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Abstract—We describe an efficient fixed-point calculation of the
weight matrices for a linear MMSE equalizer in a MIMO-OFDM
system intended for the large numbers of antennas typical
for cooperative base stations. Our real-time implementation is
numerically stable also in critical channels with reduced rank.
Implementation loss due to the 16 bit fixed-point arithmetic
is noticeable only in high SNR range above 30 dB. A speed
optimization technique is proposed splitting the algorithm in
several dot products which can be highly optimized. Using
3 parallel C64x+ DSP cores running at 1 GHz each, equalization
of a 12×12 MIMO-OFDM system with 1200 subcarriers can be
realized in less than 1 millisecond. Compared to a floating-point
implementation, at the same performance power consumption
can be reduced by a factor of 6.

I. INTRODUCTION

Modern radio standards like 3rd Generation Partnership
Project (3GPP) Long Term Evolution (LTE) require complex
and complicated signal processing. Efficient but flexible solu-
tions are therefore increasingly important. On the other hand,
low power consumption is desired both at the base station
and at the mobile terminal. Fixed-point DSPs meet both
these requirements. A further adaptation of the algorithms is
needed however to cope with the reduced dynamic range of
16 or 32 bit fixed-point numbers. This is in particular critical
for lower layer processing functions as the calculation of
MIMO equalizer weights.

Future extensions of 3GPP LTE are related to increasing
the number of antenna signals which can be processed jointly,
combating the crucial inter-cell interference within one cell [1]
[2] or by using cooperative signal processing of multiple base
stations [3] [4]. Both lead to larger size of the MIMO channel
matrices and thus to higher computational complexity. To
show the technical feasibility of such LTE extensions real-time
solutions with high performance are of substantial interest.

The calculation of the MMSE equalizer matrix investigated
in this paper is the most complex part of the signal processing
chain in a MIMO-OFDM system, in particular if the numbers
of antennas get larger. This matrix may be calculated e.g.
by means of a matrix inversion and by QR or Cholesky
decompositions. Common criteria for algorithm selection are
complexity, numerical stability and dynamic range of the
intermediate results in the calculation. The latter point is
specifically important for fixed-point implementations. In [5]
a block wise analytic matrix inversion is used. This algorithm

becomes prohibitively complex for large channel matrices. The
Gauss Jordan inversion in [6] is the better choice in this case
and it requires 2n3 complex multiplications [7]. However,
the inversion of the channel covariance matrix used in both
methods leads to numerical stability problem due to the high
dynamic range typical for wireless fading channels.

The square-root-algorithm chosen for FPGA implemen-
tation in [8] is more stable and it has a slightly lower
complexity of 11

6 n
3 as well [7]. For the QR decomposition

the authors have chosen a modified Gram-Schmidt method
showing stability comparable to the Givens method [9].

An algorithm with even lower complexity of 5
3n

3 based
on Cholesky decomposition is suggested in [7]. It has been
implemented in real-time on the IBM Cell processor in [10]
where the calculation of all equalizer matrices for the 12×12
MIMO-OFDM system with 1200 subcarriers (LTE) takes
less than 1 ms. With the Cell processor we can get a high
floating-point performance for little money. But the power
efficiency can be improved using fixed-point arithmetic.

In this paper, we report on a fixed point implementation
of this algorithm achieving comparable speed performance on
3 C64x+ DSP cores running at 1 GHz each. We have limited
the implementation losses due to the fixed-point arithmetic
and applied a speed optimization technique that meets both
efficiency and flexibility. In addition to the algorithms reported
in the literature, we have taken different noise powers at
each receive antenna into account to cope with independent
automatic gain control (AGC) circuits. This allows the use
of distributed radio frontends having autonomous AGC. The
paper is organized as follows. In Section II, our system model
is explained. Section III describes in detail the implemented
algorithm. The implementation on the DSP is reviewed in
section IV. The efficiency of our implementation is quantified
in section V.

