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ABSTRACT 

A time domain constrained subspace-based estimator for 

extracting a visual evoked potential (VEP) from a highly 

noisy brain activity is proposed. Generally, the desired 

VEP is corrupted by background electroencephalogram 

(EEG) behaving as colored noise, making the overall  

signal-to-noise ratio as low as -10 dB. The estimator is 

designed to minimize signal distortion, while keeping 

residual noise below a specified threshold. Also, the 

algorithm applies a Karhunen-Loeve transform to 

decorrelate the corrupted VEP signal and decompose it 

into two parts called signal and noise subspace. Before an 

inverse Karhunen-Loeve transform is applied, the noise 

only subspace is discarded. VEP enhancement is therefore 

achieved by estimating the desired VEP only from the 

signal subspace. The performance of the filter to detect the 

latencies of P100's is comprehensively assessed using 

realistically simulated VEP and EEG data. Later, the 

effectiveness and validity of the algorithm are evaluated 

using real patient data recorded in a clinical environment. 

The results from both experiments show that the estimator 

generates reasonably low errors and high success rate.  
 
 
Keywords: Eigenvalue decomposition, subspace methods, 

time-domain estimator, visual evoked potentials.  

1. INTRODUCTION 

Visual evoked potentials (VEPs) are special types of 

elecroencephalogram (EEG) signals generated by the human 

brain when a specific visual stimulation is applied to the eye 

(left or right) of the subject under study. In a hospital, a 

visual evoked potential test remains as the only objective 

test [1] to assess the physiology (i.e., conduction) of the 

visual or optical pathway from the retina to the occipital 

cortex of the brain. Primarily, the latency of the robust and 

positive going P100 component is used by clinicians to 

check the integrity of the visual pathways. For normal 

subjects, their P100 components usually produce latencies 

very close to 100 ms. On the contrary, subjects with 

defective visual pathways will register prolonged P100 

latencies (e.g., at 120 ms, 130 ms, etc.). As an example, a 

doctor uses the P100 reading as one of the decision making 

factors whether or not a cornea transplant can be performed 

on a patient. 

 

In comparison to the frequencies of the ongoing EEGs, 

VEPs are dominated by a lower frequency spectrum. 

Nonetheless, significant amount of EEG frequencies with 

much higher power reside in the same band as that of the 

VEPs. Practically, due to very poor signal-to-noise ratio 

(SNR) at -5 to -10 dB, the true VEP forms are not readily 

available from brain recordings since they are highly mixed 

with the spontaneous EEG waves, which can be regarded as 

colored noise. As such, the estimation of VEP from 

background brain activities still poses a great but an 

interesting challenge to signal processing researchers.  
 
This paper is an extension of our signal subspace work 

reported in [2]. It provides more comprehensive theoretical 

information, statistically larger experimental data and 

therefore reliable test results involving both simulated and 

real patient data. Another variation of our subspace approach 

is documented in [3].  
 

The focus of this study is to correctly estimate VEP 

latencies, instead of VEP amplitudes; doctors are normally 

interested in the VEP latencies as opposed to the VEP 

amplitudes, as far as the VEP test is concerned. The VEP 

extraction method presented here is inspired by work from a 

speech enhancement area, originally proposed by Ephraim 

and Van Trees [4] for white noise elimination, and further 

extended by Rezayee and Gazor [5] to deal with colored 

noise. In this paper, we apply the constrained optimization 

concept suggested by [4] and adapt the estimator enhanced 

by [5] to estimate the P100 components from EEG 

background, without using a pre-whitening stage.  

2. MODEL DEVELOPMENT 

2.1 VEP Model 
 
It is assumed that a VEP is actually a “known" waveform 

which can be artificially produced. The created VEP will 

then be added to much higher power “colored noise” that 

represents EEG and other background noise. The resultant 

waveform will be treated as a composite signal that needs to 

be processed and extracted using the developed technique to 

get back the desired VEP. Thus, the following model is 

defined. 
 

 y = x + n                      (1) 
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where, y is the M-dimensional vector of the corrupted 

(noisy) VEP signal; x is the M-dimensional vector of the 

original (clean) VEP signal; n is the M-dimensional vector 

of the additive EEG noise which is assumed to be  

uncorrelated with x. Further, H is defined as the M x M-

dimensional matrix of the VEP time-domain constrained 

linear estimator.  
 

