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ABSTRACT

A novel algorithm for calculating the singular value decomposition
(SVD) of a polynomial matrix is proposed. The algorithm operates
by iteratively calculating the QR decomposition (QRD) of the matrix
to transform it to a diagonal polynomial matrix. Alternatively, this
decomposition can be calculated using the polynomial matrix eigen-
value decomposition (EVD) routine known as the second-order se-
quential best rotation (SBR2) algorithm. However, this method does
not operate directly on the polynomial matrix. Instead, it formulates
the left and right singular vectors in turn, by calculating the EVD
of two para-Hermitian matrices formed from the polynomial matrix.
The advantage of the algorithm proposed in this paper, is that it does
operate directly upon the polynomial matrix and can therefore al-
low significantly more control over the level of decomposition per-
formed. The two approaches are compared by means of computer
simulations which demonstrates that the method based on the poly-
nomial matrix QRD algorithm is numerically superior.

Index Terms— Convolutive mixing, paraunitary matrix, poly-
nomial matrix singular value decomposition, MIMO channel equal-
isation.

1. INTRODUCTION

A polynomial matrix is simply a matrix with polynomial elements.
Matrices of this form have previously been applied in the field of
control, but in recent years they have also been used extensively in
the areas of digital signal processing and communications [1, 2]. In
this situation, a polynomial matrix can be used to describe a con-
volutive mixing process, which occurs, for example, when a set of
signals arrive at an array of sensors via multiple paths. The received
signals, obtained at the sensors, will then consist of weighted and
delayed versions of the transmitted signals. The channel matrix re-
quired to express this mixing process takes the form of a polynomial
matrix, where each element is a finite impulse response (FIR) filter.
For example, a p×q polynomial matrix A(z) can be expressed as

A(z)=
t2

∑
τ=t1

A(τ)z−τ=




a11(z) a12(z) · · · a1q(z)

a21(z)
. . .

.

..
.
..

. . .
.
..

ap1(z) · · · · · · apq(z)




(1)

where τ ∈ Z and t1 ≤ t2, where the values of the parameters t1 and
t2 in the above equation are not necessarily positive. A(τ)∈ R

p×q is
the matrix containing the coefficients of z−τ from each of the poly-
nomial elements. Each element of the mixing matrix in equation
(1) will be an FIR filter and so the indeterminate variable of each of
the polynomial elements of the matrix is z−1, as this is commonly

used to represent a unit delay. For example, the ( j,k)th polynomial
element of A(z) can be expressed as

a jk(z) =
t2

∑
τ=t1

a jk(τ)z−τ , (2)

where a jk(τ) will define the polynomial coefficient of a jk(z) cor-

responding to a delay of z−τ . This element represents the impulse

response of the propagation channel from the kth transmitter to the

jth sensor. For clarity of development, it is assumed that all polyno-
mial matrices in this paper have real coefficients, however, extension
to complex coefficients is straight forward.

If instead the received signals are instantaneously mixed then a
matrix with scalar elements is sufficient to describe the mixing pro-
cess. In this situation, conventional matrix decompositions, such as
the SVD, have proven to be extremely useful for manipulating the
channel matrix into a simpler form [3]. For example, the SVD can be
used to transform the channel matrix into a diagonal matrix, which
can then be exploited to easily retrieve estimates of the transmitted
signals [4]. This decomposition can therefore be used in a narrow-
band MIMO communication system, to split a MIMO channel into a
number of independent spatial subchannels [4]. Extensions of these
conventional scalar matrix decomposition techniques to polynomial
matrices would be extremely useful in the convolutive mixing sce-
nario where polynomial matrices now arise.

The SBR2 algorithm has previously been applied to this problem
in [5, 6], where it has been used to formulate the SVD of a polyno-
mial matrix. In the work reported here an alternative method for
calculating this decomposition is proposed, which operates by itera-
tively applying an algorithm proposed in [7] for calculating the QRD
of a polynomial matrix. This algorithm can also be applied to broad-
band MIMO channel equalisation problems as discussed in [8], but
this is beyond the scope of this paper.

