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ABSTRACT
In this paper, we propose a new approach for nonlinear
equalization based on Gaussian processes for classification
(GPC). We also measure the performance of the equalizer af-
ter a low-density parity-check channel decoder has detected
the received sequence. Typically, most channel equalizers
concentrate on reducing the bit error rate, instead of pro-
viding accurate posterior probability estimates. GPC is a
Bayesian nonlinear classification tool that provides accurate
posterior probability estimates with short training sequences.
We show that the accuracy of these estimates is essential
for optimal performance of the channel decoder and that the
error rate outputted by the equalizer might be irrelevant to
understand the performance of the overall communication
receiver. We compare the proposed equalizers with state-of-
the-art solutions.

1. INTRODUCTION

In wireless communications systems, efficient use of the
available spectrum is one of most critical design issues.
Therefore, modern communication systems must evolve to
work as close as possible to channel capacity to achieve the
demanded binary rates. We need to design digital commu-
nication systems that implement novel approaches for both
channel equalization and coding and, moreover, we should
be able to link them together to optimally detect the trans-
mitted information.

Communication channels introduce linear and nonlinear
distortions and, in most cases of interest, they cannot be con-
sidered memoryless. Inter-symbol interference (ISI), mainly
a consequence of multipath in wireless channels [1], ac-
counts for the linear distortion. The presence of amplifiers
and converters explain the nonlinear nature of communi-
cations channels [2]. Communication channels also con-
taminate the received sequence with random fluctuations,
which are typically regarded as additive white Gaussian noise
(AWGN) fluctuations [1].

In the design of digital communication receivers the
equalizer precedes the channel decoder. In this paper, we
focus on one-shot receivers, where the equalizer deals with
the dispersive nature of the channel and delivers a memory-
less sequence to the channel decoder. The channel decoder
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corrects the errors in the received sequence using the con-
trolled redundancy introduced at the transmitter. Alterna-
tively, there is a class of iterative receivers that iterate be-
tween the equalization and decoding tasks. In most studies,
see [3]-[9] and the references therein, the dispersive nature
of the channel and the equalizer are analyzed independently
from the channel decoder. Moreover their performance gains
are typically measured at very low bit error rate (BER), as
if there were no channel decoder. One of the goals of this
paper is the analysis of state-of-the-art nonlinear equalizers
together with the channel decoder. We show that this analy-
sis is not only beneficial to understand the properties of the
equalizers, but it is also meaningless to compare the equali-
zers performance at very low BER.

We employ low-density parity-check (LDPC) codes [10]
to add redundancy to the transmitted binary sequence. LDPC
codes have recently attracted a great research interest, be-
cause of their excellent error-correcting performance and li-
near complexity. The Digital Video Broadcasting standard
uses LDPC codes for protecting the transmitted sequence
and they are being considered in various applications such as
10Gb Ethernet and high-throughput wireless local area net-
works [11].

For linear channels, the equalizers based on the Viterbi
algorithm [12] minimize the probability of returning the in-
correct sequence to the channel decoder, and they are known
as maximum likelihood sequence equalizers (MLSEs). The
subsequent channel decoder must treat the output of the
MLSE as a binary symmetric channel, because it has no in-
formation about which bits could be in fault. Instead, we
could use the BCJR algorithm [13] to design our equalizer.
The BCJR algorithm returns the posterior probability (given
the received sequence) for each bit, but it does not mini-
mize the probability of returning an incorrect sequence as
the Viterbi algorithm does. Nevertheless the BCJR algorithm
provides a probabilistic output for each bit that can be ex-
ploited by the LPDC decoder to significantly reduce its error
rate, because it has individual information about which bits
might be in error. Thereby, the subsequent channel decoding
stage substantially affects the way we measure the perfor-
mance of our equalizer.

For nonlinear channels the computational complexity of
the BCJR and the Viterbi algorithms grows exponentially
with the number of transmitted bits and they require per-
fect knowledge of the channel state information. Neural net-
works and, recently, machine-learning approaches have been
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proposed to approximate these equalizers at a lower com-
putational complexity and they can be readily adapted for
nonlinear channels. An illustrative and non-exhaustive list
of examples for nonlinear equalizers are: radial basis func-
tions (RBFs) [4]; recurrent RBFs [5]; wavelet neural net-
works [6]; kernel adaline [2]; support vector machines [7];
self-constructing recurrent fuzzy neural network [8]; and,
Gaussian processes for regression [9]. But, as mentioned
earlier, these approaches only compare performance at low
BER without considering the channel decoder.

