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ABSTRACT
We present in this paper a piecewise fractional autore-
gressive integrated moving average (FARIMA) model
and a procedure to fit this model to local-stationary
traffic data. The procedure consists in finding the num-
ber as well as the locations of structural break points
in the series and estimating the orders and the parame-
ters of each segment. The effectiveness of the procedure
is illustrated by Monte Carlo simulations. An applica-
tion to real internet traffic data is considered and shows
that the piecewise FARIMA model is able to capture the
non-stationarity and the long-memory of these data.

1. INTRODUCTION

During the last years, many researchers in signal pro-
cessing, computer science, and applied probability have
focused on models for internet traffic. Previous works
have shown that the classical models for telephone traf-
fic cannot be applied to internet traffic [8, 10]. After the
seminal study of [8], increasing evidence has been put
up for the failure of traditional (Poisson-based) mod-
els to account for the long-range dependence (LRD)
present at the large time scales in network traffic. At
the same time, due to the many different network mech-
anisms and various source characteristics, short-range
dependence also exists and plays a central role [2, 4, 6].
Therefore a model like the famous fractional autoregres-
sive integrated moving average (FARIMA) model [7], is
required to describe both short and long memories si-
multaneously. But accurate estimation of a FARIMA
model often requires a large sample of data taken over a
long period of time, which in turn increases the chance
of structural breaks over time. From the real data test
[14, 12], the assumption that the data can be modeled by
a stationary process with constant parameters may be
unrealistic. Previous models, like fractional Brownian
motion [9] and FARIMA model fail to analyze structural
changes that are ubiquitous in network traffic. Fur-
thermore, less attention has been paid to model LRD
in presence of several structural breaks, most common
methodologies being designed to detect a single break
point (BP). Some studies discuss multiple BPs but they
consider only changes in the long-memory parameter
and the mean level. For example, [11] assumes that the
ARMA parameters are constant which may be unreal-
istic in practice. Therefore, there is a need for a model

with more flexibility in modeling non-stationarity.
The objective of this paper is to propose a para-

metric model which inherits the advantages of FARIMA
processes, to model non-stationary long-memory inter-
net traffic. We choose a piecewise FARIMA process as-
suming that the signal can be divided into sub-segments
that are essentially stationary. The remainder of this
paper is organized as follows. In Section 2, the model
is presented, and in Section 3, the fitting procedure is
described. Numerical simulation results are presented
and discussed in Section 4. A real traffic data modeling
is considered in Section 5 and concluding remarks can
be found in Section 6.

2. MODEL DESCRIPTION

We suppose that the non-stationary process {Yt}, t =
1, . . . , n, can be segmented into m+ 1 blocks of station-
ary FARIMA processes. For j = 1, . . . ,m, denote the
BP between the jth and (j + 1)th FARIMA processes
as τj , and set τ0 = 1 and τm+1 = n + 1. Then the jth
block of {Yt} is modeled by

Yt = Xt,j , τj−1 ≤ t < τj , (1)

where {Xt,j} is the FARIMA(pj , dj , qj) process defined
by the difference equation

Φj(B)Xt,j = Θj(B)(1 −B)−dj ǫt, (2)

B is the backward operator BXt = Xt−1, {εt} is a
sequence of zero-mean iid random variables with finite
variance σ2

ε , dj ∈ (0, 1/2), and the polynomials Φj(z) =
1−φj,1z−· · ·−φj,pj

zp and Θj(z) = 1+θj,1z+· · ·+θj,qj
zq

with real coefficients have no common zeros and nei-
ther Φj(z) nor Θj(z) has zeros in the closed unit disk
{z ∈ C : |z| ≤ 1}. The process (1−B)−dǫt is defined by

(1 −B)−dǫt =
∑∞

k=0
ϕk(d)ǫt−k, (3)

where ϕ0(d) = 1 and ϕk(d) =
∏k

s=1
d+s−1

s
for k ≥ 1.

