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ABSTRACT

The Minimum Description Length (MDL) principle led to various
expressions of the stochastic complexity (SC), and the most recent
one is given by the negative logarithm of the Normalized Maxi-
mum Likelihood (NML). For better understanding the properties of
the newest SC-formula, we relate it to the well-known Generalized
Likelihood Ratio Test (GLRT). Additionally, we compare the SC
with the Bayesian Information Criterion (BIC) and other model se-
lection rules. Some of the results are discussed in connection with
families of models that are widely used in signal processing.

1. INTRODUCTION

The recent advances in model selection methods based on Minimum
Description Length (MDL) principle have made possible to use the
negative logarithm of the normalized maximum likelihood (NML)
for evaluating the stochastic complexity (SC) [15]. The newest SC-
formula (see Section 2 for more details) is not very popular in the
signal processing community, where the asymptotic two-term cri-
teria, called also GIC (General Information Criterion), are widely
used. For GIC, the first term is given by the minus maximum log-
likelihood, and the second one is a penalty coefficient that depends
on the number of parameters and, in some cases, on the sample size
[1, 12, 17].

The two-term criteria have been extensively studied in the pre-
vious signal processing literature (see the survey paper [20]). Be-
cause it was introduced only recently, SC has received less attention.
For example, the equivalence between GIC and the Generalized
Likelihood Ratio Test (GLRT) was carefully investigated [19, 21],
but similar results concerning the SC do not exist. This is why we
elaborate in Section 3 on the relation between SC and GLRT. We
mention that Rissanen has already used an early version of the SC
for hypothesis testing [13]. Relying on the concept of optimally
distinguishable distributions (ODD), an MDL method for compos-
ite hypothesis testing was proposed in [15] and further extended in
[11]. In this paper we do not consider the ODD-based methods.

Section 4 is focused on the comparison between SC and other
model selection rules, with a special emphasis on the relation be-
tween SC and the Bayesian Information Criterion (BIC) [17].

Notations: We denote vectors by boldface lowercase letters and
matrices by boldface uppercase letters. The identity matrix of ap-
propriate dimension is denoted by I, while 0 denotes a null vec-
tor/matrix of appropriate dimension. For a full-rank matrix X hav-
ing more rows than columns, 〈X〉 is the column space of X and

PX = X(X⊤X)−1X⊤ is the orthogonal projection onto 〈X〉, with

the convention that the superscripts (·)⊤, (·)−1 denote the transpose
and the matrix inverse, respectively. The projection onto the orthog-

onal complement of 〈X〉 is P⊥
X = I−PX, while ‖ · ‖ is used for the

Euclidean norm. The operator | · | denotes the determinant if the ar-
gument is a matrix, or the cardinality if the argument is a finite set.
For an arbitrary x ∈ R, ⌊x⌋ is the largest integer less than or equal
to x. B(·, ·) and Γ(·) are the Euler integrals of the first kind and the
second kind, respectively. Notations for probability density func-
tions: N (µ,R) - the multivariate Gaussian distribution with mean
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µ and covariance matrix R, χ2
ν - the (central) chi-squared distribu-

tion with ν degrees of freedom, χ′2
ν(λ) - the non-central chi-squared

distribution with ν degrees of freedom and noncentrality parameter
λ. We denote F ′

ν1,ν2
(λ1) the (singly) non-central F-distribution, and

we write F ′
ν1,ν2

(λ1) = [χ′2
ν1

(λ1)/ν1]/[χ2
ν2

/ν2] to indicate that it is

the ratio of a non-central chi-squared random variable and a central
chi-squared random variable which are mutually independent. We

also write F ′′
ν1,ν2

(λ1,λ2) = [χ′2
ν1

(λ1)/ν1]/[χ2
ν2

(λ2)/ν2] for the dou-

bly non-central F-distribution, which is the ratio of two non-central
chi-squared random variables that are mutually independent. It is
obvious that F ′′

ν1,ν2
(λ1,0) = F ′

ν1,ν2
(λ1).

