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ABSTRACT 

This paper presents a statistical analysis of the deficient 

length Pseudo Affine Projection (PAP) adaptive algorithm. 

The PAP algorithm is obtained by introducing a step size 

control parameter in the weight update equation of the unity 

step size Affine Projection (AP) algorithm assuming autore-

gressive input signals. The deficient case occurs when the 

number of adaptive coefficients is smaller than the necessary 

to whiten the error signal. Deterministic recursive equations 

are derived for the mean weight and mean-square error be-

haviours. Monte Carlo simulations show excellent agreement 

with the theoretically predicted behaviour in steady-state 

conditions. It is shown that the PAP coefficients converge in 

the mean to the initial plant coefficients, producing an unbi-

ased solution even for correlated inputs. 

1. INTRODUCTION 

The Affine Projection (AP) adaptive algorithm [1] is nowa-

days recognized as a good alternative to speed up the con-

vergence of the gradient based or Least Mean Square (LMS) 

algorithm family [2], [3]. The AP algorithm applies weight 

updates in directions that are orthogonal to the last P input 

vectors. This decorrelates the input signal and speeds up con-

vergence [4]. The improved transient performance comes at 

the cost of an increased computational complexity. 

Assuming autoregressive (AR) input signals, the estimation 

error vector entering the AP weight update equation becomes 

a scalar (i.e. the past errors are zero) for step size µ=1 [4]. 
Step sizes µ<1 allow a tradeoff between steady-state misad-
justment and convergence speed. However, for µ<1, the AP 
weight update equation becomes a function of the last P error 

signal samples. Thus, the scalar error becomes P-

dimensional, increasing both the algorithm complexity and 

the analysis difficulties. 

A simplified version of the AP algorithm has been recently 

proposed in [5]. The so-called Pseudo-AP (PAP) algorithm 

replaces the input signal with its autoregressive prediction in 

determining the weight update direction vector. The resulting 

weight update equation for µ=1 reduces to the simple update 
equation of the AP algorithm derived in [4] for an AR input 

process. PAP uses this same simplified AP weight update 

equation even for µ<1. The weight update is a function only 

of the present (scalar) error, but the algorithm is no longer 

AP. 

Results presented in [6] indicate that PAP can lead to a 

smaller steady-state mean square error (MSE) than AP at the 

price of a reasonable increase in convergence time for me-

dium values of µ. The behaviour of both algorithms becomes 

very similar for large values of µ. The PAP algorithm be-

comes the AP algorithm for µ=1 if the input is AR(P) (auto-
regressive process of order P) [4]. This behaviour and the 

results in [5] indicate that PAP could be a reasonable alterna-

tive to AP in practical situations where some increase in con-

vergence time can be traded for an improved steady-state 

performance. Thus, the statistical behaviour of the PAP algo-

rithm becomes of interest. 

A statistical model for the behaviour of PAP has been pre-

sented in [6] for an adaptive filter of sufficient order. How-

ever, if the plant length is underestimated, the adaptive sys-

tem will not reach acceptable identification accuracy or 

canceling efficiency [7]-[9]. Such a situation is not rare in 

practice, as designers often have to deal with computational 

limitations. Recent studies on the insufficient order LMS 

[8] and AP [9] algorithms have shown that they exhibit 

convergence behaviors which are significantly distinct from 

those of the sufficient length adaptive filters. Such a study 

is not available for the PAP algorithm. 

This work extends the results in [9] to analyze the deficient 

length PAP adaptive algorithm. Recursive equations are 

derived for the mean and mean-square error behaviors for 

white and AR inputs. It is shown that, for an M-tap filter 

and an N-tap unknown impulse response (M<N) the mean 

weights converge to the first M plant coefficients even for 

correlated inputs. The derived analytical model for the 

mean-square error is shown to be very accurate in steady-

state conditions and provides acceptable estimations as σz
2
 

tends to (wN
oTRuuwN

o
)/(wN

oTwN
o
) (whose variables are de-

fined in Section 2). 

This paper is organized as follows. Section 2 introduces the 

input signal model and the notation used. Section 3 presents 

the PAP weight update equation. Section 4 presents the 

derivation of the analytical model for the algorithm behav-

ior. Section 5 presents Monte Carlo simulations to validate 

the theoretical models. Section 6 concludes the work. 

In this work scalars are denoted by plain lowercase or up-

percase letters, vectors are denoted by lowercase boldface 
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letters and matrices by uppercase bold letters. The super-

script T denotes transposition. The letter n represents dis-

crete time. 

