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ABSTRACT
In practice, noise distributions usually are not Gaussian and
may vary in a wide range from light-tailed to heavy-tailed
forms. To provide robust detection of a weak signal, a max-
imin in the Huber sense Neyman-Pearson detector based on
the minimum distance between the signal and observations
is designed. Explicit formulas for the power of detection and
the false-alarm probability are derived.The maximin detec-
tors are written out for the classes of nondegenerate, with a
bounded variance and contaminated Gaussian noise distri-
butions along with some numerical results on their perfor-
mance.

1. INTRODUCTION

Consider the problem of detection of a known signal{si}N
1 in

the additive i.i.d. noise{ni}N
1 with a symmetric pdff from a

classF . Given{xi}N
1 , it is necessary to decide whether the

signal{si}N
1 is observed. The problem of detection is set up

as the problem of hypothesis testing

H0 : xi = ni versus H1 : xi = θ si +ni , i = 1, . . . ,N,

where the positive signal amplitudeθ is assumed known.
Given a pdf f , the classical theory of hypotheses testing
yields various optimal (in the Bayesian, minimax, Neyman-
Pearson senses) decision rules: all the optimal rules are based
on the likelihood ratio (LR) statistic TN(x) = ∏N

i f (xi −
θ si)/ f (xi) that should be compared with a certain threshold.
The differences between the aforementioned approaches re-
sult only in the values of a threshold.

In many practical problems of signal processing, noise
distributions are only partially known. For instance, it may
be assumed that either noise is approximately Gaussian, or
there is some information on its pdf behavior in the central
zone and on the tails, on its moments and subranges, etc. In
his seminal works on robust estimation and hypothesis test-
ing, namely, in [4] and [5], Huber considers the classesF
of allowable noise pdfs as the neighborhoods of nominal
densities and applies minimax approach to design robustM-
estimators of location and robust Neyman-Pearson tests us-
ing the maximum likelihood method for the least favorable
noise distribution densitiesf ∗ in the aforementioned classes
for the null and alternative hypotheses. In these cases, the op-
timal robust statistics have the structures of the bounded like-
lihood and of the bounded likelihood ratio, respectively. Fur-
ther, both those results are used in robust detection. In [13],
Huber’s results on robust hypothesis testing are adapted for
robust detection of a known signal in contaminated Gaussian
noise. Next, Huber’s minimax approach to robust estima-
tion of location is used for asymptotically (N → ∞) locally

optimum robust detection of weak signals (θ → 0) maximiz-
ing either the slope of the detection power atθ = 0 [13],
or the Pitman efficacy of the test statistic [10], or the detec-
tion power [1] (see also [11], [12]). Later, some of these
approaches have been extended to more complicated models
of signals and noises [3], [15], [17]-[19].

In the cases of application of Huber’s minimax approach
to robust detection, optimal detection rules are designed for
specially selected detection rules or test statistics, e.g., for
robust detectors based onM-estimators in [1], for a general-
ized correlator statistic in [10] and [13], for a distance crite-
rion in [15]. Here, we adapt the following robust minimum
distance detection rule

N

∑
i=1

ρ(xi)
H1
≷
H0

N

∑
i=1

ρ(xi −si), (1)

whereρ(x) is a distance measure [3, 15, 17], to the Neyman-
Pearson setting.

Further, we consider an asymptotic weak signal approach
when the signal{si}N

1 decreases with the sample sizeN as
si = siN = Ai/

√
N with finite constantsAi such that the signal

energy is bounded. Within a weak signal approach, the false
alarm probability converges asN→∞ to a nonzero limit [1],
[3], and Huber’s minimax theory can be used to analyze the
detector [8]. Since weak signals are on the border of not be
distinguishable, it is especially important to know the detec-
tor performance.

An outline of the remainder of the paper is as follows.
In Section 2, the power and false alarm probability of the
proposed asymptotically maximin decision rule are derived.
In Section 3, the optimal maximin detection rules are writ-
ten out for the nondegenerate, with a bounded variance, and
contaminated Gaussian noise pdfs. In Section 4, the detector
performance is studied on large samples in the Gaussian and
contaminated Gaussian noise pdf models. In Section 5, some
conclusions are drawn.