2. SC REVISITED

We focus on the SC formulation in the fundamental case of linear
least squares regression problem, for which the observations y are
modeled by:

y = Xθ+ ε, (1)

where y = [y0, . . . ,yn−1]
⊤, X ∈ R

n×m is the regressor matrix having

more rows than columns, θ ∈ R
m×1 is the vector of unknown para-

meters, and ε ∈ R
n×1 is a vector whose entries are samples from an

independent and identically distributed (i.i.d.) Gaussian process of
zero mean and variance τ.

Because in most of the practical applications, not all the para-
meters θ1, . . . ,θm are equally important in modeling y, one wants to
eliminate those that are deemed to be unimportant. This reduces to
choose a subset of the regressor variables indexed by γ ⊆ M, where
M = {1, . . . ,m}. In line with the MDL principle, γ is selected such
that to minimize the SC of the data y [15]. To give the SC-formula,

we need some preparations. Let θγ ∈ R
|γ|×1 be the vector of the

unknown regression coefficients within the γ-subset. The matrix Xγ
is given by the columns of X that correspond to the γ-subset, and it
is assumed to have full-rank. Similarly with (1), we have:

y = Xγθγ + εγ, (2)

where the entries of εγ are i.i.d. Gaussian distributed with zero-
mean and variance τγ. The noise variance τγ is unknown. The

maximum likelihood (ML) estimate of θγ is θ̂γ =
(

X⊤
γ Xγ

)−1
X⊤

γ y,

which yields the residual sum of squares, RSSγ = ‖y−Xγθ̂γ‖
2. Ad-

ditionally, the ML estimate of the noise variance is τ̂γ = RSSγ/n.
When |γ| > 0, the stochastic complexity is evaluated as:

SC(y;γ) = (n−|γ|) ln τ̂γ + |γ| ln R̂γ −2lnΓ

(

n−|γ|

2

)

−2lnΓ

(

|γ|

2

)

+n ln(nπ)+2L(γ)+4ln ln
b

a
, (3)

where

R̂γ = ‖Xγθ̂γ‖
2/n = y⊤PXγ

y/n, (4)
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and L(γ) = min
{

m,
[

ln
(

m
|γ|

)

+ ln |γ|+ log2(1+ lnm)
]}

is the de-

scription length for the γ-structure. The real-valued hyper-
parameters b > a are generally neglected when comparing the SC
computed for two different structures γ1 and γ2.

The derivation of SC was originally done in [14] and further
refined in [15]. A similar criterion was derived in [4]. The expres-
sion in (3) is obtained after multiplying by two the SC formula from
[15].

When γ = /0, or equivalently, the observations y are assumed to
be pure Gaussian noise with zero-mean and unknown variance τ0,
the stochastic complexity is given by:

SC(y; /0) = n ln τ̂0 −2lnΓ
(n

2

)

+n ln(nπ)+2ln ln
b

a
, (5)

where τ̂0 = y⊤y/n and the hyper-parameters a and b are the same
as in (3). Similarly with (3), the equation in (5) is obtained after
multiplying by two the corresponding formula from [15].

Selection of the best structure amounts to evaluate SC(y; /0),
then to calculate SC(y;γ) for all γ ⊆ M, and eventually to pick-up
the subset that minimizes the stochastic complexity. To circumvent
some computational difficulties, the previous literature recommends
a simplified form of the criterion (3):

SC(y;γ) = (n−|γ|) ln
τ̂γ

n−|γ|
+ |γ| ln

R̂γ

|γ|
+ ln [|γ|(n−|γ|)] . (6)

The formula above can be obtained from (3) in two steps: (i) neglect

the sum n ln(nπ)+ 2L(γ)+ 4lnln b
a ; (ii) apply the Stirling approxi-

mation for the Γ(·) function and then discard all terms that do not
depend on the γ-structure. The details of the calculations can be
found in [9, 15]. Based on (6), the following result holds true.