The aforementioned equalizers are designed to minimize
their BER by undoing the effect of the channel: multi-
path and nonlinearities. But their soft-outputs cannot be di-
rectly interpreted as posterior probability estimates, which
significantly limit the performance of soft-inputs channel de-
coders, such as LDPC codes. In this paper, we proposed a
channel equalizer based on Gaussian processes for classifi-
cation (GPC). GPC are Bayesian machine-learning tools that
assign accurate posterior probability estimates to its binary
decisions, as the BCJR algorithm does for linear channels.
GPC can equalize linear and nonlinear channels using a train-
ing sequence to adjust its parameters and it does not need to
know a priori the channel estate information.

In a previous paper [9], we have shown that equalizers
based on GPC are competitive with state-of-the-art solutions,
when we compare their performance at low bit error rate. In
this paper, we focus on their performance after the sequence
has been corrected by an LDPC code. The ability of GPC
to provide accurate posterior probability predictions boosts
the performance of these equalizers compare to the state-of-
the-art solutions, based on support vector machines (SVMs).
SVM does not provide posterior probability estimates and
their soft-outputs can be transformed into posterior probabi-
lities using Platt’s method [14].

The rest of the paper is organized as follows. Section 2
is devoted to presenting Gaussian processes for classifica-
tion. We describe the proposed receiver scheme in Section 3
together with the channel model and the transmitter. In Sec-
tion 4, we include illustrative computer experiments to show
the performances of the proposed equalizers. We conclude
in Section 5 with some final comments.

2. GAUSSIAN PROCESSES FOR CLASSIFICATION

Gaussian processes for classification is a Bayesian super-
vised machine learning tool for predicting the posterior pro-
bability of the output (b∗) given an input (x∗) and a training
set D = {xi,bi}n

i=1, xi ∈ Rd and bi ∈ {0,1}), i.e.

p(b∗|x∗,D). (1)

GPC assumes that a real-valued function, known as latent
function, underlies the classification problem and that this
function follows a Gaussian process. We assume this latent
function has been drawn from a zero-mean Gaussian process
prior with its covariance function denoted by k(x,x′). The
covariance function describes the relations between each pair
of inputs and characterizes the functions that can be descri-
bed by the Gaussian process.

For any finite set of samples, a Gaussian process becomes
a multidimensional Gaussian defined by its mean (zero in
our case) and covariance matrix. Our Gaussian process prior
becomes:

p(f |X) = N (0,K), (2)

where f = [ f (x1), f (x2), . . . , f (xn)]>, X = [x1,x2, . . . ,xn]
and (K)i j = k(xi,x j),∀ xi,x j ∈D .

Once the labels are revealed, b = [b1,b2, . . . ,bn]>, to-
gether with the location of the test point, x∗, we can compute
(1) using the standard tools of Bayesian statistics: Bayes rule,
marginalization and conditioning.

We first apply Bayes rule to obtain the posterior density
for the latent function:

p(f , f (x∗)|D ,x∗) =
p(b|f ,X)p(f , f (x∗)|X,x∗)

p(b|X)
, (3)

where D = (X,b), p(f , f (x∗)|X,x∗) is the Gaussian pro-
cess prior in (2) extended with the test input, p(b|f ,X) is
the likelihood for the latent function at the training set, and
p(b|X) is the evidence of the model, also known as the parti-
tion function, which guarantees that the posterior is a proper
probability density function. A factorized model is used for
the likelihood function:

p(b|f ,X) =
n

∏
i=1

p(bi| f (xi),xi), (4)

because the training samples have been obtained indepen-
dently and identically distributed (iid). The likelihood for
the latent function at xi is obtained using a response function
Φ(·):

p(bi = 1| f (xi),xi) = Φ( f (xi)). (5)

The response function ”squashes” the real-valued latent
function to an (0,1)-interval that represents the posterior
probability for bi [15]. Standard choices for the response
function are the logistic and the probit.