The remainder of the paper is organised as follows. Firstly, the
terminology and notation are defined. An algorithm for calculating
the QRD of a polynomial matrix (PQRD) is then detailed, as this
forms the basis of the proposed polynomial matrix SVD (PSVD) al-
gorithm. The PSVD algorithm is then introduced. Finally, the capa-
bility and improved performance of the PSVD by PQRD algorithm
over the existing method, which operates using the SBR2 algorithm,
is confirmed by simulation for a particular polynomial matrix.

1.1. Notation and Definitions

The order of the polynomial matrix in equation (1) is by definition
the quantity (t2 − t1). The underline notation, for example in A(z),
is used to denote a polynomial, in this case, a matrix. This notation
is also used to represent a polynomial vector or scalar to avoid con-
fusion with the notation used for the z-transform of a variable. The
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set of polynomial matrices with real coefficients is denoted by R
p×q,

where p and q define the number of rows and columns of the matrix
respectively.

The paraconjugate of the polynomial matrix A(z) is defined to be

Ã(z) = AT (1/z) where (·)T denotes matrix transposition. The tilde
notation (̃·) will be used throughout this paper to denote paraconju-

gation. A polynomial matrix A(z) ∈ R
p×p is said to be paraunitary

if the following statement is true

A(z)Ã(z) = Ã(z)A(z) = Ip (3)

where Ip denotes the p× p identity matrix. Finally, the Frobenius
norm, or F-norm, of the polynomial matrix A(z) is defined as

‖A(z)‖F =

√√√√
t2

∑
τ=t1

p

∑
i=1

q

∑
j=1

(ai j(τ))2. (4)

2. THE QR DECOMPOSITION OF A POLYNOMIAL
MATRIX

The PQRD By Columns (PQRD-BC) algorithm is a technique for
factorising a polynomial matrix into an upper triangular and a parau-
nitary polynomial matrix [7]. Let A(z)∈ R

p×q, then the objective of

the algorithm is to calculate a paraunitary matrix Q(z) ∈ R
p×p such

that
Q(z)A(z) = R(z) (5)

where R(z) ∈ R
p×q is an upper triangular polynomial matrix. The

polynomial matrix Q(z) is computed as a series of elementary delay
and rotation matrices. These matrices can be used to formulate a
polynomial Givens rotation, which are used within the PQRD-BC
algorithm and are therefore firstly introduced.

2.1. An Elementary Polynomial Givens Rotations

An elementary polynomial Givens rotation (EPGR) is a polynomial
matrix that can be applied to either a polynomial vector or matrix to
selectively zero one coefficient of one of the polynomial elements.
For example, suppose for a polynomial matrix A(z)∈R

p×q we wish
to drive the coefficient of z−τ in the polynomial element a jk(z), i.e.

the coefficient a jk(t), to zero. The EPGR required to do this is re-

ferred to as G( j,k,t,θ)(z) and is formed of a Givens rotation preceded
by an elementary time shift matrix. For this example, it will take the
form of a p× p identity matrix with the exception of the four ele-
ments positioned at the intersection of rows j and k with columns j
and k. These four elements are denoted as g

kk
(z), g

jk
(z), g

k j
(z) and

g
j j
(z) and are calculated such that

[
g

kk
(z) g

k j
(z)

g
jk
(z) g

j j
(z)

]
=

[
cos(θ ) sin(θ )
−sin(θ ) cos(θ )

][
1 0
0 zt

]
(6)

=

[
cos(θ ) sin(θ )zt

−sin(θ ) cos(θ )zt

]
, (7)

where the values of the rotation angle θ is chosen such that a jk(t)

is driven to zero under application of G( j,k,t,θ)(z). This is satisfied
when

tan(θ ) =
a jk(τ)

akk(0)
(8)

provided akk(0) 6= 0. Note that if akk(0) = 0, then the rotation angle
is set as θ = π/2. Following the application of the EPGR upon A(z)
as demonstrated by