Next, x̂  is defined as the M-dimensional vector of the 

estimated VEP signal. The estimated VEP signal x̂  is  

related to H and y in the following way: 
 

 x̂   = H.y                     (2) 
 
The estimated VEP signal x̂  will never be exactly equal to 

the original VEP signal x; the error signal ε defined by [4] is 

written as: 
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The εx represents the VEP distortion and εn represents the 

residual noise. If the VEP signal covariance matrix Rx is 

known, then the energies of the signal distortion can be 

written as 
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Similarly, if the EEG noise covariance matrix Rn is known, 

the energies of the residual noise can be expressed as 
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Both energies in (4) and (5) lead to the total residual 

energies given as 
222
nx εεε +=                   (6) 

The EEG noise covariance matrix Rn can be obtained from 

the pre-stimulation EEG samples, during which the VEP 

signals are absent. If the VEP and EEG noise are 

independent, the following relationships can be established: 
 

Ry = Rx + Rn
  
                                  (7) 

  
where, Ry is the covariance matrix of the corrupted VEP. 

Using (7), we can calculate Rx by subtracting Rn from Ry.  
 
The aim is to minimize the unwanted energies in (6) so that 

the generated error is minimal. A difficulty arises since 

lowering noise energies means increasing the distortion 

energies, and vice versa. Therefore, a proper balance needs 

to be determined so that the noise residues can be reasonably 

reduced without introducing significant distortion to the 

processed signal. The excessive amount of the residual noise 

prohibits the discrimination between the desired VEP peak 

(i.e., the P100) and the noise peaks itself, even if the desired 

signal is successfully extracted. On the other hand, the 

excessive distortion means the desired VEP peak may have 

shifted either to the left or right of its original position, 

resulting in an inaccurate measurement of the VEP latency.  

   

2.2 Estimator Optimization 
 
An optimal time domain constrained linear estimator H that 

minimizes the VEP signal distortion and maintains the 

residual noise within a permissible level, is mathematically 

formulated by [4] as 
 

222 :subject to    

            

min Mσnxopt ≤= εε

H

H                (8) 

where M is the dimension of the noisy vector space and σ 
2
 

is a positive constant noise threshold level. The σ 
2
 in (8) 

dictates the amount of the residual noise allowed to remain 

in the linear estimator. Next, the Lagrangian function in 

association with the “Kuhn-Tucker necessary conditions for 

constrained minimization” [4] are applied to (8) to obtain 

Hopt. The formed Lagrangian function can be expressed as 
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where µ is the Lagrange multiplier. It follows that the filter 

matrix H is a stationary feasible point if it satisfies the  

following gradient equation ∇HL(H, µ) = 0: 
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Subsequently, the gradient equation in (10) can be solved to 

yield H. 
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The filter matrix H stated in (11) functions as a fixed filter, 

which performs well to estimate the VEP at a relatively 

high SNR. As the SNR degrades, it is desirable if H can be 

adjusted and manipulated accordingly to minimize the noise 

residues while keeping the signal distortion at an acceptable 

level.  

 

2.3 Karhunen-Loeve Transform 
 
The Karhunen-Loeve Transform (KLT) is a unitary linear 

transform widely applied in signal processing areas. The 

KLT scheme exploits the statistical properties of a discrete-

time stochastic process; KLT optimally decorrelates the 

process by means of diagonalizing its correlation matrix. 
 
Theorem 1 (Karhunen-Loeve Transform). Let Ra be the 

MxM symmetric correlation matrix of a discrete-time 

stochastic process a(n). Further, let V and D be the 

corresponding MxM unitary eigenvector and eigenvalue 

matrices of Ra. Then KLT is defined as the unitary transform 

of the following form: 
 

VVVVDVVDVR unitary  for    ,
11 TT

a === −−        (12) 
 
The relationships among various parameters established in 

(12) can be achieved by taking eigendecomposition on Ra. It 

follows that (12) can be rearranged accordingly to compute 

the diagonal eigenvalue D = diag [d1, d2, ..., dM];  that is  
  

V  VV  , RVVRVD unitaryfor 
1 === −−− T

a
TT

a V     (13) 

Equation (13) reveals that Ra is transformed by the V
T
 (i.e., 

KLT matrix) and V (i.e., inverse KLT) terms into the 
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diagonal matrix D, resulting in the optimal decorrelation of 

the stochastic process.  
 
Proof: The KLT and IKLT concept involving a column 

vector a and its correlation matrix Ra, is represented by a 

block diagram shown in Figure 1 below. 

 

 
Figure 1 - KLT and IKLT schemes involving an original 

vector a and a unitary eigenvector V. 
 

With reference to Figure 1, let b represent a column vector 

after the KLT of a, and let c represent a column vector after 

the IKLT block. The transformation of a into b is achieved 

using the KLT matrix V
T
. 