2. MAIN RESULTS

Consider the following generalization of minimum distance
detection rule (1)

N

∑
i=1

ρ(xi)−
N

∑
i=1

ρ(xi −si)
H1
≷
H0

λα , (2)

whereλα is a threshold defined by the boundα upon the
false alarm probability

PF = Pr

[
N

∑
i=1

ρ(xi)−
N

∑
i=1

ρ(xi −si) > λα

∣∣∣∣∣H0

]
≤ α. (3)
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To formulate further results, we introduce the derivative
of a loss functionψ = ρ ′ called a score function, belonging
to a certain classΨ.

Assume the following conditions of regularity imposed
on a signal{si}N

1 , densitiesf , and score functionsψ:
(A1) The signal{si}N

1 is weak in the sense that its ampli-
tudes form the decreasing withN sequencessi = Ai/

√
N with

the finite constantsAi , i = 1, . . . ,N such that the signal energy

is finite: lim
N→∞

N

∑
i=1

s2
i = lim

N→∞

1
N

N

∑
i=1

A2
i = E < ∞.

(A2) f is symmetric and unimodal.
(A3) f andψ are continuously differentiable on(0,∞).
(A4) 0< I( f ) =

∫ ∞
−∞[ f ′(x)/ f (x)]2 f (x)dx< ∞.

(A5) Ef ψ =
∫ ∞
−∞ ψ(x) f (x)dx= 0.

(A6) Ef ψ2 =
∫ ∞
−∞ ψ2(x) f (x)dx< ∞.

(A7) 0< Ef ψ ′ =
∫ ∞
−∞ ψ ′(x) f (x)dx< ∞.

Now we briefly comment on these conditions. In the lit-
erature, the conditions imposed on pdfs and score functions
take different forms depending on the pursued goals: in gen-
eral, one may strengthen the conditions on pdfs and weaken
those on score functions, and vice versa (various suggestions
can be found in [2], [4] - [7]). In this paper, we use a balanced
set of conditions partially following [7].

The first condition (A1), as aforementioned, is a tradi-
tional requirement used in an asymptotic weak signal ap-
proach [3], [11]. The condition (A2) is restrictive but nec-
essary for Huber’s minimax theory [4].

The condition (A3) differs from common conditions of
this kind (for example, see [2], pp. 125-127; [4], p. 78, where
the smoothness of pdfs is required inR) allowing a noise
pdf to have a discontinuity of its derivative at the center of
symmetry, e.g., like the Laplace pdf, and thus widening the
class of admissible densities.

The conditions (A4) - (A7) requiring the existence of the
Fisher informationI( f ) and other integrals are commonly
used for the proofs of consistency and asymptotic normality
of M-estimators in robust statistics [2], [4].

The following result is basic for all further constructions.

Lemma 1: Given{si}N
1 , f andψ satisfying conditions

(A1) - (A3), (A5) - (A7), the detector power for the rule (2)
takes the following form asN→ ∞:

PD(ψ, f ) = 1−Φ
(

Φ−1(1−α)− [E /V(ψ, f )]1/2
)

, (4)

where Φ(z) = (2π)−1/2∫ z
−∞ exp(−t2/2)dt is the standard

Gaussian CDF andN−1V(ψ, f ) is the asymptotic variance
of Huber’s M-estimators of location [4] withV(ψ, f ) =
Ef ψ2/(Ef ψ ′)2.

The threshold valueλα = λα(ψ, f ) is given by

λα(ψ, f ) = Φ−1(1−α)
(
E Ef ψ

2)1/2−0.5 E Ef ψ
′ . (5)

The sketch of proof: The derivation of formula (4) is
based on the Taylor expansion of the left-hand part of (2)
and it is similar to the techniques used for derivation of the
asymptotic variance forM-estimators in [4]; some examples
of the application of those techniques to detection problems
can be found in [12]. Using the same techniques, it can be

shown that the false alarm probability (3) is given by the fol-
lowing expression

PF = 1−Φ
(
(λα +0.5E Ef ψ

′)
/(

E Ef ψ
2)1/2

)
, (6)

equating which toα, we get the threshold value (5).
The result of Lemma 1 will be sensible if the powerPD

tends to unit with the increasing energyE . From (4) it fol-
lows that this holds whenΦ−1(1−α)− [E /V(ψ, f )]1/2 < 0
or when

α > α(ψ, f ) = 1−Φ
(√

E /V(ψ, f )
)

. (7)

From the Taylor expansion of the left-hand part of (2) it im-
mediately follows that inequality (7) implies the consistency
of detection, i.e., lim

N→∞
PD = 1.