Since d < 1/2,
∑∞

k=0
ϕk(d)2 < ∞ and the series in (3)

converges in the mean square sense.
Let p ≥ max(pj), q ≥ max(qj), αj =

(dj , φj,1, . . . , φj,p, θj,1, . . . , θj,q) where φj,k = 0 for k >
pj and θj,k = 0 for k > qj , and βj = (pj , qj , αj). Vector
βj contains the parameters of the jth model and βj is
constant on each interval [τj−1, τj).
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3. ESTIMATION PROCEDURE

The problem of fitting model (1)–(2) to data consists
in finding (τ1, . . . , τm, β1, . . . , βm+1). The first problem
is to estimate the BPs accurately, which can be real-
ized by detecting the structural parameters changes. It
was shown in [13] that some of the best available tech-
niques to estimate the parameters may be misled by
non-stationary characters of the observed time series,
and some of these non-stationarity effects can often be
alleviated by estimating the parameters using data lo-
cally. That is to say, it is better to divide the original
time series into a set of elementary sub-series of length
E and use the data in the same sub-series to get a local
parameter estimation. Predefining a suitable length E
for the elementary sub-series is not always an easy task:
on the one hand, due to LRD properties, a reasonable
number of observations are needed to obtain adequate
parameter estimates, and then E can’t be too short; on
the other, the probability of meeting a BP increases as
E grows. E should vary with the hidden true model or-
der and the estimate method, e.g. the Whittle estimates
([5]) and the Whittle estimates with autoregressive trun-
cation ([1]). Hence some restriction should be put on E,
and E is chosen by empirical experience.

In the following, we consider the truncated series
formed by the K = [n/E] elementary sub-series defined
on the intervals Ik = ((k − 1)E, kE] for k = 1, . . . ,K.
We make the following assumptions:

1. the numberm of BPs of the truncated series is known
and m ≤ K/2 (see Remark 1 when m is unknown),

2. there is at most one BP in each interval,

3. at least one interval separates two consecutive BPs.

Then, the m BPs τj , j = 1, . . . ,m, are dispersed into a
few elementary intervals.

The following four steps procedure is proposed to
fitting model (1)–(2) to a local stationary time series.

Step 1 : Local estimation. For each interval Ik,
a pair (p̂k, q̂k) is selected by employing the Bayes In-
formation Criterion (BIC) as suggested in [15], and the
model’s parameters αk are estimated by the Gaussian
maximum-likelihood estimates (MLE) based on autore-
gressive approximations α̂k, see e.g. [7]. Therefore,

Step 1 gives the local estimates β̂k = (p̂k, q̂k, α̂k) for
k = 1, . . . ,K.

Step 2 : Selection of intervals with a BP. If
model (1)–(2) is suitable for the data, one expects that

β̂k is close to the true values of the parameters when
there is no BP in the interval Ik. Now, if there is a
BP in Ik and no BP in Ik−1 and Ik+1, β̂k should be
significantly different from both β̂k−1 and β̂k+1. Then,

let k0 = 0, km+1 = K, and

(k̂1, . . . , k̂m) = argmin
1≤k1<···<km<K

m+1
∑

j=1

kj
∑

k=kj−1+1

(

‖α̂k − ᾱj‖
2 + ψ(|p̂k − p̄j |) + ψ(|q̂k − q̄j |)

)

, (4)

where ᾱj =
1

kj − kj−1

kj
∑

k=kj−1+1

α̂k, p̄j (resp. q̄j) is the

order which is the most frequently selected among the
orders p̂k (resp. q̂k) for k = kj−1 +1, . . . , kj . In the case
where p̄j (resp. q̄j) is not unique, the lowest order is
chosen. Function ψ(·) is positive and strictly increasing.
Let Jk = ((k − 0.5)E, (k + 0.5)E] for k = 1, . . . ,K −
1. We select the intervals (J

k̂1
, . . . , J

k̂m
) as being those

containing a BP.
Step 3 : Estimation of the BPs. Suppose

that all the intervals J
k̂j

are selected properly, i.e.,

τj ∈ J
k̂j

. Therefore, for any fixed j, there is no BP

in the “previous” block between J
k̂j−1

and J
k̂j

, viz.