Lemma 2.1. Let γ be a collection of |γ| > 0 indices from M. If

y ∼ N (Xθ̄, τ̄I), then

SC(y;γ) = (n−|γ|) ln

[

1

n−|γ|
χ′2

n−|γ|

(

λ
(1)
γ

)

]

+|γ| ln

[

1

|γ|
χ′2

|γ|

(

λ
(2)
γ

)

]

+ ln [|γ|(n−|γ|)]+ ct,(7)

where λ
(1)
γ = ‖P⊥

Xγ
Xθ̄‖2/τ̄, λ

(2)
γ = ‖PXγ

Xθ̄‖2/τ̄, the two χ′2’s are

mutually independent, and ct = n ln(τ̄/n).

See Appendix A.1 for the proof.
Lemma 2.1 will be used in Section 4 to compare SC with other

model selection criteria. In the next section, we investigate the rela-
tionship between SC and GLRT.

3. SC AND GLRT

For an arbitrary γ-structure, we note that the density function of the
measurements y is:

f (y;θγ,τγ) =
1

(2πτγ)n/2
exp

(

−
1

2τγ
‖y−Xγθγ‖

2

)

, (8)

as it can be easily observed from (2). To investigate the relation be-
tween SC and GLRT, we consider the problem of selecting between
the model classes:

M0 = { f (y;θ0,τ0) : θ0 ∈ R
m×1,θ0 = 0,τ0 > 0},

M1 = { f (y;θ1,τ1) : θ1 ∈ R
m×1,θ1 6= 0,τ1 > 0}.

For writing the equations more compactly, we take Λ to be the usual

GLRT [6] multiplied by two, Λ = 2ln
f (y; θ̂1, τ̂1)

f (y;0, τ̂0)
, where θ̂1 and τ̂1

are the ML estimates for the model class M1, while τ̂0 is the ML
estimate for the model class M0. We have the following chain of
identities

Λ = n ln
τ̂0

τ̂1
(9)

= n ln
y⊤y/n

y⊤P⊥
Xy/n

= n ln

(

1+
y⊤PXy/n

y⊤P⊥
Xy/n

)

= n ln

(

1+
R̂1

τ̂1

)

. (10)

In the calculations above we used the fact that X is the regressor
matrix for M1 (see also (1)). The identity in (10) was obtained by

applying the definition in (4) to compute R̂1 for the model class
M1. Let γ0 = /0 and γ1 = M. After some algebraic manipulations,
the formulas in (3) and (5) lead to:

SC(y;γ1)−SC(y;γ0) = n ln
τ̂1

τ̂0
+m ln

R̂1

τ̂1
−2lnB

(

m

2
,

n−m

2

)

+2L(γ1)+2ln ln
b

a
. (11)

The first two terms in (11) can be expressed as a function of Λ via
(9) and (10). So,

SC(y;γ1)−SC(y;γ0) = ρ(m,n,Λ)+η(m,n)+2lnln
b

a
, (12)

ρ(m,n,Λ) = −Λ+m ln

[

exp

(

Λ

n

)

−1

]

, (13)

η(m,n) = 2min{m, [lnm+ log2(1+ lnm)]}

−2lnB

(

m

2
,

n−m

2

)

. (14)

This helps us to prove the following result.

Proposition 3.1. For n and m fixed (n > m+1), we have:
i) The difference SC(y;γ1)−SC(y;γ0) is a concave function of Λ,
which increases on (−∞,Λ∗) and decreases on [Λ∗,∞), where Λ∗ =
n ln[n/(n−m)].
ii) max

Λ
ρ(m,n,Λ)+η(m,n) ≤ 0 if and only if m = 1.

See Appendix A.2 for the proof.