 

aVaVb
T== −1

                                (14) 
 
To obtain decorrelation, the correlation matrix of b is 

computed as the expectation of the outer product of b by 

itself, written as 
 

{ } { } DVRVaVaVbbR ==== a
TTTTT

b  )( EE          (15) 
 

The matrix Ra is linearly transformed into Rb by the VRV a
T  

term; the correlation matrix Rb of b is actually the 

eigenvalue matrix D of Ra. Since Rb is fully diagonal, it can 

be concluded that the cross-correlation has been removed. In 

order to return to the original space before the transform in 

the KLT domain, the inverse transform using the IKLT 

matrix V needs to be performed on b; that is, 
 

aaVVVbc
T ===                 (16) 

 
From (16), it is clear that the original vector a has been 

recovered. Furthermore, the correlation matrix of c is 

computed as the expectation of the outer product of c by 

itself, written as 
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From (17), it is clear that the correlation matrix Ra has been 

recovered by taking the linear inverse transform of Rb 

denoted by the T
bVVR term. Alternatively, the KLT 

expansion is termed as a subspace estimator when some of 

the decomposed orthogonal components are truncated to 

reject noise. The truncation means some eigenvalues and 

corresponding eigenvectors carrying unwanted elements are 

removed; only the components deemed to be significant are 

retained in the process. The reduced matrix is then 

reconstructed to estimate the required signal. In brief, the 

decomposition and decorrelation of a noisy observation can 

be performed using eigenvalue decomposition (EVD). 

 

2.4 Generic Subspace Approach 
 
With reference to (11), eigenvalue decomposition is to be 

performed on Rx and Rn. By assuming that Rx = U∆∆∆∆xU
T
 and 

Rn = U∆∆∆∆nU
T
 exist, we rewrite (11) as 

 
Hopt = U∆∆∆∆x(∆∆∆∆x + µ∆∆∆∆n)

-1
U

T
                (18) 

   
where, Hopt denotes an optimal estimator; U is the unitary 

eigenvector matrix produced from a symmetric basis matrix 

ΣΣΣΣ which is to be computed from the proper combinations of 

Rx and Rn terms; ∆∆∆∆x is the diagonal eigenvalue matrix of Rx; 

∆∆∆∆n is the diagonal eigenvalue matrix of Rn; µ is the Lagrange 

multiplier which has to be set to a proper value. The higher 

value of µ  eliminates more noise residues at the expense of 

higher distortion in the recovered VEP.   
 
Theoretically, the linear estimator in (18) functions  

optimally if the unitary eigenvector matrix U derived from ΣΣΣΣ 

is able to simultaneously diagonalize both Rx and Rn. The 

full diagonalization of their eigenvalues can be obtained if 

and only if Rx and Rn multiplication is commutative  

(i.e., Rx Rn = Rn Rx). In reality, complete diagonalization (i.e., 

without pre-whitening) is not possible since their 

multiplication is non-commutative.  

 

2.5 Signal Subspace Method Based on the Covariance 

Matrix of the Observed Signal 
 
Next, we assume that ΣΣΣΣ = Ry produces an eigenvector matrix 

that shall approximately diagonalize both Rx and Rn. This 

choice of ΣΣΣΣ  is the same as that used by [5]. The eigenvalue 

matrices of the desired VEP and the unwanted noise are then 

calculated as follows: 

  VRVU RUUxxUΛ     ] [ x
T

xEx
TTT ≈=≡                  (19) 

 

VRVURUUnnUΛ       ] [ nnEn
TTTT ≈=≡                  (20) 

Applying (19) and (20) to (18), we approximate our  

signal subspace method (SSM) estimator as 
 

    HSSM = V ΛΛΛΛx (ΛΛΛΛx + µ ΛΛΛΛn)
-1

 V
T 
=  V G V

T
              (21) 

 
where G = ΛΛΛΛx (ΛΛΛΛx + µ ΛΛΛΛn)

-1
 is known as the gain matrix. 

 

The estimated VEP is then calculated as 
 

 x̂
SSM

 = HSSM . y = V G V
T
. y                    (22) 

 
The corrupted VEP signal y in (22) is decorrelated by the 

KLT matrix V
T
. Then, the transformed signal is modified by 

a signal subspace gain matrix G. Next, the modified signal is 

retransformed back into the original form by the inverse 

KLT matrix V to obtain the desired signal.  

 

2.6 Algorithm Implementation 
 
The proposed approach can be formulated in the following 

six steps. For each VEP trial: 
 
Step 1: Compute the covariance matrix of the noisy signal Ry, 

and the noise covariance matrix Rn. 
 