2. DEFICIENT LENGTH ADAPTIVE FILTER 

Consider the classical adaptive identification problem where 

the input signal u(n) is described by an AR process of order 

P. Then, 

 
1

( ) ( ) ( )
P

ii
u n a u n i z n

=
= − +∑  (1) 

where z(n) is the innovation, modelled by a zero-mean white 

Gaussian signal with variance σz
2
; and ai are the AR coeffi-

cients. The desired signal d(n) is related to u(n) through the 

following linear model 

 ( ) ( ) ( )T

N Nd n n r n= +ow u  (2) 

where wo
N=[w

o
0 w

o
1 … w

o
N-1]

T
 of length N is the impulse 

response of the unknown system (plant), uN(n)=[u(n) u(n-
1) … u(n-N+1)]

T
 is the plant input vector with correlation 

matrix Ruu=E{uN(n)uN
T
(n)}, and r(n) is a zero-mean white 

Gaussian noise, independent of u(n). The output of the M-tap 

adaptive filter is given by 

 ( ) ( ) ( )Ty n n n= w u  (3) 

where w(n)=[w0(n) w1(n) … wM-1(n)]
T
; u(n)=[u(n) u(n-1) 

… u(n-M+1)]
T
. Here we assume the deficient length case 

defined by the condition M<N. 

The instantaneous error is given by 
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where b(n)= ( )T now u , ow =[w
o
M w

o
M+1 … w

o
N-1]

T
, ū(n)=[u(n-

M) u(n-M-1) … u(n-N+1)]
T
, and v(n)=w(n)-wo

 is the weight-

error vector where wo
=[w

o
0 w

o
1 … w

o
M-1]

T
. The term b(n) in 

(4) describes the part of the output due to the exceeding N-M 

coefficients in wo
N. 

3. WEIGHT-ERROR UPDATE EQUATION 

The weight-error update equation of the PAP algorithm with 

AR input can be written as [6] 
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ΦΦΦΦ

Φ ΦΦ ΦΦ ΦΦ Φ
 (5) 

Vector ΦΦΦΦ(n) defines the update direction, and is given by: 
 ˆ( ) ( ) ( ) ( )n n n n= −Φ u U a  (6) 

where U(n)=[u(n-1) u(n-2) … u(n-P)], and UT
(n)U(n) is 

assumed of rank P. The least squares estimate of the AR 

coefficients (ai) is given by: 

 1ˆ( ) [ ( ) ( )] ( ) ( )T Tn n n n n−=a U U U u  (7) 

where â(n)=[â1(n) â2(n) … âP(n)]
T
. Using (4) and (6) in (5) 

we have 
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Note from (8) that the effect of M<N is the increase of the 

additive noise r(n) by a term equal to b(n), which is zero-

mean, correlated in time and correlated with u(n). 

4. ANALYSIS 

The following statistical assumptions are used in the analy-

sis, and were initially presented and fully discussed in [10]: 

•  Assumption A1: The order P of the AP algorithm is 

equal to the order of the AR process. 

• Assumption A2: The statistical dependence between 

z(n) and U(n) can be neglected for M>>P. 
• Assumption A3: The vector ΦΦΦΦ(n) is orthogonal to the 

columns of U(n). 
• Assumption A4: The vectors ΦΦΦΦ(n) and w(n) are sta-

tistically independent. 

4.1 Mean Weight-Error Vector Behaviour 

Pre-multiplying (8) by uT
(n) and UT

(n), using (6), and using 

Assumption 3 (UT
(n)ΦΦΦΦ(n)=0) it can be shown that 
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Combining these results ([6],[9]) we obtain 

 [ ]1
( ) ( ) ( ) ( ) ( 1) ( 1)T T Tn n n n n n

µ
γ γ

+ − + −u v Φ v a r b====  (10) 

where r(n-1)=[r(n-1) r(n-2) … r(n-P)]
T
; b(n-1)=[b(n-1) b(n-

2) … b(n-P)]
T
 and γ =1-(1-µ)ΣP

i=1 ai. Substituting (10) into 

(8) results in 
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and 
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where ra(n) is the filtered noise sequence [4] and ba(n) corre-

sponds to the correlated additive noise filtered by the same 

all-pole filter [9]. 