G( j,k,t,θ)(z)A(z) = A
′

(z), (9)

will result in a′jk(0) = 0. Furthermore, following the application of

the EPGR, the coefficient a′kk(0) has increased in magnitude squared

such that (a′kk(0))2 = (akk(0))2 +(a jk(τ))2. Note that the order of

the matrix A(z) will increase by |t| under this transformation. This
is due to the elementary delay matrix incorporated in the EPGR,

which will apply a t-fold delay upon all elements in the jth row
of the matrix. The order must therefore increase to accommodate
all of the shifted coefficients. Note also that the polynomial matrix

G( j,k,t,θ)(z) is paraunitary and as a consequence, the transformation

demonstrated in equation (9) satisfies
∥∥A′(z)

∥∥
F

= ‖A(z)‖F . These
matrices now form the basis of the proposed algorithm for calculat-
ing the PQRD.

2.2. The PQRD by Columns Algorithm

The PQRD-BC algorithm operates as a series of ordered steps, where
at each step (referred to as a column-step) all coefficients associated
with the polynomial elements beneath the diagonal of one column
of the matrix are driven sufficiently small according to a suitable
stopping condition.

The algorithm begins the first step with the first column of the
matrix. The first iteration of the first column-step begins by locat-
ing the coefficient with maximum magnitude from any of the el-
ements situated beneath the diagonal of the first column, i.e. the
coefficient with maximum magnitude from the series of elements
a21(z), . . . ,ap1(z). Suppose this coefficient is found to be a j1(t) -

the coefficient of z−t in the polynomial element a j1(z). This coef-

ficient will be referred to as the dominant coefficient and if it is not
unique then any of the dominant coefficients may be chosen.

Once this element has been located, the rotation angle θ and the

EPGR matrix G( j,1,t,θ)(z) are calculated according to Section 2.1,
such that when this matrix is applied to the polynomial matrix A(z)
as follows

A′(z) = G( j,1,t,θ)(z)A(z), (10)

the dominant coefficient a j1(t) will have been driven to zero.

Following the transformation a′j1(0) = 0 and also (a′11(0))2 =

(a11(0))2 +(a j1(t))2.

Next a paraunitary inverse delay matrix B( j,t)(z) is applied to
A′(z) as demonstrated by

A′′(z) = B( j,t)(z)A′(z). (11)

The matrix B( j,t)(z) ∈ R
p×p takes the form of an identity matrix

with the exception of the jth diagonal element which is z−t . The
application of this matrix will apply a t-fold delay to all elements in

the jth row of A′(z) such that a′′jk(τ + t) = a′jk(τ) for k = 1, . . . ,q

and ∀τ ∈ Z. Note that the order of the matrix A′(z) must increase to
accommodate the delayed coefficients. In particular, the purpose of

this matrix is to ensure that coefficients of z0 in A(z) are returned to
their original positions following the application of the EPGR. As a
result, this will stop the erratic behaviour that has been observed in
an earlier algorithm proposed for calculating the PQRD [7].

This completes the first iteration of the first column-step of
the algorithm. Over this iteration the complete transformation per-
formed to zero the polynomial coefficient a j1(t) is of the form

A′′(z) = B( j,t)(z)G( j,1,t,θ)(z)A(z). (12)

This iterative process is now repeated replacing A(z) with A′′(z) un-
til all coefficients associated with polynomial elements beneath the
diagonal of the first column are sufficiently small.

In practice it is often not feasible to zero all coefficients of the
polynomial elements beneath the diagonal of the column. Instead
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the coefficients are driven to zero until the magnitude of all coeffi-
cients associated with these elements are sufficiently small and the
following stopping condition is satisfied

∣∣a j1(t)
∣∣ < ε (13)

for j = 2, . . . , p and ∀t ∈ Z where ε > 0 is a pre-specified small
value. Once this stopping condition has been satisfied, the overall
transformation performed in the first column-step of the algorithm is
of the form

A1(z) = Q1(z)A(z), (14)

where Q1(z) ∈ R
p×p is formed of a series of EPGRs interspersed

with inverse delay matrices and is therefore paraunitary by construc-
tion.