Discussion The usual F-statistic for testing if the observations y are

outcomes of the model class M0 has the expression F =
R̂1/m

τ̂1/(n−m)
=

n−m
m

[

exp
(

Λ
n

)

−1
]

[18]. Remark that Λ = Λ∗ is equivalent with

F = 1. Therefore, according to the point (i) of the Proposition 3.1,
whenever F > 1, the selection rule based on SC will choose the
model class M1 if and only if Λ is larger than a certain threshold.
This shows clearly that SC is equivalent with GLRT when F > 1.
The situation changes when F ≤ 1: SC selects M1 if Λ is smaller
than a certain threshold.
The second part of the Proposition 3.1 points out that, for m = 1, SC
will always prefer the model class M1 to M0 if the term given by
the hyper-parameters a and b is neglected. The drawback does not
exist when m > 1, and this is probably the main reason for which,

in the previous literature, the term 4ln ln b
a of the criterion (3) was

neglected. We refer to [15] for more details on the computation of
a and b.

In the next section, we extend our analysis to the relation be-
tween SC and BIC.
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4. SC AND BIC

It is well-known that BIC has the expression [17],

BIC(y;γ) = n ln τ̂γ + |γ| lnn, (15)

and is equivalent with the crude MDL criterion from [12]. To make
easier the comparison between SC and BIC, we re-write the formula
from (6) as:

SC(y;γ) = n ln τ̂γ + |γ| lnFγ + ln
[

|γ|/(n−|γ|)n−1
]

, (16)

where Fγ =
R̂γ/|γ|

τ̂γ/(n−|γ|)
. From (15) and (16), we observe that the

goodness-of-fit term is the same for both criteria. The difference
is given by the penalty term, which for SC has two components.
The most intriguing is |γ| lnFγ, which depends not only on the num-
ber of parameters and the sample size, but also on the measurements
y. Remark that |γ| lnFγ is strictly positive only when Fγ > 1.

In [4], it is given a theoretical result on the behavior of Fγ in the
case when m → ∞ and the entries of X are random. Based on this
analysis, Hansen and Yu conclude that the model selection rules
for which |γ| lnFγ is a penalty term combine the strengths of both
Akaike Information Criterion (AIC) [1] and BIC [17].

In most of the signal processing problems, m is assumed to be
finite and the matrix X is deterministic. To compare SC and BIC
under these assumptions, we compute E[Fγ]. It is clear that SC and
BIC are about the same if E[Fγ] = O(n). A similar fact was pointed
out in [8] when comparing the Exponentially Embedded Families
(EEF) criterion and the BIC.

We focus on the problem of selection between two nested mod-
els. Let us partition the full-rank matrix X from (1) into two blocks
such that X0 contains the first m0 columns of X and Xi is formed
by the rest of the columns. With the convention that 0 < m0 < m,
we can write X = [X0 Xi]. Let γ0 = {1, . . . ,m0} and γ1 = M. We
consider the model classes:

Mγ0
= { f (y;θ0,τ0) : θ0 ∈ R

m0×1 \{0},τ0 > 0},

Mγ1
= { f (y; [θ⊤0 θ⊤i ]⊤,τ1) : θ0 ∈ R

m0×1 \{0},

θi ∈ R
(m−m0)×1 \{0},τ1 > 0},

where f (y;θγh
,τγh

) with h ∈ {0,1} is the normal density function
from (8).

With slight abuse of notation, we write y ∈ Mγ0
if y ∼

N (X0θ0,τ0). Similarly, y ∈ Mγ1
means y ∼ N (X0θ0 + Xiθi,τ1).

Our goal is to compute E[Fγ0
] and E[Fγ1

] when y ∈ Mγ0
or y ∈ Mγ1

.
We formalize the result as follows:

Proposition 4.1. i) For h ∈ {0,1}, we have:

SC(y;γh) = n ln τ̂γh
+ |γh| ln

[

F ′′
|γh|,n−|γh|

(λ
(2)
γh

,λ
(1)
γh

)
]

+ ln
[

|γh|/(n−|γh|)
(n−1)

]

. (17)

The values of λ
(1)
γh

and λ
(2)
γh

are given below.