We can obtain the posterior density for the test point by
conditioning on the training set and x∗ and by marginalizing
the latent function:

p(b∗|x∗,D) =
∫

p(bi| f (x∗),x∗)p( f (x∗)|D ,x∗)d f (x∗), (6)

where

p( f (x∗)|D ,x∗) =
∫

p(f , f (x∗)|D ,x∗)df . (7)

is the integral of the posterior in (3). We divide the marginali-
zation in two separate equations to show the marginalization
of the latent function at the training set in (7) and the margi-
nalization of the latent function at the test point in (6).

The integrals in (6) and (7) are analytically intractable,
because the likelihood and the prior are not conjugated.
Therefore, we have to resort to numerical methods or appro-
ximations to solve them. The posterior distribution in (3) is
typically single-mode and the standard methods approximate
it with a Gaussian [15]. Using a Gaussian approximation for
(3) allows exact marginalization in (7) and we can use nume-
rical integration for solving (6), as it involves marginalizing
a single real-valued quantity. The two standard approxima-
tions for the posterior of the latent function are the Laplace
method or expectation propagation (EP) [15]. In [16], EP is
shown to be a more accurate approximation for the posterior
probabilities p(b∗|x∗,D) and we use it throughout our imple-
mentation. GPC with EP approximation requires n3/(6+n2)
operations once and n2 per test case [15].
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In this section, we have assumed that the kernel function
is known. If the kernel function is unknown, it has to be
inferred from the training samples. Typically a parametric
model is assumed over the kernel function and a maximum
likelihood procedure is used to infer the parameters of the
kernel, also known as hyperparameters to distinguish them
from the latent function. A versatile covariance function that
we have previously proposed to solve channel equalization
problems is described by:

k(xi,x j) = α1 exp

(
−γ

d

∑̀
=1

(xi`−x j`)2

)
+α2xT

i xT
j +α3δi j,

(8)
where θ = [α1,α2,α3,γ] are the hyperparameters. The suita-
bility of this covariance function for the channel equalization
problem has been discussed in detail in [9]. Further details
about the inference of the hyperparameters can be found in
[15] for general covariance functions.

3. COMMUNICATION SYSTEM

In this paper we propose the use of GPC for channel equali-
zation followed by an LDPC channel decoder. In Fig. 1 we
depict a discrete-time digital-communication system with a
nonlinear dispersive communication channel. We transmit
independent and equiprobable binary symbols s[ j] ∈ {±1},
which are encoded into a binary sequence b[ j] using an
LDPC code. The time-invariant impulse response of the
channel is given by:

h(z) =
nL−1

∑̀
=0

h[`]z−`, (9)

where nL denotes the channel length. The nonlinearities in
the channel, mainly due to amplifiers and mixers, are mo-
deled by g(·), as proposed in [2]. Hence, the output of the
communication channel is given by:

x[ j] = g(r[ j])+w[ j] = g

(
nL−1

∑̀
=0

b[ j− `]h[`]

)
+w[ j], (10)

where w[ j] represents independent samples of AWGN. The
receiver equalizes the nonlinear channel and decodes the re-
ceived sequence.

First, the equalizer collects a set of m consecutive re-
ceived symbols:

x j = [x[ j + τ],x[ j + τ−1], . . . ,x[ j + τ−m+1]]> , (11)

to predict each encoded bit,

b j = b[ j− τ], (12)

where m and τ represents, respectively, the order and delay
of the equalizer.

Second, the channel decoder removes the errors using the
added redundancy by the LDPC encoder in the transmitted
sequence. The decoder performance improves if the equa-
lizer provides a probability estimate for each detected bit,
instead of a hard (point-wise) decision. Optimally, we desire
the posterior probability for each bit given the complete re-
ceived sequence, i.e. p(b j|x[1], . . . ,x[N]) ∀ j = {1, . . . ,N}.

The BCJR algorithm computes this posterior probability,
when the channel is linear and perfectly known at the re-
ceiver. For nonlinear channels, the computational complex-
ity of this posterior probability grows exponentially with the
number of transmitted bits and, in most cases of interest, it
cannot be computed analytically.