IKLT 

 
KLT 

V T 

 a 

V 

c = V b  

Rb Ra Rc (2nd Order) 

(1st Order) 
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Step 2:  Perform the eigendecomposition of ΣΣΣΣ = Ry, extract 

the resulting eigenvector matrix V, and compute the signal 

and EEG noise eigenvalue matrices ΛΛΛΛx and ΛΛΛΛn, respectively. 

Step 3: Assuming that λk series represented by λ1 > λ2 > λ3 … 

λM are the diagonal elements of ΛΛΛΛx sequenced in descending 

order, approximate the dimension L of the VEP signal 

subspace by counting the number of non-zero elements of ΛΛΛΛx.  

L = arg{
Mk ≤≤   1

max
 λk > 0}      (23) 

Step 4: Compute the gain vector of the estimator as  

follows: 

Li
inλµixλ

ixλiq ≤≤
+

= 1      
)( )(

)(
)(             (24) 

Experimentally, µ was varied from 0 to 25, and µ = 2 was 

found to be ideal. The gain matrix G is obtained by 

diagonalizing the gain vector, q. 

G = 





00

0}diag{q
 = 





00

0Q
            (25) 

Step 5: Determine the linear SSM estimator HSSM as 

follows: 

 HSSM = V . G . V
T
                        (26) 

 
Step 6: Estimate the enhanced VEP signal by: 

  x̂
SSM 

= HSSM . y                     (27) 

3. PERFORMANCE EVALUATION 

The SSM method was tested and assessed using artificial 

and real human data. 
 
3.1 Assessment of the Algorithm using Artificial Data 
 
The clean artificial VEP x was generated by superimposing 

several Gaussian functions; the amplitudes, variance and 

mean of these functions were tweaked to generate precise 

peak latencies at 100 ms, mimicking the real P100.  
 

The pre-stimulation EEG colored noise n_pre was generated 

using an autoregressive (AR) model [6] governed by 
  
             v(n) = 1.5084v(n – 1) – 0.1587v(n - 2) – 

 0.3109v(n – 3) – 0.0510v(n - 4) + u(n)      (28) 
       
The artificial post-stimulation EEG noise n was generated by 

changing the variance of n_pre. The artificially-corrupted 

VEP signal y was then produced by adding  x and n.  
 
To test the robustness of SSM, the ratio of the artificial VEP 

over the EEG noise was varied from approximately +0 dB to 

-11dB. The corrupted VEP signal with a specific value of 

SNR was applied to the input of the SSM filter and the 

estimated P100 waveform was retrieved at the output. To 

obtain reliable statistics, five hundred different runs were 

performed for each level of SNR. Any trial was noted as a 

failure if the intended peak could not be differentiated from 

noise, or if the peak was totally absent. For successful runs, 

the values of the extracted peaks were precisely recorded. 

The highest peak in the waveform is considered as the 

wanted P100 component. 

Next, the average errors eP100  in estimating the latency of the 

P100 was calculated as follows: 

∑ −=
=

500

1
100100 100ˆ 

i
PP te                            (29) 

where 100P̂t  represents the estimated P100 latency in 

milliseconds. Table 1 below tabulates the success rate and 

average errors for the SSM estimator.  
 

Table 1 - The failure rate and average errors of the SSM 

estimator at SNR = 0 to -11 dB.  
 

 

S
N

R
 

[d
B

] Failure 

Rate 

[%] 

Average 

Error S
N

R
 

[d
B

] Failure 

Rate 

[%] 

Average 

Error 

0 4.2 4.7 -6 13.6 6.5 

-1 5.6 4.9 -7 14.4 7.2 

-2 6.8 5.4 -8 16.2 8.0 

-3 8.0 5.4 -9 17.2 8.3 

-4 10.8 6.3 -10 17.4 8.8 

-5 12.6 6.3 -11 18.3 9.4 

 
 
From Table 1, it can be stated that SSM produces the least 

failure rate at 0 dB and the highest failure rate at -11 dB. 

Correspondingly, the lowest average error occurs at 0 dB 

and the highest one is generated at -11 dB also. In the worst 

case condition, SSM produces failure rate slightly less than 

19 % and an average error slightly less than 10.  
 
For some graphical illustrations, various waveforms with 

successfully estimated P100's at -6 and -11 dB are shown in 

Figure 2 below. 
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Figure 2 - Clean VEP, corrupted VEP and estimated VEP 

waveforms. (a) Estimation by SSM at -6 dB; (b) Estimation by 

SSM at -11 dB. 

 

3.2 Assessment of the Algorithm using Human Data 
 
This section reveals the accuracy of the SSM technique in 

estimating human P100 peaks, which are used by doctors as 

objective evaluation of the visual pathway conduction. 