λ
(1)
γ0

λ
(2)
γ0

λ
(1)
γ1

λ
(2)
γ1

y ∈ Mγ0
0

‖X0θ0‖
2

τ0
0

‖X0θ0‖
2

τ0

y ∈ Mγ1

‖P⊥
X0

Xiθi‖
2

τ1

‖X0θ0+PX0
Xiθi‖

2

τ1
0

‖X0θ0+Xiθi‖
2

τ1

ii) If n > m+2, then:

E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

=



















[

1+ 2
n−m0−2

][

1+
‖X0θ0‖

2/τ0

m0

]

, y ∈ Mγ0
,

[

1+ 2
n−m0−2

] 1+
‖X0θ0+PX0

Xiθi‖
2/τ1

m0

1+
‖P⊥

X0
Xiθi‖

2/τ1

n−m0

, y ∈ Mγ1
,

(18)

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

=







[

1+ 2
n−m−2

]

[

1+
‖X0θ0‖

2/τ0

m

]

, y ∈ Mγ0
,

[

1+ 2
n−m−2

]

[

1+
‖X0θ0+Xiθi‖

2/τ1

m

]

, y ∈ Mγ1
.

(19)

The value of E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

for y ∈ Mγ1
is an approxima-

tion obtained under the condition:

‖P⊥
X0

Xiθi‖
2/τ1

n−m0
<

1

2
, (20)

whereas all other results in Proposition 4.1 are exact. The proof is
deferred to Appendix A.3.

Next we analyze how E[Fγ] is affected by the structure of X.

Case 1: PX0
Xi ≈ 0. We consider the problem of estimating

the number of sine-waves in white Gaussian noise, when the
frequencies ω1, . . . ,ωm/2 ∈ (0,π) are known, but the amplitudes

α1, . . . ,αm/2 > 0 and the phases φ1, . . . ,φm/2 ∈ [−π,π) are un-

known. Hence, the regressor matrix has the expression

X =







1 0 · · · 0
...

...
. . .

...
cos[ω1(n−1)] sin[ω1(n−1)] · · · sin[ωm/2(n−1)]






,

θ0 = [α1 cosφ1,−α1 sinφ1, . . . ,−αm0/2 sinφm0/2]
⊤ and θi =

[αm0/2+1 cosφm0/2+1,−αm0/2+1 sinφm0/2+1, . . . ,−αm/2 sinφm/2]
⊤.

Without loss of generality, we assume τ0 = τ1 = τ. It is well-
known the definition of the local SNR for the k-th sinusoid:
SNRk = α2

k/(2τ). We take S0 = ‖θ0‖
2/(2τ) to be the sum

of the SNR’s for all sine-waves when the model class is Mγ0
.

Similarly, Si = ‖θi‖
2/(2τ). With the approximation X⊤X ≈ (n/2)I

(see [2, 8] for more details), the condition in (20) reduces to
[n/(n−m0)]Si < 1/2, and the identities in (18) and (19) become:

E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

≈







[

1+ 2
n−m0−2

][

1+n S0

m0

]

, y ∈ Mγ0
,

[

1+ 2
n−m0−2

][

1+
1+n(S0/m0)

1+[n/(n−m0)]Si

]

, y ∈ Mγ1
,

(21)

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

≈







[

1+ 2
n−m−2

]

[

1+n S0

m

]

, y ∈ Mγ0
,

[

1+ 2
n−m−2

]

[

1+n S0+Si

m

]

, y ∈ Mγ1
.

(22)

From (15), (16), (21) and (22), one can note that SC and
BIC are about the same when m is fixed and n ≫ m. More
interestingly, when y ∈ Mγ1

, if m,n,m0,S0 are kept fixed
and Si increases such that [n/(n − m0)]Si is not larger

than 1/2, then E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

decreases and

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

increases. The effect produced by

the increase of Si cannot be understood properly if we restrict
our attention only to the penalty term of the SC criterion.