The consistency condition (7) means that there should
be a lower boundα on the false alarm probability (similar
bounds also arise in other settings [1], [10]). Evidently, the
greater energy, the lower the required minimum of the false
alarm probability.

The Neyman-Pearson setting requires maximizing the
detection powerPD under the bounded false alarm prob-
ability PF ≤ α; apparently, it can be achieved by choos-
ing the maximum likelihood loss functionρ(x) = ρML(x) =
− log f (x) with the corresponding score functionψ(x) =
ψML(x) =− f ′(x)/ f (x) in detection rule (2).

Theorem 1: Given pdf f , the Neyman-Pearson detec-
tion rule is provided by (2) withρML(x) =− log f (x) andλα

defined by (5) withψML(x) =− f ′(x)/ f (x). The correspond-
ing detection power is given by

PD( f ) = 1−Φ
(

Φ−1(1−α)− [E I( f )]1/2
)

.

Proof: Since the asymptotic varianceV(ψ, f ) attains
its lower Craḿer-Rao boundary at the maximum likelihood
score functionVmin = V(ψML, f ) = 1/I( f ) , the required re-
sult directly follows from (4).

Now we are in position to consider the minimax setting
when pdf f is not known: we return to the initial assumption
that it belongs to a certain convex classF of distribution
densities. From (4) it follows that the maximin problem with
respect to the detection powerPD(ψ, f ) is equivalent to the
Huber minimax problem with respect to the asymptotic vari-
anceV(ψ, f ) of M-estimators:

max
ψ∈Ψ

min
f∈F

PD(ψ, f ) ⇐⇒ min
ψ∈Ψ

max
f∈F

V(ψ, f ).

Theorem 2: Under the conditions (A1) – (A7), the max-
imin Neyman-Pearson detection rule is given by (2) with the
maximum likelihood choice of the loss functionρ∗ for the
least favorable densityf ∗ minimizing Fisher information for
location

ρ
∗(x) =− log f ∗(x), f ∗ = arg min

f∈F
I( f ).

The threshold is defined by (5) withψ = ψ∗ and f = f ∗.
Further, the maximin solution(ψ∗, f ∗) provides the guaran-
teed lower bound on the power

PD(ψ∗, f )≥ PD(ψ∗, f ∗)

= 1−Φ
(

Φ−1(1−α)− [E I( f ∗)]1/2
) (8)
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under the bounded false alarm probabilityPF(ψ∗, f )≤ α for
all f ∈ F and for α satisfying the consistency condition

α > α∗ = 1−Φ
(√

E I( f ∗)
)

.

Proof: The first assertion directly follows from the
saddle-point property

V(ψ∗, f )≤V(ψ∗, f ∗)≤V(ψ, f ∗) (9)

(see [4], Theorem 2). SincePD depends on the score function
ψ and pdf f only through theV(ψ, f ), we obtain formula (8)
for the lower boundPD(ψ∗, f ∗) on the power.

Next we check whether the inequalityPF(ψ∗, f ) ≤ α

holds for all pdfsf in classF . Using formula (6) and sub-
stituting the thresholdλ ∗α defined by (5) forλα into the both
parts of this inequality, we rewrite the latter in the following
form

Ef ∗ ψ
∗2

(
Φ−1(1−α)− 1

2

√
E

V(ψ∗, f ∗)

)

≥ Ef ψ
∗2

(
Φ−1(1−α)− 1

2

√
E

V(ψ∗, f )

)
.

Now divide the both parts of this inequality by(Ef ∗ ψ∗′)2,
and asV(ψ∗, f ∗) = 1/I( f ∗), it takes the following form

1
I( f ∗)

(
Φ−1(1−α)− 1

2

√
E I( f ∗)

)
≥

Ef ψ∗2

(Ef ∗ ψ∗′)2

(
Φ−1(1−α)− 1

2

√
E

V(ψ∗, f )

)
.