Taking the expected value of (11) and using Assumption A4, 

we obtain 
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 (13) 

Under Assumption A2, the first expected value of (13) was 

already solved in [10]. The second expected value is a null 

vector since r(n) and ΦΦΦΦ(n) are zero-mean and independent of 
any other signal. The last expectation in (13) was already 

solved in [9] and is a null vector. Using these results in (13) 

leads to a deterministic recursive equation for the deficient 

length PAP algorithm mean weight-error vector: 

 { } { }3
( 1) ( )

2

N P
E n E n

N P

µ
γ

− −
+ =

− −
v v  (14) 
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Assuming convergence, the steady-state mean weight-error 

vector can be obtained from (14), resulting in 

 { }lim ( )
n

E n
→∞

=v 0  (15) 

Eq. (15) shows that the mean weights of the deficient length 

PAP algorithm converge to the actual first M plant coeffi-

cients even in the correlated case. 

4.2 Mean-Square Error Behaviour 

Squaring (4) and taking the expected value leads, after some 

algebraic manipulation, to 
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where K(n)=E{v(n)vT
(n)} is the weight-error correlation 

matrix. In determining (16), it was assumed that the algo-

rithm has sufficient order (equal to P). Thus, â(n)≅a was 
used. 

The first term in (16) is a function of the input statistics. The 

second and third terms need to be determined. Squaring the 

second equation in (12) and using ū(n)=Ū(n)a+ z (n) leads to 
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Substituting (17) into (16), results in 
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The weight-error correlation matrix for the deficient length 

case can be obtained as done in [6] and [10]. Post-

multiplying by its transpose, taking its expected value and 

applying the statistical assumptions A1-A4 yields, after cal-

culations 
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The last expected value in (19) can be approximated by 
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The second and third expect values in the right hand side of 

(20) were already solved in [10]. Thus, equation (19) can be 

written as 
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Elements of the cross-correlation matrices uzR and zuR  can 

be defined by the deterministic equation  
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where l is the row number, c the column number and r(m) is 

obtained through the following recursive equation (assuming 

r(0)=1) 

 ( ) ( )
1

m

k

k

r m a r m k
=

= −∑  (23) 

Details of the derivation of (23) are omitted due to the lack of 

space. 

5. SIMULATION RESULTS 

This section presents simulation results to verify the accu-

racy of the analytical models given by equations (14), (18) 

and (21). In all cases, matrix E{[UT
(n)U(n)]-1} has been nu-

merically estimated using the input process samples. How-

ever, its contribution is usually not significant and can be 

disregarded. 

The following parameters have been used in all presented 

examples: σΦ
2
=1; σr

2
=10

-6
 (additive noise power); the plant 

to be identified is an acoustical impulse response, measured 

in a typical office, originally sampled at 8 kHz (N=1000) 

[11], but resampled here to 2kHz (N=125) in order to fasten 

simulations (Fig. 1). All the other parameters are informed 

in the respective figure. 

Fig. 2 shows the mean weight behaviour for coefficients 10, 

20 and 30 assuming M=40 coefficients, an AR(1) input signal 
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(u(n)=0.9u(n-1)+z(n)) and µ=0.6. Figs. 3 and 4 show results 
for the mean square error for the same input signal as in Fig. 

2 but with step-sizes µ=0.6 and 0.8. The evolution of the 
MSE is presented for different adaptive filter lengths (M=40, 

60 and 80). Fig 5 shows the MSE results for an AR(8) input 

signal and for M=40, 60 and 80. Excellent agreement be-

tween simulations (400 runs) and theory can be verified in 

steady-state conditions. 

 

 

 

Figure 1 – Impulse response of the plant. Obtained from [11] and 

resampled to 2 kHz. 

 

 

 

Figure 2 – Mean weight behaviour for weights indexes 10, 20 and 

30. µ=0.6, M=40 and AR(1) input signals. 

 

Figure 3 – MSE: Comparisons between Monte Carlo simulations 

(ragged lines) and proposed analytical model (continuous lines). 

 

 

Figure 4 – MSE: Comparisons between Monte Carlo simulations 

(ragged line) and proposed analytical model (continuous lines). 

 

 

Figure 5 – MSE: Comparisons between Monte Carlo simulations 

and analytical model proposed. 
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6. CONCLUSIONS 

This paper presented an analytical model for predicting the 

stochastic behaviour of the deficient length Pseudo Affine 

Projection algorithm. Deterministic recursive equations 

were derived for the mean weight and mean square error for 

an equal or smaller number of adaptive taps compared to the 

plant length. Simulation results have show excellent agree-
ment with theoretical predictions during both the adaptation 

(transient) and steady- state phases. 
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