [9]. However, it is computationally 

expensive to diagonalize the whole spectral matrix. The pro-

posed filtration process which is derived from MC-WBSMF 

algorithm [10] [11], reduces the dimension of the 

multicomponent spectral covariance matrix and estimates it 

by means of the SVD technique. As a result the algorithm is 

substantially less complex, so massive computational time is 

saved and no wave alignment is needed as second order sta-

tistics based algorithm does not take the channel phase 

changing into account. In this algorithm the seismic wave-

field data subspace is separated from the noise by first find-

ing the signal a subspace which is defined by the eigenvec-

tors that related to the dominant eigenvalues of the reduced 

dimensional spectral matrix, and then projecting the domi-

nant eigenvector onto the long vector data that contains in-

formation on all frequencies and all components interactions 

of the multicomponent seismic wave-field. This paper is ar-

ranged as follows: In section 2, multicomponent seismic 

model will be presented in detail. Section 3 presents the 

mathematical analysis of proposed algorithm. The experi-

mental simulations will be shown in Section 4. 

2. MODEL FORMULATION 

Consider a uniform array shown in Figure. 1 that consists of 

xK  Omni-directional sensors recording the propagation of 

P waves as well as ground roll with xKP < . Multi-

component seismic data that is collected during tK  samples 

on the 
th

d component )K.,1,( dd …=  of the 
th

i  sen-

sor )K..,1,( xi …=   with additive noise can be written 

mathematically as [8]. 
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Where )(mx j  represent the 
thp seismic wave, ijm is the 

time delay that observed at the 
th

i sensor. The parameter 
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dija  is the attenuation of the 
thp wave on the 

th
d  compo-

nent of the 
th

i sensor and )(mbdi  is uncorrelated white 

Gaussian noise.  

 

Figure 1-recording the seismic wavefield using a linear multicom-

ponent geophones array 
 

Therefore, the multicomponent seismic data sets that shown 

in Figure. 2 can be represented as txd ΚΚΚ ××
E∈Y

≡
T  

{ }txddidit tidmyy K1,K1,K1|)(== Y
≡
T ≤≤≤≤≤≤          (2) 

 

Figure 2- Multi-component wave-field seismic data set  

By applying the Fourier transform to equation (2), the multi-

component seismic model can be represented as a set of 

instantaneous mixture of traces. 
m

FT d∈}Y{=Y
≡
T

≡
                                           (3)                          

Where, fxdm KKK= and fK is number of frequency 

bins. Hence, the available information in equation (3) can be 

rearranged in the long vector as follow [10]: 
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Where, )( ),(),(
fKfKfK

fff zvh are vectors of size (K x ), 

which correspond to the 
thf  frequency bin of the signals 

received on each of the xK  sensors, respectively, on com-

ponents ZVH  ,,  that corresponds to the polarization state 

of the sources P . The long vector that contains all the fre-

quency bins on all the sensors for each component can be 

written as: 
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Where,  

I. The vector 
T

paaa ],,,[ 21 …=a    corresponds to 

the random wave amplitude  

II. b  is the noise vector . 
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Where,  
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Then the Px  vector can be represented using the Kronecker 

product as follows: 
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It can be shown from the above equations that the matrix X  

contains the information about the seismic primary waves and 

is characterized by 

i. The direction of arrival, of the seismic source )( pθ . 

ii.  The time of propagation between the source and the 

reference antenna )(
xKτ . 

iii. The attenuation factor ),( pp βα . 

iv. The parameters ),( pp ψϕ , which describe the change 

of phases between ZVH  ,,  components. 

v. The emitted seismic wavelet vector )( fpw . 
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3. PROPOSED FILTERING TECHNIQUE 

All frequencies interactions between different components 

of directional sensors can be stated in a multi-component 

covariance a spectral matrix defined by  

                               }{ HyyE E=                                    (10)                         

Matrix E  has dimensions )( mm× , where E  is expectation 

operator and H  is the transpose conjugate opera-

tion.Therefore; the presented multi-component covariance 

spectral matrix is composed of 
2)K(K fd blocks of dimen-

sion xxKK . Every block characterizes the correlation be-

tween various directional components for the received 

waves on all sensors at different frequencies. So the struc-

ture of the covariance matrix can be expressed in the follow-

ing way [12]. 
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The component blocks ZZVVHH ,,, ,, EEE  represent the 

correlation between each component with it self. With the 

aim of precise sources de-correlation from noise, jointly 

spatial and frequency smoothing operator sN and fN can be 

applied to perform an estimation of noninvertible unity rank 

spectral covariance matrix [13] [14]. 