((k̂j−1 + 0.5)E, (k̂j − 0.5)E] where we set k̂0 + 0.5 = 0,

and we define β̂p as the MLE of βj based on the data

in this block. In the same way, let β̂n be the MLE of
βj+1 based on the data in the “next” block between J

k̂j

and J
k̂j+1

, viz. ((k̂j + 0.5)E, (k̂j+1 − 0.5)E] where we

set k̂m+1 − 0.5 = K. We treat β̂p and β̂n as two bench-
marks. These estimates are more precise than any local
estimate calculated in Step 1 since they involve more
data. Suppose that l ∈ J

k̂j
is the BP τj . Then we can

calculate the MLE β̂lp of βj and β̂ln of βj+1 based re-

spectively on ((k̂j−1 + 0.5)E, l] and (l, (k̂j+1 − 0.5)E].

These estimates should be close to benchmarks β̂p and

β̂n, respectively. Hence, our choice of the BP estimate
τ̂j is based on the following criterion

τ̂j = argmin
l∈J

k̂j

(

‖α̂lp − α̂p‖
2 +ψ(|p̂lp − p̂p|)+ψ(|q̂lp − q̂p|)

+ ‖α̂ln − α̂n‖
2 + ψ(|p̂ln − p̂n|) + ψ(|q̂ln − q̂n|)

)

. (5)

To reduce the complexity, β̂lp and β̂ln are calculated
using the data in (l−E, l) and (l, l+E), respectively, and
this gives good results in practice as shown in Section 4.

Step 4 : Estimation of the parameters of each
stationary block. Once (τ̂1, . . . , τ̂m) are obtained, the
parameters βj of the stationary sequence Xt,j for j =
1, . . . ,m+ 1, can be estimated on the basis on the data
in (τ̂j−1, τ̂j ], where τ̂0 = 1 and τ̂m+1 = KE.

Remark 1. The procedure assumes that the number
m of BPs is known, but of course m is unknown in
practice. One way to estimate m consists in increas-
ing sequentially one by one the number of BPs in the
procedure. Indeed, when estimating a single BP model
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in the presence of multiple BPs, the estimate of the in-
terval which contains the BP will be typically one of the
true intervals with a BP, namely the one which is dom-
inant in the sense that selecting this interval allows to
minimize the sum of squared (4) where m = 1. Next, we
minimize (4) with m = 2 which gives two dominating
intervals with a BP. When iterating this process beyond
the true number of BPs, two intervals are founded which
are very close to each other and correspond to the same
BP. This allows to determine the true number of BPs
when the BPs are not too close to each others. We show
in Section 4 that this method for finding m works well
when at least 2E data separate each BP.

4. SIMULATIONS

In this section, we illustrate the implementation proce-
dure by a simple Monte Carlo experiment and show its
effectiveness. This experiment is based on 100 replica-
tions of a piecewise FARIMA process {Yt}, t = 1, . . . , n
where n = 40000, {ǫt} is Gaussian with σ2

ǫ = 1 in (2),
and we have 4 BPs at τ1 = 7800, τ2 = 16350, τ3 = 23550
and τ4 = 32100. We set E = 2000, and therefore
K = 20. The BPs fall within J4, J8, J12 and J16. The
orders and the parameters of the different segments Xt,j

in (2) are given in table 1 and figure 1 displays a typical
realization of this model.

Parameters Segment Xt,j

βj 1 2 3 4 5
pj 1 0 1 1 0
qj 2 0 0 1 1
dj 0.20 0.40 0.10 0.30 0.15
φj -0.7 - -0.80 0.30 -
θj,1 0.60 - - -0.70 0.40
θj,2 -0.20 - - - -

Table 1: Time-varying orders and parameters.

0 10000 20000 30000 40000

−1
0

−5
0

5

Figure 1: A realization of the piecewise FARIMA pro-
cess with parameters in table 1. The vertical lines indi-
cate the true BPs locations.