Experiments were conducted at Selayang Hospital, Kuala 

Lumpur using RETIport32 equipment, and carried out on 

sixteen subjects having normal (P100 [ 115 ms) and 

abnormal (P100 > 115 ms) VEP readings. They were asked 

to watch a pattern reversal checkerboard pattern. The 

detailed test setup (sampling frequency, electrode 

connections, etc.) can be found in [3]. Eighty trials for each 

subject’s right eye were processed by the VEP machine 

using ensemble averaging (EA). The averaged values were 
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readily available and directly obtained from the equipment. 

Since EA is a multi-trial scheme, it is expected to produce 

good estimation of the P100 that can be used as a baseline 

for comparing the SSM estimator performance.   
 

Further, SSM requires unprocessed data from the machine. 

Thus, the equipment was configured accordingly to generate 

the raw data. The recording for every trial involved 

capturing the brain activities for 333 ms before stimulation 

was applied; this enabled us to capture the colored EEG 

noise alone. The next 333 ms was used to record the post-

stimulus EEG, comprising a mixture of the VEP and EEG. 

The same process was repeated for the consecutive trials. 

For comparisons with EA, the eighty different waveforms 

per subject produced by SSM were also averaged. Again, the 

strategy here was to look for the highest peak from the 

averaged waveform. The purpose of averaging the outcome 

of the SSM was to establish the performance of the SSM as 

a single-trial estimator; the mean SSM peak that is close to 

the EA peak reflects the accuracy of the individual single-

trial outcome. Table 2 below summarizes the mean values of 

the P100's by EA and SSM for the sixteen subjects.  
 

Table 2 - The mean P100's of the EA and SSM estimators for 

sixteen different subjects.  
 

S
u

b
je

ct
 

EA 

Method 

SSM 

Method 

S
u

b
je

ct
 

EA 

Method 

SSM 

Method 

S1 99 100 S9 130 148 

S2 100 100 S10 117 106 

S3 119 120 S11 119 108 

S4 128 132 S12 114 112 

S5 99 118 S13 102 104 

S6 107 105 S14 123 117 

S7 108 109 S15 102 107 

S8 107 115 S16 108 108 
 
If the maximum allowable mean error (em) is set at !5, SSM 

successfully estimated the P100's from subjects S1 (em = 1), 

S2 (em = 0), S3 (em = 1), S4 (em = 4), S6 (em = 2), S7 (em = 1), 

S12 (em = 2), S13 (em = 2), S15 (em = 5), and S16 (em = 0). On 

the other hand, SSM unsuccessfully estimated the intended 

peaks from subjects S5 (em = 19), S8 (em = 8), S9 (em = 18), 

S10 (em = 11), S11 (em = 11) and S14 (em = 6). Therefore with 

the given number of subjects, the success rate for SSM is at 

62.5 %. 
 
Illustrated in Figure 3 below is the SSM's extracted Pattern 

VEP for S3 from trial #1. It is to be noted that any peaks 

that occur below 90 ms are noise and are therefore ignored. 

Attention is given to any dominant (i.e., highest) peak(s) 

from 90 to 150 ms. From Figure 3, the highest peak 

produced by SSM is at 117 ms, which is close to 119 ms 

obtained by EA. On the other hand, the corrupted VEP 

(unprocessed raw signal) contains two dominant peaks at 

110 and 116 ms, with the one at 110 ms being slightly 

higher. Therefore, SSM manages to suppress the peak at 

110 ms so that the real P100 peak can be retrieved. In brief, 

the simulated and real data experiments exhibit the 

capability of the subspace technique in VEP estimation.     
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Figure 3 - The P100 of the third subject (S3) taken from trial 

# 1 (note: the P100 produced by the EA method is 119 ms).  
 

4. CONCLUSIONS AND FUTURE WORK 

A subspace method based on the eigendecomposition of the 

observed signal covariance matrix has been presented and 

tested to estimate the VEP's P100 peaks severely degraded 

by colored EEG noise. The results of the simulated and real 

patient data reveal that a subspace approach is a promising 

technique that can be further refined and applied in the real 

world as a single trial estimator of biomedical signals, which 

are currently extracted by means of multi-trial ensemble 

averaging. 
  
Next, simulated and real human data involving the estimation 

of the VEP's P200 and P300 peaks are to be performed to 

further assess the capability of SSM. In order for the 

algorithm to function optimally, a suitable basis matrix for 

the eigendecomposition operation needs to be determined, so 

that both the signal and noise covariance matrices can be 

simultaneously and fully diagonalized. 
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