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ABSTRACT

Automatically assigning the correct anatomical labels to
coronary arteries is an important task that would speed up
work flow times of radiographers, radiologists and cardiolo-
gists, and also aid the standard assessment of coronary artery
disease. However, automatic labelling faces challenges re-
sulting from structures as complex and widely varied as coro-
nary anatomy. A system has been developed which addresses
this requirement and is capable of automatically assigning
correct anatomical labels to pre-segmented coronary artery
centrelines in Cardiac Computed-Tomography Angiographic
(CCTA) images with 84% accuracy. The system consists of
two major phases: 1) training a multivariate gaussian clas-
sifier with labelled anatomies to estimate mean-vectors for
each anatomical class and a covariance matrix pooled over all
classes, based on a set of features; 2) generating all plausible
label combinations per test anatomy based on a set of topo-
logical and geometric rules, and returning the most likely
based on the parameters generated in 1).

1. INTRODUCTION

Coronary heart disease is a major life-threatening disease in
Europe and America at the moment; the rate of heart disease
is increasing in countries within Africa and Asia every year
at a rate almost proportional to the development rate of these
countries [1]. In a computer-assisted cardiac analysis appli-
cation, the radiologist will be able to assess each coronary
artery for stenoses and other defects, then report findings for
diagnosis or recommendation; therefore, being able to label
these arteries by their standard anatomical names will facili-
tate the workflow, thus speeding the whole process of cardiac
analysis, and reducing the time to detect coronary artery dis-
ease.

1.1 Previous Work

The problem is viewed as a combined image analysis and
classification task. Previous work has been carried out in at-
tempts to solve the same problem, with some attempts aimed
at different imaging modalities. Ezquerra et al [3] address the
problem of coronary artery labelling for X-ray angiograms
by using a graph-matching approach. The method intro-
duced in [3] addresses the challenges posed by the presence
of noise, artefacts, and competing structures. In this sys-
tem, a model graph of a generic coronary vasculature is used
as a reference, incoming datasets are then matched to this
using features collected by Dogde et al [6] as extra match-
ing criteria. The method assumes that segments of vessel

in-between bifurcations can still possess characteristic fea-
tures of the entire vessel, and hence use vessel length, lumen
diameter and branch angle as similarity features in the cost
function; although this may not be the case, as the individual
segments do not accurately represent the entire vessel espe-
cially in terms of length and branch angles. Haris et al [5]
and Chalopin et al [4] also address the problem for 2-D X-
ray angiograms using graph-matching methods. The method
in [4] stores a list of reference graphs and performs an ini-
tial matching to find the best reference graph; with similarity
based on the inertia axis orientation, inertia, and the eccen-
tricity of the nodes and arcs, without using any physical fea-
tures of the arteries as matching criteria.

The cost functions used in the above methods do not take
into account the multivariate nature of the features, which is
why the method proposed in this paper uses a multivariate
Gaussian Classifier in order to exploit this property. Further-
more, the graph-matching approaches as used above assume
a generic vasculature, but in clinical datasets, anomalies do
exist that will lead to a failure of such methods; hence this pa-
per proposes a less strict model-based approach to the prob-
lem.

The method proposed in this paper takes into account
the tree structure of the coronary vasculature, and exploits
knowledge of its topology to generate a set of plausible la-
belling candidates. It then exploits knowledge of the spatial
properties of each anatomical vessel class to reduce the num-
ber of candidate labelled trees. These are then scored using
the physical features of each vessel in a trained classifier to
find the most likely labelling.

In this paper, the individual segments of a vessel in-
between bifurcations are referred to as topological segments;
the concatenation of such contiguous topological segments
make up a vessel segment as shown in figure 2.

2. METHOD

The data-flow is as shown in figure 1.

2.1 Label Pool

The label pool is a list of all the classes (labels) to be con-
sidered, which are LM (Left Main), LAD (Left Anterior
Descending), LCX (Left Circumflex), LMG (Left Obtuse
Marginal), LRI (Left Ramus-Intermedius), LD (Left Diag-
onal), Linsig, Rinsig (All segments not required in specifica-
tion, left and right prefixes), RCA (Right Coronary Artery),
RPD (Right Posterior Descending Artery), RPLA (Right
Postero-lateral Artery), and RAM (Right Acute Marginal
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Figure 1: System Flow Diagram
Shows the modules and their connections within the algorithm

Artery). These labels are used to supply the Label Gener-
ator.

2.2 Training Data
The training data is collected by manually segmenting in-
dividual vessels from Cardiac CT Angiography data of 42
patients, using commercial vessel-tracking software to track
their centrelines (skeletons). The vessel segments are stored
as polylines:

polyline = {x0,x1, · · · ,xn−1|xi ∈ℜ
3} (1)

In this context, a polyline is an ordered list of points along
the centreline of a single coronary artery. The entire coronary
artery vasculature is represented as a polyline-tree, see figure
2.

Figure 2: Ground-Truth format for the left coronary
The LAD for instance, is stored as a single vessel rather
than as three individual segments. The image on the left

shows a 3-D volume rendering of the entire coronary
vasculature, including the aorta.