Table 2 exhibits the most frequently selected orders
for each elementary sub-series in Step 1. Note that the
four BPs locate in I4, I9, I12 and I17, respectively. For
most Ik’s, these orders are the true ones. Observe that

BIC performs well for detecting the low orders zero and
one, and works less definitely for finding order two. In-
deed, the true order (1, 2) of the first three elementary
sub-series is found in only 60% of the cases, while the
orders zero and one of the others elementary sub-series
are found in at least 75% of the cases. Of course, when
there is a BP in the elementary sub-series and the order
changes, the order given by BIC is not reliable (see the
columns in bold in table 2).

Sub-series 1 2 3 4 5
Order (p̂k, q̂k) (1,2) (1,2) (1,2) (2,2) (0,0)

Frequency 58 55 62 38 92

Sub-series 6 7 8 9 10
Order (p̂k, q̂k) (0,0) (0,0) (0,0) (1,0) (1,0)

Frequency 89 88 83 58 84

Sub-series 11 12 13 14 15
Order (p̂k, q̂k) (1,0) (2,0) (1,1) (1,1) (1,1)

Frequency 86 49 76 81 82

Sub-series 16 17 18 19 20
Order (p̂k, q̂k) (1,1) (1,2) (0,1) (0,1) (0,1)

Frequency 78 15 90 88 91

Table 2: Selected orders in Step 1.

After the local estimation (Step 1), we calculate the
intervals with a BP (Step 2) corresponding to the BPs
numbers m = 1, . . . , 6. For m = 1, . . . , 4, all the se-
lected intervals in the Monte Carlo experiments were
well separated. For m = 5, 6, we founded intervals close
to each others in all the experiments, which hints that
the number of BPs should be 4. Table 3 gives the se-
lected intervals in the 100 simulations for m = 5 (the
last column indicates the number of times the quintu-
plet (k̂1, . . . , k̂5) were selected). We see that when the
BPs number used in Step 2 is the true BPs number plus
one, the additional interval chosen by the procedure is
close to an interval containing a BP.

k̂1 k̂2 k̂3 k̂4 k̂5 %
3 4 8 12 16 2
4 5 8 12 16 13
4 7 8 12 16 11
4 7 12 16 17 1
4 8 11 12 16 48
4 8 12 16 17 25

Table 3: Selected intervals in Step 2 for m = 5.

Figure 2 shows the estimations of the intervals with
a BP in Step 2 where m = 4. These estimations are
very good since the intervals with highest frequencies
are the right ones. Some selected intervals spread to a
few intervals near the right ones. The estimation of the
first interval diffuses from J2 to J6, that of the second
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interval from J6 to J10, that of the third interval from
J10 to J14, and the one of the fourth interval from J15

to J18. For the fourth interval for instance, the true
interval J16 is selected 83 times, and J15, J17 and J18

are chosen 1, 13 and 3 times, respectively. This is partly
caused by the impreciseness of the order selection in
Step 1.

0.0
0.2

0.4
0.6

0.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 2: Selected intervals in Step 2: m = 4.

Table 4 presents the sample means µ̂(λ̂j) and stan-

dard errors σ̂(λ̂j) of the BPs estimations in Step 3 over
the 100 realizations. Following [3], we use the standard-
ized parameter λj = τj/n. We see that the estimations
are close to the true values and the standard errors are
quite small.

λj 0.1950 0.4088 0.5888 0.8025

µ̂(λ̂j) 0.1947 0.4074 0.5865 0.8091

σ̂(λ̂j) 0.0042 0.0209 0.0184 0.0163

Table 4: Estimated BPs in Step 3.

Table 5 gives the most frequently selected orders and
the corresponding sample means and standard errors of
the parameters estimates in Step 4 for each stationary
segment identified in Step 3. We see that the true or-
ders are well identified and the estimated parameters
are quite near to the true values given in table 1.