(10)

Further, the maximum of the ratioEf ψ∗2/(Ef ∗ ψ∗′)2 is at-
tained at f = f ∗ being equal toV(ψ∗, f ∗); therefore, by
the minimax property (9)V(ψ∗, f ) ≤ V(ψ∗, f ∗), inequal-
ity (10) and the required inequalityPF(ψ∗, f ) ≤ α hold for
all α ∈ (0,1).

3. MAXIMIN DETECTORS FOR VARIOUS NOISE
DISTRIBUTION CLASSES

Within the minimax approach, the choice of a noise distribu-
tion classF entirely determines the structure of a maximin
detector. Below we consider qualitatively different noise dis-
tribution classes with the corresponding least favorable den-
sities and maximin detectors.

3.1 Nondegenerate Noise Distributions

In the class of nondegenerate pdfs (with a bounded density
value at the center of symmetry)

F1 = { f : f (0)≥ 1/(2a) > 0} ,

the scale parametera describes the distribution dispersion
about the center of symmetry. The classF1 is one of the
most wide classes: any unimodal distribution density with a
nonzero value at the center of symmetry belongs to it. The
least favorable density here is the Laplace [14]:

f ∗1 (x) = (2a)−1exp(−|x|/a) .

Thus, we have the maximinL1-norm detector withρ∗(x) =
|x|/a

N

∑
i=1
|xi |−

N

∑
i=1
|xi −si |

H1
≷
H0

Φ−1(1−α)
√

E −E /(4a) .

The lower bounds on power and on false alarm probability
given by Theorem 2 are as follows

PD(ψ∗, f )≥ 1−Φ
(

Φ−1(1−α)−
√

E /a
)

,

α > α
∗ = 1−Φ

(√
E /a

)
.

3.2 Noise Distributions with a Bounded Variance

In the class of densities with a bounded variance

F2 =
{

f :
∫ ∞

−∞
x2 f (x)dx≤ σ

2
}

,

the least favorable density is Gaussian [9]:

f ∗2 (x) = N(x;0,σ) = (
√

2πσ)−1/2exp
(
−x2/(2σ

2)
)
.

The maximinL2-norm detector uses the quadratic distance
ρ∗(x) = x2/(2σ

2) and the detection rule (2) can be rewritten
in the correlation detectorform as

N

∑
i=1

xi si

H1
≷
H0

Φ−1(1−α)σ
√

E −E .

The lower bounds on power and on false alarm probability
are given by

PD(ψ∗, f )≥ 1−Φ
(

Φ−1(1−α)−
√

E /σ

)
,

α > α
∗ = 1−Φ

(√
E /σ

)
.

Remark: The minimax approach does not necessarily
imply robustness, since theL2-norm detector being maximin
in the Huber sense in the class of distributions with a bounded
variance, is not at all robust, nevertheless, being a detector
of guaranteed power in classF2. Thus, if the upper-bound
σ

2 on variance is small, then the minimax approach yields
a reasonable result and theL2-norm detector can be success-
fully used with relatively light-tailed noise distributions, e.g.,
see [17]. On the contrary, if we deal with really heavy-tailed
distributions (gross errors, impulse noises) whenσ

2 is large
or even infinite like for the Cauchy-type distributions, then
the maximin solution in classF2 is still trivially correct as
PD(ψ∗, f )≥ α and α > 1/2, but practically senseless.

3.3 Contaminated Gaussian Noise Distributions

Consider the class ofε-contaminated Gaussian pdfs

FH = { f : f (x) = (1− ε)N(x;0,σ)+ εh(x)} ,

whereh(x) is an arbitrary pdf andε (0≤ ε < 1) is a con-
tamination parameter giving the fraction of contamination.
The least favorable density consists of two parts: the Gaus-
sian in the center and the exponential tails [4]. The maximin
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Table 1: The MinimumSNR∗ Values Providing Consistency
of Detection

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2
α = 0.01 5.77 6.80 8.07 9.47
α = 0.05 2.88 3.40 4.03 5.54
α = 0.1 1.75 2.06 2.45 3.36

Figure 1: The asymptotic power of theL1-norm, L2-norm,
and Huber’s maximin detectors in the Gaussian noise with
densityN(x;0,σ); PF = 0.01.