By observing that ln τ̂γ = − ln
(

|γ|
n−|γ|

Fγ +1
)

+ ln
y⊤y

n , we get
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∂SC(γ)

∂Fγ
=

|γ|(n−|γ|)

Fγ(|γ|Fγ +n−|γ|)
(1 − Fγ). Provided that Fγ > 1,

SC(γ) is a decreasing function of Fγ. It means that whenever Si

increases, E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

decreases, which corresponds

to an increase of SC(γ0). Moreover, when Si increases, SC(γ1)
decreases. In other words, an increase of the SNR of the k-th
sine-wave when m0/2 < k ≤ m/2 will decrease the difference
SC(γ1)−SC(γ0) such that to favor the model class Mγ1

.

Case 2: P⊥
X0

Xi ≈ 0. For simplicity, we assume m = m0 + 1. Thus,

Xi is the last column of X, and we prefer to use the notation xi in-
stead of Xi. In [8], it was pointed out that the Fisher information
matrix (FIM) for the model class Mγ1

is badly conditioned numer-
ically when 〈X0〉 and 〈Xi〉 are nearly colinear. Based on this ob-

servation, Kay concluded that, whenever P⊥
X0

xi ≈ 0, the model se-

lection rules whose penalty term is given by the determinant of the
FIM [2, 7, 10] will always choose the most complex model. This
drawback does not exist for SC. When 〈X0〉 and 〈Xi〉 are nearly co-
linear, the condition in (20) is satisfied, and from (18) and (19) we
get for y ∈ Mγ1

:

E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

≈

[

1+
2

n−m−1

][

1+
‖Xθ‖2/τ

m−1

]

,

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

≈

[

1+
2

n−m−2

][

1+
‖Xθ‖2/τ

m

]

,

where θ = [θ⊤0 θ⊤i ]⊤. For y ∈ Mγ0
, the expressions of the expec-

tation of Fγ are the same as in (18) and (19). From these results,

it is evident that SC does not favor the Mγ1
class model even if

P⊥
X0

xi ≈ 0.

Case 3: the largest entry of X⊤X is O(nζ) with ζ > 1. Let us
assume that both Mγ0

and Mγ1
model polynomials embedded in

noise. The degree of the polynomial is m0 − 1 for Mγ0
and m− 1

for Mγ1
. Therefore, the largest entry of X⊤X is O(n2m−1) [2]. For

simplicity, we take m = m0 + 1. Note that Fγ0
= O(n2m−3) and

Fγ1
= O(n2m−1). This shows that SC penalizes more stringently

than BIC the polynomial models with higher degree, and explains
why in the experimental results reported in Table 9.1 from [15] BIC
overestimates the polynomial degree more often than SC.

Because m = m0 + 1, we have Xi = xi like in the previous
example, and for verifying the condition in (20) we must com-

pute x⊤i P⊥
X0

xi. By using the identity x⊤i P⊥
X0

xi = |X⊤X|/|X⊤
0 X0|

from [8], together with the results from [2], we obtain x⊤i P⊥
X0

xi =

O(n2m−1). For m and n large, the condition in (20) is not satisfied

and the approximation of E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

given in (18)

must be applied with caution.

5. CONCLUDING REMARKS

The analysis of the relationship between SC and GLRT shows the
importance of the hyper-parameters within SC-formula. The com-
parison between SC and other information theoretic criteria reveals
the robustness of SC for families of models commonly used in prac-
tice. A more detailed investigation of this aspect, along with a sim-
ulation study, will be the topic for a future research paper.

A. APPENDIX

A.1 Proof of Lemma 2.1

The proof is a straightforward consequence of the following result:

Theorem A.1. [3] Let y ∼ N (µ,τI), and let

q

∑
ℓ=1

y⊤Bℓy = y⊤y,

where the rank of Bℓ is rℓ. Anyone of the three conditions listed

below is a necessary and sufficient condition that the following two

statements be true: (1) y⊤Bℓy/τ ∼ χ′2
rℓ
(λℓ), where λℓ = µ⊤Bℓµ/τ;

(2) y⊤Bℓy and y⊤Bℓ′y are independent if ℓ 6= ℓ′. The conditions
are: (c1) Bℓ is idempotent for all ℓ ∈ {1, . . . ,q}; (c2) BℓBℓ′ = 0 for

all ℓ 6= ℓ′; (c3)

q

∑
ℓ=1

rℓ = n.