II. SYSTEM MODEL

The MIMO-OFDM system described in the 3GPP LTE
standard has 1200 subcarriers in 20 MHz bandwidth. We
consider NT transmit and NR receive antennas. For each
subcarrier i the transmission is described by

y(i) = H(i) · x(i) + n(i), (1)

where H(i), x(i), y(i), n(i) are the NR×NT channel matrix,
the NT × 1 transmit symbol, the NR × 1 receive symbol, the

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1479



NR× 1 noise vector at subcarrier i, respectively. Ignoring the
index i the linear MMSE equalisation is performed by

x̂ = HH(HHH +N)−1 · y, (2)

where N is the noise covariance matrix, x̂ is the estimated
transmit vector. If N is diagonal with equal diagonal entries
σ2 the following formula is equivalent:

x̂ = (HHH + σ2I)−1HH · y, (3)

where I is the identity matrix. The advantage of the second
approach is the reduced dimension of the matrix to be inverted
if NR > NT and thus a lower computational complexity. To
include independent AGC settings in each receiver we assume
a different noise power at each antenna. Therefore we have to
use (2), but for NR > NT the noise must not be set to zero
to ensure that the matrix is invertible. For each subcarrier,
accordingly, the following MMSE equalizer coefficient matrix
is calculated.

G = HH(HHH +N)−1 (4)

III. ALGORITHM

A. Principle
After calculating the positive definite matrix A the Cholesky

decomposition is applied:

HHH +N = A = LLH (5)

where L, LH are the lower and its symmetric upper triangular
matrix, respectively. From (4) we get

G = HH(LLH)−1 (6)

GLLH = HH (7)

LLHGH = H (8)

The following 2 systems of equations must be solved:

LS = H (9)

LHGH = S (10)

Since L and LH are triangular, this is easily achieved by for-
ward substitution to get S in the first equation and subsequent
back substitution in the second equation to get G.

B. Fixed-Point Extensions
Before calculating A, the rows of H and the noise matrix N

are scaled by the elements in the diagonal matrix B containing
the reciprocal square roots of the diagonal elements in A. This
operation results in a scaled version of A denoted as Ã having
all elements less or equal to 1, as required in our fixed-point
implementation. The corresponding equations read

H̃ = BH (11)

Ñ = B
(
N + σ2

aI
)
B (12)

The additional term σ2
aI ensures the positive definiteness in (5)

and stabilizes the algorithm at high SNR. The above algorithm
is applied using H̃ and Ñ resulting in a column-scaled matrix
G̃ yielding the desired result

G = G̃B (13)

C. Fixed-Point Arithmetic

After scaling the absolute values of all matrix elements in
H̃ ,Ã,L̃,S are less or equal than unity. With a fixed word length
of 16 bit we are able to use the most commonly used fraction
format Q0.15 [11] to store the real and imaginary part. This
format contains 0 and 15 bits before and after the decimal
point and an additional sign bit. An advantage of the Q0.15
format is that the format can be retained unchanged after a
multiply operation by a simple shift operation.

Q0.15 ·Q0.15⇒ Q0.30 =15 bit
shift⇒ Q0.15

To avoid overflows in the backward substitution algorithm
we change the fractional number format of the matrix S
from Q0.15 into Q5.10 with a 5 bit shift after the forward
substitution. The scaled coefficient matrix G̃ then has the same
fractional number format Q5.10 as well.

Q5.10 ·Q0.15 = Q5.25⇒15 bit
shift⇒ Q5.10

The necessary reciprocal square root values for the scaling
matrix B and inside the Cholesky decomposition will be
stored in the Q16.15 format with a word length of 32 bit. The
multiplication with these factors results again in the Q0.15
format:

Q16.15·Q0.15⇒ Q16.30 =15 bit
shift⇒ Q16.15 =16 bit

LSB ⇒ Q0.15

D. Cholesky Decomposition

We adapted the cholesky algorithm such that a dot-product
is calculated in the inner loop. Due to the symmetry only the
lower triangular matrix of A is used. The reciprocal values in
forward and backward substitution can be saved, because they
correspond to the factors scalei.