In this paper, we estimate this posterior probability using
x j:

p(b j|x[1], . . . ,x[N])≈ p(b j|x j,D), ∀ j = 1, . . . ,N, (13)

and a GPC, detailed in the previous section. The GPC is
trained with a set D , independent from the test samples. We
experimentally show its performance is close to the BCJR
algorithm for linear communication channels and it outper-
forms other nonlinear equalizers for linear and nonlinear
communication channels. We compare its performance with
an SVM equalizer, using Platt’s method [14] to obtain pos-
terior probability estimates. SVMs are state-of-the-art ma-
chine learning tool for classification [17]. SVM with Platt’s
method has complexity O(n2) [17]. For the GPC equalizer,
we use the kernel proposed in Section 2 and a Gaussian ker-
nel for the SVM [18]. For the SVM we use a simpler kernel,
because (9) has far too many parameters that cannot be set by
cross-validation. This topic was discussed in detail in [19].
We also use the BCJR algorithm as the optimal baseline per-
formance for the linear channel. For the nonlinear channel,
the BCJR complexity makes it impractical. We refer to GPC-
EQ, SVM-EQ and BCJR-EQ when analyzing the equalizers
with no decoding stage and use GPC-LDPC, SVM-LDPC
and BCJR-LDPC to denote the joint equalizer and channel
decoder using the GPC, SVM-Platt and BCJR approaches
respectively.

4. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the proposed
joint equalizer and channel decoder. We use a rate 1/2 regu-
lar LPDC code with 1000 bits per codeword and 3 ones per
column and we have selected a single channel model for our
three experimental settings:

h(z) = 0.3482+0.8704z−1 +0.3482z−2. (14)

This channel was proposed in [2] for modeling radiocom-
munication channels. In all three experiments, we use 200
training samples and a four-tap equalizer (m = 4). The re-
ported bit error rate (BER) and frame error rate (FER) are
computed using 105 test codewords and we average the re-
sults over 50 trials, where random training and test data are
generated independently.

4.1 Experiment 1: BPSK over linear multipath channel
In this first experiment we deal with the linear channel in (14)
and we compare the GPC and the SVM methods to the BCJR
algorithm with perfect channel estate information at the re-
ceiver. The performance of the BCJR-LDPC is the optimal
solution to this problem.

In Fig. 2 we plot (dash-dotted) the BER outputted by the
equalizers. The GPC-EQ (O) and SVM-EQ (◦) BER plots in
Fig. 2 are almost identical and they perform slightly worse
than the BCJR-EQ (¦). These results are similar to the ones
reported in [9]. The BER at the outputs of the channel de-
coders is plotted in solid line. We can observe that, although

1643



h(z) g( )

w n
r n1b n

Channel

x n Equalizer
LDPC

Channel 

Decoderˆ( 1)p b n
Receiver

ˆ 1b n
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Figure 1: Discrete-time channel model, together with the proposed transmitter and receiver.

0 1 2 3 4 5

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
E

R

 

 

GPC−EQ
SVM−EQ
BCJR−EQ
GPC−h−LDPC
GPC−LDPC
SVM−LDPC
BCJR−LDPC

Figure 2: BER performance at the output of the equalizers
(dash-dotted lines) and the channel decoder with soft inputs
(solid lines) and hard inputs (dashed line) with the channel
model in (14) for the BCJR (¦), the GPC (O) and the SVM
(◦).

the decisions provided by the GPC-EQ and SVM-EQ are
similar to each other, their estimate of the posterior proba-
bility are quite different. Therefore, the GPC-LDPC signifi-
cantly reduces the BER at lower SNR, because GPC-EQ pos-
terior probability estimates are more accurate and the LDPC
decoder can rely on these trustworthy predictions. More-
over, the GPC-LDPC is only 1dB from the optimal perfor-
mance achieved by the BCJR-LDPC receiver. The SVM-
LDPC performance is substantially worse and its solution is
almost 2dB away from the optimal performance.

In Fig. 2 we have also included the BER performance of
the GPC-h-LDPC, whose inputs are the hard decisions given
by the GPC-EQ. Its BER is depicted as a dashed line in the
plot. For this receiver, the LDPC does not have information
about which bits might be in error and it has to treat each
bit with equal suspicion. The BER performance of SVM-
h-LDPC is similar to GPC-h-LDPC and it is not shown for
the sake of clarity. Even though the posterior probability esti-
mates do not match the BCJR outputs, our soft-output equali-
zers provide much lower BER than a hard decision equalizer.