To begin a subsequent column-step, the iterative process out-
lined above is repeated moving to the next column of the ma-
trix. The columns are visited according to the ordering k =
1,2 . . . ,min{(p−1) ,q}, which is important for convergence of the
algorithm. Following i column-steps of the algorithm, the transfor-
mation is of the form

Ai(z) = Qi(z)A(z) (15)

where Qi(z) is formed of a series of EPGRs interspersed with inverse
delay matrices and is therefore paraunitary by construction.

Once all columns of the matrix have been visited, this completes
one sweep of the algorithm. The PQRD-BC algorithm, although
driving the dominant coefficient at each iteration to zero, only en-
sures that all coefficients of the series of elements beneath the diag-
onal of one column are suitably small before moving to the next col-
umn in the ordering. Therefore, through future column-steps of the
algorithm, these small coefficients could be rotated with other suit-
ably small coefficients, forcing them to increase in magnitude and so
multiple sweeps of the algorithm may be required. Despite this, the
algorithm is guaranteed to converge and in practice generally only a
couple of sweeps are ever required.

2.2.1. Polynomial Matrix Truncation Method

The orders of the polynomial matrices Ai(z) and Qi(z) from equa-
tion (15) will increase with the application of every elementary delay
matrix at each iteration, of each column-step of the algorithm. Often
after a series of iterations the orders of these matrices can become
very large with many of the coefficients positioned at outer lags of
the matrix equal to a small proportion of the F-norm of the matrix.
For this reason, both these polynomial matrices can be truncated at
each iteration of the algorithm according to the following criteria.

For a polynomial matrix A(z)∈ R
p×q, with coefficient matrices

A(t) ∈ R
p×q for t = t1, . . . ,t2, a suitable truncation method can be

implemented as follows: find a maximum value for T1 and a mini-
mum value for T2 such that

T1

∑
τ=t1

p

∑
l=1

q

∑
m=1

(alm(τ))2

‖A(z)‖2
F

≤
µ

2
(16)

and
t2

∑
τ=T2

p

∑
l=1

q

∑
m=1

(alm(τ))2

‖A(z)‖2
F

≤
µ

2
(17)

where µ defines the proportion of ‖A(z)‖2
F permitted to be truncated

from the polynomial matrix A(z), with one implementation of the
truncation method. The coefficient matrices A(τ) for τ = t1, . . . ,T1

and τ = T2, . . . ,t2 can subsequently be trimmed from the matrix. To
ensure that an accurate decomposition has been performed for a par-
ticular choice of µ , the relative error of the decomposition can be
calculated as

Erel =
∥∥∥A(z)− Q̃(z)R(z)

∥∥∥
F

/‖A(z)‖F . (18)

Note that this truncation method is not essential to the algorithm.
However, using it can significantly reduce the computational time
taken to implement the algorithm. Furthermore, large orders are gen-
erally undesirable when applying the algorithm to MIMO equalisa-
tion problems, where the computational complexity of the equaliser
will be directly proportional to the order of the upper triangular ma-
trix R(z). In this application, the truncation method can be used to
prevent this problem. Moreover, if this truncation method is used, it
will not affect convergence of the algorithm. This PQRD algorithm,
can now be used to formulate an algorithm for calculating the SVD
of a polynomial matrix.