Note that nτ̂γ/τ̄ = y⊤P⊥
Xγ

y/τ̄ and nR̂γ/τ̄ = y⊤PXγ
y/τ̄. By

applying the theorem above, we readily obtain nτ̂γ/τ̄ ∼

χ′2
n−|γ|

(

‖P⊥
Xγ

Xθ̄‖2/τ̄
)

and nR̂γ/τ̄ ∼ χ′2
|γ|

(

‖PXγ
Xθ̄‖2/τ̄

)

. Next we

use (6), and we take the term ct, which does not depend on γ, to be
n ln(τ̄/n). Moreover, based on Theorem A.1, it is evident that the

two χ′2’s involved in formula (7) are mutually independent.

A.2 Proof of Proposition 3.1

i) It is easy to check via (12)-(14) that the difference SC(y;γ1)−
SC(y;γ0) is a concave function of Λ, and its first derivative is given

by
m/n

1−exp(−Λ/n)
−1. The result on the monotonicity of SC(y;γ1)−

SC(y;γ0) is straightforward.
ii) By relying on the point (i) of the Proposition, it can be shown for
all m ∈ {1, . . . ,n−2} that:

max
Λ

ρ(m,n,Λ)+η(m,n)

= −n ln
n

n−m
+m ln

m

n−m
−2lnB

(

m

2
,

n−m

2

)

+2min{m, [lnm+ log2(1+ lnm)]} .

First we consider the case m = 1. After simple manipulations that
exploit the properties of the B(·, ·) and Γ(·) functions, we get:

max
Λ

ρ(1,n,Λ)+η(1,n)

= −n ln
n

n−1
+ ln

1

n−1
− lnπ+2ln

Γ
(

n
2

)

Γ
(

n−1
2

)

< −n ln
n

n−1
+ ln

1

n−1
− lnπ+ ln

n−1

2
(23)

= −n ln
n

n−1
− ln(2π) < 0.

The inequality in (23) was obtained by applying the well-known

inequality:
Γ(x+1)

Γ(x+ 1
2 )

<
(

x+ 1
2

)1/2
for all x > − 1

4 .

It remains to demonstrate that max
Λ

ρ(m,n,Λ) + η(m,n) > 0

when m ≥ 2. For 2 ≤ m < ⌊n/2⌋, we have max
Λ

ρ(m,n,Λ) =

max
Λ

ρ(n−m,n,Λ) and η(m,n) < η(n−m,n). Hence, it is enough

to prove that max
Λ

ρ(m,n,Λ) + η(m,n) > 0 for 2 ≤ m ≤ ⌊n/2⌋.

When m = 2, simple calculations lead to max
Λ

ρ(2,n,Λ)+η(2,n) =

−n ln
n

n−2
+ 2ln2 + 2log2(1 + ln2), which is positive for n = 4.

Because the negative term −n ln n
n−2 is an increasing function of

n, we obtain immediately that max
Λ

ρ(2,n,Λ) + η(2,n) > 0 for all

n ≥ 4. A similar result holds for m = 3.
Next we show that switching from m to m + 2 when n is kept

constant and 1 < m < ⌊n/2⌋, will have as effect an increase of the
maximum possible value of the difference SC(y;γ1)− SC(y;γ0).
This can be done in two steps. First step is to observe that L(γ)
is an increasing function of m. Second step is to check the equality

[

max
Λ

ρ(m+2,n,Λ)−2lnB

(

m+2

2
,

n−m−2

2

)]

−

[

max
Λ

ρ(m,n,Λ)−2lnB

(

m

2
,

n−m

2

)]

= g(m)−g(n−m−2),
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where g(x) = (x+2) ln[(x+2)/x] for all x > 0. The fact that g(x) is
monotonically decreasing for x ≥ 1 completes the proof.