To understand the difference in posterior probability es-
timates, we have plotted calibration curves for the GPC-EQ
and SVM-EQ, respectively, in Fig. 3(a) and Fig. 3(b) for
SNR= 2dB. We can appreciate that the GPC-EQ posterior
probability estimates are closer to the main diagonal and they
are less spread. Thereby GPC-EQ estimates are closer to the
true posterior probability, which explains its improved per-
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Figure 3: GPC-EQ and SVM-EQ calibration curves, respec-
tively in (a) and (b) for SNR= 2dB.

formance with respect to the SVM-EQ, when we measure
the BER after the LDPC decoder.

We have shown that GPC-LDPC is far superior to the
other schemes and its performance is close to optimal. This
result shows that using a method that can predict accurately
the posterior probability estimates allows the LDPC decod-
ing algorithm to perform to its fullest. From this first ex-
periment, it is clear that we need to compare the equalizers
performance after the channel decoder, otherwise the BER
measured after the equalizers does not tell the whole story.
Also, we do not need to compare the equalizers at low BER,
because the channel decoder reduces the BER significantly.

4.2 Experiment 2: Nonlinear multipath channel
In the next experiment, we face nonlinear multipath chan-
nels. We assume the nonlinearities in the channel are un-
known at the receiver and transmitter, and we need a non-
linear equalizer, which is able to compensate the nonlineari-
ties in the channel. For this experiment we employ the
channel model proposed in [2, 8]:

|g(r)| = |r|+0.2|r|2−0.1|r|3. (15)

This model represents an amplifier working in saturation
with 0dB of back-off, which distorts the amplitude of our
modulated BPSK signal.

In Fig. 4 we compare the BER performance of the GPC-
LDPC (O) with the SVM-LDPC (◦). We also plot for com-
pleteness the BER after the equalizer with dash-dotted lines
for the compared receivers. For this channel model the BCJR
complexity is exponential in the length of the received se-
quence and we did not include it.

The equalizers perform equally well, while the BER
by the GPC-LDC is significantly lower than that of SVM-
LDPC. Again, the ability of the GPC to return accurate poste-
rior probability estimates notably improves the performance
of the channel decoder that can trust this posterior proba-
bility estimates and reduce the BER at lower SNR. In this
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Figure 4: BER performance at the output of the equalizers
(dash-dotted lines) and the channel decoder with soft inputs
(solid lines) and hard inputs (dashed line) with the channel
model in (14) and nonlinearity in (15) for the BCJR (¦), the
GPC (O) and the SVM (◦).

example, the coding gain is about 2dB between the GPC-
LDPC and the SVM-LPDC. Also the BER of the LDPC with
hard outputs (GPC-h-LPDC) is higher than the soft-outputs
receivers. This result is relevant because, even though our
posterior probability estimates are not accurate, we are better
off with them than without.

5. CONCLUSIONS

The probabilistic nonlinear channel equalization is an open
problem, since the standard solutions such as the nonlinear
BCJR exhibit exponential complexity with the length of the
received sequence. Moreover, they need an estimation of the
nonlinear channel and they only approximate the optimal so-
lution [20]. In this paper, we propose GPC to solve this long-
standing problem. GPC is a Bayesian nonlinear probabilis-
tic classifier that produces accurate posterior probability es-
timates. We compare the performance of the different proba-
bilistic equalizers at the output of an LDPC channel decoder.
We have shown the GPC outperforms the SVM with proba-
bilistic output, which is a state-of-the-art nonlinear classifier.

Finally, as a by-product, we have shown that we need to
measure the performance of the equalizers after the channel
decoder. The equalizers’ performance is typically measured
at low BER without considering the channel decoder. But
if we do not incorporate the channel decoder the BER out-
putted by the equalizer might not give an accurate picture of
its performance. Furthermore, the equalizer performance at
low BER might not be illustrative, as the channel decoder
will significantly reduce it even for low signal to noise ratio
values.
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