H

nn

N

n

nn

N

n
fs

f

f

fs

s

s
N

,

12

1

,

12

1

∧

∑∑1
yyE

+

=

+

=

=                                        (12)                              

)12)(12( ++= fs NNN                                             (13)                   

Where the long vector 
fs nn ,y corresponds to a concatenation 

of seismic waves received on the 
th

sn  sub array and 
th

fn  sub 

band respectively. According to Figure. 3, it is computation-

ally expensive to diagonalize the whole estimated spectral 

covariance matrix 
∧

E  of dimension )( GG × where, 

fsxd NG K)2(KK ×−×=  [11].  
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Figure 3- multicomponent spectral covariance matrix 

For that reason, a new matrix R of size )( NG ×  that con-

tains concatenated long-vectors resultant from the spatial and 

frequency smoothing can be proposed as [14]. 
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The frequency singular value decomposition of R  matrix is  
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Where Λ  is a pseudo diagonal matrix that holds the singu-

lar values of matrix R  noted by Nδ . U and 
H

V  are 

orthonormal matrices that contain the left and right singular 

vectors in their columns. The complex computation of spec-

tral matrix can be expressed as follow: 

UΛRRE == H
1
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UVΛV                                (16) 
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On the other hand, the significant reduction of computing 

the estimated spectral matrix can be derived as follow: 
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From equations (14) to (19) the eigenvectors matrix U  of 

the reduced dimensional estimated spectral covariance ma-

trix can now be expressed as: 

H
RVU =
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 As a result, the filtering step corresponds to an orthogonal 

projection of a long vector y  onto the eigenvectors in 

U that have the highest eigenvalues.  

∑∑
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These eigenvectors corresponding to the signal subspace 

x

∧

E where the eigenvectors that have the lowest eigenvalues 

related to the noise subspace b

∧

E . 

 bx
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With ii δλ =  for Ni ≤≤1  

Figure.4 shows the amplitude of 25 eigenvalues 

25,,2,1 …=iλ of the reduced dimensional covariance spectral 

matrix that related to the eigenvector matrix U in equation 

(20), as 25=N  where )2,2( == fs NN . According to 

this figure, it can be shown that the first four eigenvalues 

which have the highest amplitude corresponding to the sig-

nal subspace, where the last lowest 21 eigenvalue corre-

sponding to the noise subspace. 
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Figure 4- Eigenvalues of estimated reduced dimension covariance 

spectral matrix 

The last steps consist of firstly, rearranging the signal sub-

space long vector signaly  into multicomponent form given 

in equation (2). Secondly, an inverse Fourier transform is 

applied into
fxd

signal

Κ×Κ×Κ
E∈Y

≡
 to change back to the time 

domain. In terms of complexity, the decomposition of re-

duced dimensional spectral covariance matrix 2

∧

E  of size 

)( NN ×  rather than the spectral covariance matrix 1

∧

E  of 

size )( GG ×  where ( NG >> ), will dramatically de-

crease the computational processing power required for the 

spectral covariance matrix estimation. In our case this reduc-

tion is extremely vast as the estimated spectral covariance 

matrix size has been reduced from approximately 

(3700×3700) to (25×25).  

4. SIMULATION RESULT 

The proposed algorithm has been tested on a simulated 

wave-field seismic data which represents a multi-component 

array that is composed of 20 sensors, each of which is made 

up of three components. The first component relates to the 

geophone H, the second component to the geophone V, and 

the third component to the geophone Z. The recording time 

corresponds to 128 time samples. Two types of waves have 

been used, the first type linear polarization, the second type 

has elliptical polarization. Figure.5 shows the initial multi-

component seismic wave-field data set that is recorded on the 

ZVH  ,,  components respectively. The signal to noise ratio 

is nearly equal for all components and is relatively low.  Fig-

ure.6 represents the purely signal subspace part separated 

from the noise subspace by projecting the initial data on the 

eigenvectors that is related to the dominant Eigen values with 

a spatial and frequency smoothing order equal to two.  The 

Hodogram of the initial multi-component seismic wave field 

data set is presented in Figure.7. It corresponds to the layout 

of the amplitude of one component such as (H) versus the 

amplitude of others components (V, Z) for all traces. Since 

the initial seismic data is extremely noisy, Figure .7 shows 

that it is not possible to distinguish the wave-field informa-

tion on the Hodogram. Figure.8 shows that the proposed al-

gorithm has an excellent capability of separating the noise 

from the seismic wavefield by recovering both the elliptical 

polarization of the first waves as well as the linear polariza-

tion of the second waves. As shown in Figure.9, four tests 

have been conducted to evaluate the performance of pro-

posed algorithm. As a result the mean square error (MSE) for 

the proposed technique shows an improvement in accuracy 

of 38.02% over the SVD algorithmin [7]. Furthermore, the 

proposed algorithm provides an extreme improvement in 

terms of computing time saving by 45.8% over the wide 

band spectral matrix approach in [10].  
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Figure 5-Initial seismic wavefield data set that are recorded on linear 

array of three component antennas  
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Figure 6-Filtered seismic wavefield data set that are recorded on 

linear array of three component antennas 
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Figure 7- Hodogram of initial multicomponent seismic wavefield 

data set. 
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Figure 8: Hodogram of seismic wavefield after filtering 
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Figure 9-MSE of the proposed filter and WBSMF filter 

5. CONCLUSION 

A mathematical model of the noisy seismic wavefield that is 

received on a linear array of three component sensors has 

been fully developed and used as a framework to implement 

the proposed approach. This paper has proposed a new 

method for enhancing the SNR of the primary seismic 

waves. A significant reduction of spectral covariance matrix 

dimension has been proposed. The eigenvalue decomposi-

tion of the reduced dimension covariance spectral matrix has 

been derived from the SVD. Furthermore, the Hodogram 

has clearly demonstrated the success of extracted primary 

seismic waves from noisy multicomponent seismic wave-

field. Comparing with other conventional algorithms, the 

proposed method has been extremely capable to reduce the 

computing time by 45.8% over the wide band spectral ma-

trix algorithm as well as improving the accuracy by 38.02% 

over the SVD algorithm.  
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