A.3 Proof of Proposition 4.1

i) Lemma 2.1 together with (16) leads to (17). Let us define: G =
P⊥

X0
Xi. The following two identities are known (see, for example,

[16]): PX = PX0
+P⊥

X0
PGP⊥

X0
and P⊥

X = P⊥
X0

P⊥
GP⊥

X0
. They are used

below in conjunction with Lemma 2.1 to get the following results
for y ∈ Mγ0

:

λ
(1)
γ0

= ‖P⊥
X0

X0θ0‖
2/τ0 = 0,

λ
(2)
γ0

= ‖PX0
X0θ0‖

2/τ0 = ‖X0θ0‖
2/τ0,

λ
(1)
γ1

= ‖P⊥
XX0θ0‖

2/τ0 = ‖P⊥
X0

P⊥
GP⊥

X0
X0θ0‖

2/τ0 = 0,

λ
(2)
γ1

= ‖PXX0θ0‖
2/τ0 = ‖(PX0

+P⊥
X0

PGP⊥
X0

)X0θ0‖
2/τ0

= ‖X0θ0‖
2/τ0.

For y ∈ Mγ1
, we have:

λ
(1)
γ0

= ‖P⊥
X0

(X0θ0 +Xiθi)‖
2/τ1 = ‖P⊥

X0
Xiθi‖

2/τ1,

λ
(2)
γ0

= ‖PX0
(X0θ0 +Xiθi)‖

2/τ1 = ‖X0θ0 +PX0
Xiθi‖

2/τ1,

λ
(1)
γ1

= ‖P⊥
XX[θ⊤0 θ⊤i ]⊤‖2/τ1 = 0,

λ
(2)
γ1

= ‖PXX[θ⊤0 θ⊤i ]⊤‖2/τ1 = ‖X0θ0 +Xiθi‖
2/τ1.

ii) When y ∈ Mγ0
and n > m+2, we apply the results above and

the formula (30.3a) from [5], to calculate:

E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

= E
[

F ′
m0,n−m0

(λ
(2)
γ0

)
]

=
(n−m0)(m0 +λ

(2)
γ0

)

m0(n−m0 −2)

=

[

1+
2

n−m0 −2

][

1+
‖X0θ0‖

2/τ0

m0

]

,

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

= E
[

F ′
m,n−m(λ

(2)
γ1

)
]

=

[

1+
2

n−m−2

][

1+
‖X0θ0‖

2/τ0

m

]

.

Similarly, for y ∈ Mγ1
and n > m+2, we have:

E
[

F ′′
|γ0|,n−|γ0|

(λ
(2)
γ0

,λ
(1)
γ0

)
]

≈
1

1+λ
(1)
γ0

/(n−m0)
E
[

F ′
m0,n−m0

(λ
(2)
γ0

)
]

(24)

=

[

1+
2

n−m0 −2

]

1+
‖X0θ0+PX0

Xiθi‖
2/τ1

m0

1+
‖P⊥

X0
Xiθi‖2/τ1

n−m0

,

E
[

F ′′
|γ1|,n−|γ1|

(λ
(2)
γ1

,λ
(1)
γ1

)
]

= E
[

F ′
m,n−m(λ

(2)
γ1

)
]

=

[

1+
2

n−m−2

][

1+
‖X0θ0 +Xiθi‖

2/τ1

m

]

.

The approximation (24) is taken from [5], where it was derived un-

der the assumption that
λ

(1)
γ0

n−|γ0|
< 1

2 , which in our case reduces to the

condition (20).
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[10] G. Qian and H. Künsch. Some notes on Rissanen’s stochastic
complexity. IEEE Trans. Inf. Theory, 44(2):782–786, Mar.
1998.
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