2.3 Feature Extraction
This module takes in labelled coronary vessel segments as
polylines, and with the raw data in context, up to 14 features
are measured and saved. The most significant features are
defined below:

• Lengthv = ∑
N−1
i=0 lengthi, where N is the number of topo-

logical segments making up the vessel v.
• LogLengthProportionv = Log( Lengthv

∑
V−1
v=0 Lengthv

), where there

are V vessel segments in the tree.
• BranchAngle(degrees) = 180−cos−1(

−→uv−−→uv−1
), where−→uv is

the unit vector in the direction of vessel v. This is the an-
gle made between a vessel segment and it’s parent seg-
ment, belonging to another vessel class.

• LogTortuosityv = Log Lengthv
vP−1−v0

where P points make up a
vessel segment v. This is a measure of curvature of the
vessel segment; other measures exist [2].

• Diameter: the measured diameter of the cylinder cre-
ated by dilating the topological segment within the data
context using a spherical structuring element with radius
greater than the maximum radius of a coronary artery,
and thresholding at the mean intensity along the segment.

• AvgDiameterv = 1
N ∑

N−1
i=0 Diameteri,

• Volumev = ∑
N
i=0 Diameteri ∗ lengthi

• LogVolumeProportionv = Log( Volumev
∑

V−1
v=0 Volumev

)

• Direction of Vessels represented by 3D unit vectors

These features, collected from manually labelled coro-
nary vessel segments, are used to train the multivariate Gaus-
sian classifier; in the application, these features when mea-
sured on novel vessel segments, form the measured feature
vector for each candidate.

2.4 Multi-Variate Gaussian Classifier

The MVG classifier operates in a training phase and a classi-
fication phase.

Training phase: The classifier takes as input the feature vec-
tor for each class computed by the feature extractor on train-
ing data, and computes the parameters of the multivariate
Gaussian distribution:

• The mean vector for each class k, µk and
• The Covariance matrix, C pooled over all classes
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Classification phase:
• The classifier takes as input, the measured feature vec-

tor for each vessel, z and uses the above parameters to
calculate the likelihood for each class;

P(z|ωk) =
1

|C|
√

2π
exp(

(z−µk)TC−1(z−µk)
2

) (2)

• By applying Bayes theorem, the posterior probability, i.e.
the probability of a vessel belonging to class ωk, given its
measurement vector z is given by:

P(ωk|z) =
P(ωk)P(z|ωk)

P(z)
(3)

P(ωk) is the prior probability of observing the class ωk.
• Empirical priors are estimated in this case; based on the

relative occurrences in the training data.
• The Posterior probability in equation 3 is used as the

measure of merit in the Merit Function module.

2.5 Label Generator
The label generator module is a recursive function which at-
tempts to assign to the topological segments of the coronary
centreline tree all possible label combinations from the label
pool. For any function of this sort, the implied computa-
tional cost is apparent, especially for trees as seen in figure
2, almost 2 billion (711) different trees produced for scoring.
For efficiency, only topologically legal candidates are gen-
erated. Furthermore, only geometrically plausible labelled
candidates are allowed to be scored by the classifier. The
module works on each level/segment of the tree as follows:
For each vessel class in the label pool
• assign the class to the current tree level
• if the assignment is topologically legal (section 2.6)

– if all levels of the tree have been labelled
� if the labelled tree is geometrically legal (sec-

tion 2.7)
· send to Merit module (section 2.8) for scor-

ing
· record best scoring labelled tree

– else
� Proceed to next level (recursive call)

2.6 Topology Checker
The label generator generates a sequence of legal labelled
trees. Certain rules pertinent to the syntax of the coronary
anatomy are encoded in this module to generate legal labels
based on the topology of the un-labelled polyline-tree. For
instance, on the left coronary tree, some of the rules are as
follows:
• The root segment of the left coronary artery is the LM;
• An LM segment can not have any siblings;
• Segments labelled RCA, RPD, RAM, RPLA and Rinsig

are not permitted;
• An LAD segment can only be a child of LM or an exten-

sion of itself;
• An LCX segment can only be a child of LM or an exten-

sion of itself;

• An LD segment can only be a child of LAD or an exten-
sion of itself;

• An LMG segment can only be a child of LCX or an ex-
tension of itself.

These rules exist for both left and right coronary vessels and
are applied within the label generator to limit the number
of candidates. In the case of the 12 segment tree (figure 2)
with 7 label classes, the number of candidates can be reduced
to as low as 511. This module effectively applies syntactic
approaches to pruning the search space; other syntactic ap-
proaches to pattern recognition have been defined in [7].

2.7 Geometry Checker
Vessel geometry in this case refers to the physical and spatial
characteristics of the coronary vessel tree. In this algorithm,
only the attributes pertaining to the centrelines of the vessels
are considered here (e.g. diameter is not considered), and
therefore the polyline-tree representation is sufficient. This
module takes in a fully labelled polyline-tree as input, and
exploits certain spatial geometric rules unique to individual
classes and other rules pertaining to fully labelled trees, re-
sulting in the elimination of more candidates. An example la-
belled coronary vasculature is shown in 3D in figure 3. Some
of the rules applied are as follows:
• For the LAD

– Looking in the direction going down the vessel, all
LD segments must exist on the right side of the vessel,
while Linsig segments (actually called Septal) must
be on the left.