Estimate Segment Xt,j

β̂j 1 2 3 4 5
(p̂j , q̂j) (1,2) (0,0) (1,0) (1,1) (0,1)

Frequency 62 98 87 93 88

µ̂(d̂j) 0.21 0.39 0.10 0.30 0.13

σ̂(d̂j) 0.02 0.08 0.09 0.05 0.06

µ̂(φ̂j,1) -0.73 - -0.80 0.33 -

σ̂(φ̂j,1) 0.06 - 0.02 0.07 -

µ̂(θ̂j,1) 0.58 - - -0.63 0.39

σ̂(θ̂j,1) 0.08 - - 0.07 0.09

µ̂(θ̂j,2) -0.19 - - - -

σ̂(θ̂j,2) 0.02 - - - -

Table 5: Selected orders and estimated parameters in
Step 4.

5. APPLICATION TO TRAFFIC DATA

We use our procedure to obtain a model for the first
OC48c Packet-over-SONET data set published by the
NLANR MNA team. These 28000 data are the numbers
of IP bytes collected at the Indianapolis router node on
Sunday, April 6, 2003, per 30 millisecond time intervals
during 14 minutes. Figure 3 plots the series and figure 4
shows that its auto-correlations decay slowly and are
significant for large lags (more than 500), which is a
strong evidence of LRD.

10
00

00
0

15
00

00
0

20
00

00
0

3880 11672 15467 19161 28000

Figure 3: Internet traffic data. The vertical lines indi-
cate the estimated BPs locations in Step 4.
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0.4
0.6

0.8
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Figure 4: Auto-correlations of the internet traffic data.

We use E = 2000, which corresponds to an observa-
tion time of one minute for each elementary sub-series,
and then K = 14. Using BIC in Step 1, all elemen-
tary sub-series are modelled by fractional noise models.
Thus, we choose a piecewise FARIMA(0, dj , 0) model to
represent the traffic data. After local estimation, we
use different BPs numbers m = 1, . . . , 6 to calculate the
intervals with a BP (Step 2) and the results are sum-

marized in table 6. When m = 5, we see that k̂4 = 10
is close to k̂5 = 11, and when m = 6, k̂2 = 4, k̂3 = 5
and k̂4 = 6 are close. Consequently, we retain in Step 2
a model with only four BPs, namely k̂1 = 2, k̂2 = 6,
k̂3 = 8 and k̂4 = 10. The corresponding estimations
of the BPs locations obtained in Step 3 are τ̂1 = 3880,
τ̂2 = 11672, τ̂3 = 15467 and τ̂4 = 19161. These BPs
are indicated by vertical lines in figure 3. Finding these
BPs by a simple inspection of figure 3 is hard, and this,
especially because here pj = qj = 0 and only the LRD
parameter dj changes with time.

Finally, figure 5 displays the LRD parameter esti-
mate of each segment obtained in Step 4 and the local
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m k̂j

1 15
2 2 10
3 2 6 10
4 2 6 8 10
5 2 6 8 10 11
6 2 4 5 6 8 10

Table 6: BPs number selection.

estimate obtained in Step 1. The dot line fluctuates
around the solid line which represents the structural
changes of the LRD parameter.

0 5000 10000 15000 20000 25000

0.05
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0.15
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0.25
0.30

LRD
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Figure 5: Estimated LRD parameter for the internet
traffic data. Parameter estimate in Step 4 (solid line);
local parameter estimate in Step 1 (dot lines).

6. CONCLUSION

In this paper, we have proposed a piecewise FARIMA
model and the methodology for fitting it to a local
stationary long-memory signal. This model is able to
capture the structural break properties of the signal,
it is flexible and allows to model simultaneously long
and short range dependence. The model fitting con-
sists in a four steps procedure designed to estimate both
the BPs and the parameters. Simulations have shown
good performances of the method. When applying our
methodology to internet traffic data, a piecewise frac-
tional noise model was selected. Future work includes
applying piecewise FARIMA models in network design,
management, traffic prediction and measurement-based
network control.
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