Algorithm 1 Pseudo-code of used Cholesky decomposition

1: L←

{
Aij , for i ≥ j
0, for i < j

2: for i = 1 to NR do
3: for j = i to NR do
4: sumj ← 0
5: for k = 1 to i− 1 do
6: sumj ← sumj + Ljk · L∗ik
7: for j = i to NR do
8: Lji ← Lji − sumj

9: scalei ← 1/
√
Lii

10: for j = i to NR do
11: Lji ← Lji · scalei

IV. OPTIMIZATION FOR A C64X+ DSP CORE

A. The C64x+ DSP core

The C64x+ core [12] by Texas Instruments has 4 × 2
processing units. They are designed for 4 different numeric
skills, i.e. memory access, multiplication, accumulation and
logic. Thus one very long instruction word (VLIW) can
contain 8 instructions to be performed in parallel once per
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CPU cycle. Although the execution can take several cycles
every cycle a new VLIW can be scheduled due to pipelining.
There are 64 bit memory instructions as well as instructions
for multiplication and addition of complex numbers. The real
and imaginary parts are placed in the most and least significant
half words in the 32 bit register.

B. Optimization method

Our initial C-implementation has been far away from ex-
ploiting the limit of having 2 complex multiplications per cycle
feasible with the C64x+. A highly-optimized assembly imple-
mentation of the entire algorithm would be very expensive,
in particular if it shall support variable matrix dimensions
typical for adaptive MIMO applications. Therefore we have
developed a technique splitting all our partial algorithm tasks
like matrix multiplications, Cholesky decomposition, forward
and backward substitution into highly optimized dot products
called from the main program. For a small number of multiply
and add operations the overhead is relatively large caused by
the function call as well as the prologue and epilogue of the
program loop. This overhead can be reduced if the assembly
function is able to calculate many dot products within one
function call. The function should remain flexible with respect
to the number of dot products, the number of vector elements
and its memory distance. Let’s assume that a and b are
3-dimensional arrays while the result r has 2-dimensions. The
common algorithm is extended to perform n3×n2 dot products
instead of only one:

Algorithm 2 dot product with an optional parameter [∗] for
complex conjugating b

for i = 1 to n3 do
for j = 1 to n2 do
rij ← 0
for k = 1 to n1 do
rij ← rij + aijk · bijk[∗]

We use the following 14 parameters:

parameter function

a, b, r Arrays
n1, n2, n3 Dimension of the Arrays
d1a, d1b Memory distance of aijk and aijk+1. Analogously b
d2a, d2b, d2r Memory distance of aijk and aij+1k. Analogously b, r
d3a, d3b, d3r Memory distance of aijk and ai+1jk. Analogously b, r
conjugate true if b complex conjugated

Notice that in principal, the MIMO-OFDM algorithm allows
parallel processing of any group of subcarriers which makes
our optimization method very efficient.

C. Implementation

Flexibility with respect to the parameter n2 was not possible
without compromise concerning speed. We have optimized the
function for n2 = 12 being the resource block (RB) size de-
fined in the LTE standard. I.e. groups of 12 subcarriers of a RB
are treated in the same function call. Our assembly program
performs n2 dot products in parallel by only one program

loop using n2 accumulators accodingly. The parameter n3

exploits the inherent parallelism in the matrix multiplication,
Cholesky decomposition, forward and backward substitution.
In case of Cholesky decomposition we set this parameter to
n3 = NR and applied it to the outer loop (row 3) of the
dot product (row 5) in Algorithm 1. Operating at full load,
the following set of instructions is performed in each cycle:

instruction function

2 x LDDW 2 x 64 bit load, 2 pairs (2 subcarriers) of operands a,b
2 x SWAP2 Exchange real and imaginary part of a if conjugate = true
2 x CMPYR1 Complex multiplication of 2 pairs a,b then 15 bit right shift
2 x SADD2 Accumulation of the complex results with saturation on overflow

To make use of the SWAP2 instruction we could replace the
complex conjugate variant of Algorithm 2 by

Algorithm 3 dot product with SWAP2 for complex conju-
gating b

r ← 0
for k = 1 to n do
r ← r + SWAP2(ak) · bk

r ← SWAP2(r)

The inner loop is performed n1 times. Afterwards, the
n2 = 12 results are stored using 6 STDW instructions. If
the variable conjugate is true, a SWAP2 instruction is applied
before. Then the next group of dot products is calculated
(outer loop). The entire function executes n3 ·n2 ·n1 complex
multiplications. If we consider additional cycles for saving
results and add the constant function call overhead of 15 then
we get the achieved performance of our optimized assembly
routine n3 · n2

2 ·
(
n1 + 1

2

)
+ 15 cycles.