• For the LCX
– The vessel must traverse a direction posterior to its

initial sibling (normally the LAD);
– Looking down the LCX vessel; all LMG vessels must

be on the left side, and any vessels coming off the
right side must be Linsig;

– The LCX always starts within an average distance
from the root of the left coronary tree.

Figure 3: Labelled Coronary Tree 3D
An example labelled coronary vasculature showing the

spatial properties of each vessel class.

This step in the algorithm is able to reduce the number
of segments in the 12-segment tree (figure 2) from 511 to as
low as 71 in some cases.

2.8 Merit Function
This module calculates the merit of each considered labelled
tree. The module takes in the labelled polyline tree as input
and sends it along with the raw data to the feature extrac-
tor module, which computes a measured feature vector z for
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each labelled vessel. The merit of each classification is the
sum of the normalised posterior probabilities of the assigned
classes, calculated by the MVG classifier in equation 3 for
each vessel.

Merit =
V−1

∑
v=0

P(ωk|zv) (4)

where V is the number of vessels in the tree.
The posterior probability is normalised to account for la-

belling configurations having a different number of vessels;
this is done by computing a posterior probability per unit
length for each vessel. Therefore the merit becomes:

Merit ′ =
V−1

∑
v=0

P(ωk|zv)∗Log−1(LogLengthProportionv)

(5)
The classified tree with the highest merit is returned as a

labelled polyline tree.

3. RESULTS

The MVG classifier (section 2.4) is trained using vessel fea-
ture data from 42 datasets of varying image quality, although
most cases were of above average quality. The validation en-
vironment employed performs leave-one-out (LOO) experi-
ments on each of the 42 datasets in two modes.

In one mode; the manually segmented coronary centre-
lines are passed into the labelling algorithm, and their results
validated against manual labelling of the same centrelines by
medical experts. In the other mode, output from an in-house
automatic coronary centreline tracking algorithm is passed
into the labelling algorithm, and the resulting labels are val-
idated against automatically trasferred labels from the corre-
sponding manually segmented centrelines.

The first mode is aimed at assessing the performance of
the algorithm in isolation; whilst the second mode assesses
the algorithm as if it were in a real application.

The validation metrics are presented using a confusion
matrix, hence the overall accuracy can be calculated by the
trace divided by the sum over the entire matrix. These con-
fusion matrices have been summarised in table 1.

Vessel Class Accuracy
Mode 1(%)

Accuracy
Mode 2(%)

LM 100.0 93.2
LAD 97.4 91.7
LCX 91.7 62.7
LRI 62.5 28.6
LD 80 87.0
LMG 78.9 50.0
Linsig 63.6 53.3
RCA 98.9 86.7
RAM 67.56 36.8
RPD 65.0 33.3
RPLA 86.5 69.2
Rinsig 59.7 81.4
Overall 84.4 76.5

Table 1: Results for both modes of validation
A summary of the per-class accuracy computed from the con-
fusion matrix.

In mode 2, a label-transfer algorithm is used to automat-
ically transfer labels from the manually-labelled/manually
segmented vessels to the automatically segmented ones us-
ing the overlapping volume as criteria. This results in more
Linsig and Rinsig segments, as non-overlapping segments are
labelled as such. A popular source of error here is the LRI
segments being misclassified as LD or LMG. This is because
the topological rule, which states that the LRI has to occur at
a trifurcation, has to be relaxed for this experiment configu-
ration because the tree-tracking algorithm is unable to detect
trifurcations. Without this constraint, the LRI and the LD are
easily confused.

Subjective validation was carried out by an experienced
radiologist on datasets that were not included in the training
data; this is performed as an end-to-end implementation, us-
ing multi-planar reconstructions (MPR) and 3D volume ren-
derings (figure 3). The algorithm was accurate in cases where
the coronary centreline tracking algorithm was successful in
tracking correct trees, but returned more Linsig and Rinsig in
cases where deformed trees were produced.

4. CONCLUSION

A method has been developed for labelling segmented coro-
nary vessels in CCTA images. The approach can be seen as a
two-step process: 1) knowledge-based assignment, whereby
all plausible labelled trees are generated and 2) statisti-
cal classification, whereby the most likely labelling is cho-
sen based on closeness to parameters defined by a mul-
tivariate Gaussian classifier. The method is tested on 42
CCTA datasets of varying coronary anatomy using two dif-
ferent sources as input: 1) manually-segmented vessels 2)
automatically-segmented vessels. In mode 1, the method
yields an overall level of agreement of 84.4% (table 1) be-
tween the labels assigned by the human expert and those as-
signed by the system. In mode 2, the system yields an overall
level of agreement of 76.47% between the labels automati-
cally transferred to the tracked vessels and those assigned by
it.

Further subjective validation by a radiologist found the
labelling tool to be useful in clinical situations.
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