Huber’s detector uses the piece-wise linear-quadratic dis-
tance functionρ∗(x) = x2/(2σ2) for |x| ≤ kσ and ρ∗(x) =
k|x|/σ −k2/2 for |x|> k, where the dependencek = k(ε) is
tabulated in [4]. The thresholdλ ∗α is given by (5)

λ
∗
α = Φ−1(1−α)

(
(1− ε) [2Φ(k)−1]

E

σ2

)1/2

− (1− ε) [2Φ(k)−1]
2

E

σ2 .

Here we present the numerical results forε = 0.1: the lower
bounds on power and on false alarm probability are as fol-
lows

PD(ψ∗, f )≥ 1−Φ
(

Φ−1(1−α)−0.819
√

E /σ

)
,

α > α
∗ = 1−Φ

(
0.819

√
E /σ

)
.

4. PERFORMANCE EVALUATION

Now we compare the asymptotic performance of the max-
imin detectors in the classesF1, F2, andFH with respect
to their lower bounds on the false alarm probability and
power. In order to use for comparisons the conventional
signal-noise ratio term (SNR), we take the corresponding
least favorable distributions of the same (unit) variance: set
a = 1/

√
2, σ

2 = 1 andε = 0.1, σ2( f ∗H) = 1 for the classes
F1, F2 andFH , respectively. Next, choose the false alarm

Figure 2: The asymptotic power of theL1-norm, L2-norm,
and Huber’s maximin detectors in the Cauchy contaminated
Gaussian noise with density 0.9N(x;0,σ)+0.1/(π(1+x2));
PF = 0.01. In this case,PD2 = 0.01.

probability α = 0.01. For the corresponding lower bounds
on false alarm probability, we haveα∗

1 = 1−Φ
(√

2SNR
)
,

α∗
2 = 1−Φ

(√
SNR

)
, α∗

H = 1−Φ
(
0.798

√
SNR

)
, where

SNR= E /σ2( f ) is the customary signal-noise ratio. Then
the lower bounds upon detection power areP∗D1 = 1−
Φ
(
2.3276−

√
2×SNR

)
, P∗D2 = 1− Φ

(
2.3276−

√
SNR

)
,

andP∗DH = 1−Φ
(
2.3276−0.798

√
SNR

)
.

The minimal valuesSNR∗ providing consistency of de-
tection whenSNR> SNR∗ are as follows:

SNR∗(α) =
[
Φ−1(1−α)

]2/
I( f ∗) .

As in practice the class of contaminated Gaussian noise dis-
tributions is mostly required, Table 1 exhibits theSNR∗ val-
ues versus the false alarm probabilityα and the parameter of
contaminationε.

Next we compare the asymptotic performance of the
maximin detectors on the Gaussian distribution with density
N(x;0,1) and the heavy-tailed Cauchy-contaminated Gaus-
sian with density 0.9N(x;0,1)+0.1/(π(1+x2)). The results
are exhibited in Figs. 1 – 2, where the power is computed for
the SNRvalues sufficiently large to provide consistency of
detection (see Table 1).

TheL1-norm and Huber’s detectors confirm their robust
properties in heavy-tailed noise, Huber’s being better than
the L1-norm detector in the Gaussian noise. Naturally, the
L2-norm is optimal in the Gaussian noise and catastrophi-
cally bad in the contaminated Gaussian noise (PD2 = α). Fi-
nally, Huber’s detector can be regarded as a reasonable com-
promise between theL1- andL2-norm detectors.

The performance of theL1-norm, L2-norm and Huber’s
detectors was also studied by Monte Carlo technique on
small samples (N = 20) and the obtained results were quali-
tatively similar to those on large samples.

5. CONCLUSION

Our main aim is to expose a new result on the application of
Huber’s minimax approach to robust detection in the particu-
lar case of the minimum distance Neyman-Pearson detectors.
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First, we generalize the minimum distance detection rule
(1) introducing the maximin Neyman-Pearson detector (2)
with the guaranteed lower bound on the power under general
regularity conditions (Theorem 2).

Second, the maximin detectors are designed for the
classes of nondegenerate, with a bounded variance andε-
contaminated Gaussian noise distributions.

Finally, note that the obtained results can be extended
on the classes with bounded distribution subranges and their
various combinations [16], [17].
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