The transfers from and to data cache memory take place
in the background using an internal direct memory access
(IDMA) controller. Thus additional cycles caused by missing
data in the cache do not occur.

D. Reciprocal square roots

The calculation of one equalizer coefficient matrix requires
the calculation of 2NR real-valued reciprocal square roots
(1/√ ), where NR of which are calculated in the scaling part
and another NR roots occur in the Cholesky decomposition
reused by the back and forward substitution. To calculate 1/

√
b

we execute one Newton-Raphson iteration which doubles the
precision of the initial estimate x:

x = x

(
1.5− bx2

2

)
(14)

For the initial reciprocal square root estimate x we use a con-
stant approximation lookup table of length 256× 16 bit acord-
ing to [13] Table II. We call 12NR times the (1/√ )-function
in a loop. The compiled code becomes very efficient in this
way.

E. Saving multiplications

After scaling H the diagonal elements in A are set to unity.
In the Cholesky decomposition this means scale1 = 1. It
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follows that the multiplication of scale1 by the first column
in L and the first row in S and G can be saved. The conjugate
complex transpose operation and the back scaling of G is
performed in one step.

V. RESULTS

A. Complexity and power consumption

Table I gives an overview of the complexity needed on a
single RB. The number of complex multiplications, the CPU
cycles and the time used for 12 MMSE equalizer matrices
(1 chunk in LTE) with various matrix dimensions are given.
For matrix dimension 12 × 12, Table II lists the values for
all partial algorithms separately. The fixed-point computation
includes the scaling procedures for the matrices H , S and
G. Interestingly the scaling of H saves multiplications in the
other algorithms, see columns 2, 3.

TABLE I: cycles for twelve equalizer matrices
matrix complex mult. total C64x+ (1 GHz)

dimension float fixed cpu cycles time

4× 4 1632 2076 2831 3 us
8× 8 11712 13740 11601 12 us

12× 12 37920 42684 29916 30 us

TABLE II: detailed view to twelve 12× 12 equalizer matrices
part of complex mult. total C64x+ (1 GHz)

algoritm float fixed cpu cycles time

scale H 0 3456 2356 2.4 us
HHH 11232 9504 5281 5.3 us

Cholesky 4224 4092 4548 4.6 us
forward 11232 11088 7951 8.0 us
scale S 0 1728 878 0.9 us

backward 11232 11088 7972 8.0 us
scale G 0 1728 884 0.9 us

total 37920 42684 29916 30.0 us

TABLE III: complexity
part of complex multiplications complex multiplications

algoritm floating-point fixed-point

scale H 0 (2NR) ·NT

HHH 1
2

(
N2

R + NR

)
·NT

1
2

(
N2

R −NR

)
·NT

Cholesky 1
6

(
N3

R + 3N2
R − 4NR

)
1
6

(
N3

R + 3N2
R − 10NR + 6

)
forward 1

2

(
N2

R + NR

)
·NT

1
2

(
N2

R + NR − 2
)
·NT

scale S 0 (NR) ·NT

backward 1
2

(
N2

R + NR

)
·NT

1
2

(
N2

R + NR − 2
)
·NT

scale G 0 (NR) ·NT

Table III lists the complexity formulas to calculate one
MMSE equalizer matrix. The asymptotic complexity of the
scaling procedures is only quadratic. So its relative cost
decreases with increasing the matrix dimensions.

Multiplying all results by 100, we get results for all
1200 subcarriers in 20 MHz bandwidth. According to these
numbers, 3 cores of the C64x+ DSP running at 1 GHz
could compute all 1200 MMSE equalizer matrices in less
then a millisecond, which is the requirement for a real-time
implementation. These values are comparable to the results in
[10]. But we have to consider that the authors state that only
4 of 8 Cell cores are used operating at 3.2 GHz and that the
calculation of the equalizer matrices is only a part of their

computation taking 80% of the entire time. Taking the power
consumption of 6 W [14] [15] for a 3 core DSP and 92 W
[16] for the Cell into account our implementation is about 6
times more efficient related to power consumption. Note that
multi-core variants of the C64x+ are already available [17]
which make the system integration easier.

B. Numerical stability

The following subsection is based on the above algorithm
as well. It has been implemented in a first step in MATLAB R©

using the Fixed-Point Toolbox
TM

in order to evaluate the
numerical stability prior to the implementation on the DSP.
We assume a Rayleigh fading channel, thus the elements in
H are modelled as independently and identically distributed
random Gaussian numbers with zero mean. The normalization
in (11) assures a constant dynamic range of channel data.
Consequently different path losses or AGCs for each receive
antenna do not affect numerical stability. Therefore we do
not consider this case in our simulation and set the noise
covariance matrix to:

N = σ2I (15)

where σ2 is the variance of additive white Gaussian noise
(AWGN) in (1). We get σ2 from a given SNR by means of
signal power ps:

σ2 =
ps

SNR
(16)

ps =
1
NR
· trace(H ·HH) (17)

For the expectation E{.} of the transmit power we assume
E
{
xHx

}
= 1. Fixed-point arithmetic is used in this analysis

only for the core algorithm computing the matrix G. The
computed matrix G is multiplied with the received signal
vector y (2) yielding the estimated transmit vector x̂. The mean
square error (MSE) is as follows:

MSE =
1
NT
· E
{
‖x̂− x‖22

}
(18)

In all figures 16 QAM modulation is used. We assume a lim-
ited 12 bit precision for the channel estimates H both for the
real and imaginary parts. Using Q0.15 format the maximum
rather minimum number of each row in H is ±0.0625. In
Figure 1 it is demonstrated that there is no significant devia-
tion (0, 5%) between the fixed-point and perfect computation
below an SNR of 30 dB. At larger SNR the MSE has been
stabilized by adding the constant σ2

a = −57 dB to the noise
covariance matrix N . This assures numerical stability also
at ill-conditioned channel matrices H appearing some times
in our Rayleigh fading model but more often in a realistic
scenario. Setting this parameter too small (σ2

a = −60 dB) the
algorithm becomes unstable at high SNR. We see at high SNR
that the limited 12 bit precision of channel data increases the
MSE of the perfect calculation. But it is sufficient for the fixed
point calculation because the MSE is mainly affected by the
calculation itself. Figure 2 shows the BER after applying the
equalizer matrix to the received signal. No channel coding is
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FIG. 3: MSE 4× 4 and 4× 5, 16 QAM
assumed here. The stabilization has a similar effect in terms
of BER performance at high SNR as for the MSE. In Figure 3
an additional receive antenna (4NT ×5NR) has been used, we
observe that the deviation to the perfect curve is at even higher
SNR in this way. The error floor is reduced, accordingly.
All fixed-point results have been calculated by the DSP using
the Embedded IDE Link

TM
CC for TI’s Code Composer

Studio
TM

IDE.

VI. CONCLUSION

We have successfully implemented on a state-of-the art
fixed-point DSP the channel equalization function for a future
cellular system applying cooperative transmission and recep-
tion, which is critical both in terms of numerical stability and
complexity. Implementation losses are observed only at very
high SNR > 30 dB. Note that an error floor is in principle
unavoidable because of the finite machine precision and the
quantisation of the input data. By splitting the algorithm into
several dot products, optimizing this function in assembly
language and calling it for multiple subcarriers at once, a
similar computing performance can be achieved as in a recent
floating-point implementation on the IBM Cell processor using
a similar number of processor cores and at a much lower clock
speed. Using fixed-point arithmetic, the power consumption
has been reduced by a factor of 6, approximately. The results
in this paper may be regarded as a first milestone towards
proving that cooperative MIMO is mature for next generation
cellular systems.
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