3. THE SINGULAR VALUE DECOMPOSITION OF A
POLYNOMIAL MATRIX

Let A(z)∈R
p×q, the objective of the PSVD algorithm is to calculate

the paraunitary matrices U(z) ∈ R
p×p and V(z) ∈ R

q×q such that

U(z)A(z)Ṽ(z) = S(z) (19)

where S(z) ∈ R
p×q is a diagonal polynomial matrix. A method

of formulating the PSVD has already been proposed in [1]. This
method operates by using the second-order sequential best rotation
(SBR2) algorithm to calculate the EVD of the para-Hermitian poly-

nomial matrices A(z)Ã(z) and Ã(z)A(z) in turn, to calculate the left
and right singular vectors of A(z) [5, 6]. Note that the SBR2 al-
gorithm only generates an approximate decomposition, resulting in
an approximately diagonal polynomial matrix S(z). Furthermore, as
this method does not operate directly on the polynomial matrix A(z),
it is not possible to specify the level of decomposition in advance.
The PSVD by PQRD algorithm proposed in this paper does operate
directly on the polynomial matrix. This algorithm is now discussed.

3.1. The PSVD by PQRD Algorithm

The algorithm begins the first iteration by calculating the PQRD of
the matrix A(z) ∈ R

p×q such that

U1(z)A(z) = R1(z) (20)

where R1(z) ∈ R
p×q is an approximately upper-triangular polyno-

mial matrix and U1(z) ∈ R
p×p is paraunitary. Next the QRD of the

polynomial matrix A
′
(z) = R̃1(z) ∈ R

q×p is calculated such that

V1(z)A
′

(z) = R2(z) (21)

where R2(z) ∈ R
q×p is an upper-triangular polynomial matrix and

V1(z) ∈ R
q×q is a paraunitary polynomial matrix. The overall de-

composition following the first iteration is therefore of the form

U1(z)A(z)Ṽ1(z) = A1(z) (22)

where A1(z) = R̃2(z). This matrix is guaranteed to be approximately
lower triangular. This iterative process is then repeated replacing

A(z) with R̃2(z) until all off-diagonal coefficients of this matrix are
deemed sufficiently small according to the stopping condition

∣∣a jk(t)
∣∣ < ε (23)
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Fig. 1. The polynomial elements of the diagonal matrix S(z), ob-
tained when the PSVD by PQRD algorithm was applied to the poly-
nomial matrix A(z).
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Fig. 2. The polynomial elements of the paraunitary matrix U(z),
obtained when the PSVD by PQRD algorithm was applied to the
polynomial matrix A(z).

∀t ∈ Z, j = 1, . . . , p, k = 1, . . . ,q such that j 6= k and where ε > 0 is
a prespecified small value.

Following i iterations of the algorithm, the decomposition cal-
culated is of the form

U(z)A(z)Ṽ(z) = Ai(z) (24)

where U(z) = Ui(z) . . .U1(z) and Ṽ(z) = Ṽ1(z) . . . Ṽi(z). Both of
these matrices are clearly paraunitary by construction. Furthermore,
the matrix Ai(z) will converge to a diagonal matrix provided a suf-
ficient number of iterations to satisfy the stopping condition demon-
strated by equation (23).

4. A SIMPLE EXAMPLE

A polynomial matrix A(z)∈ R
4×3 was generated, where each of the

elements was chosen to be a fourth order FIR filter with coefficients
drawn from a Gaussian distribution with mean zero and unit vari-
ance. The PSVD of this matrix was obtained using the PSVD by
PQRD algorithm, where the truncation parameter and the stopping

criterion were set as µ = 10−6 and ε = 10−2 respectively. Only 10
iterations of the algorithm were required to ensure the stopping con-
dition given by equation (13) was satisfied and this required a total
of 765 EPGRs over all iterations. The diagonal matrix S(z) (of order
48) obtained from the algorithm can be seen in Figure 1, where a
stem plot has been used to demonstrate the series of coefficients for
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Fig. 3. The polynomial elements of the paraunitary matrix V(z),
obtained when the PSVD by PQRD algorithm was applied to the
polynomial matrix A(z).
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Fig. 4. The F-norm of the off-diagonal polynomial elements of A(z)
(ν) over the series of iterations of the proposed PSVD by PQRD
algorithm.

each of the polynomial elements. The position of the stem plot in the
figure corresponds to the position of the polynomial element, which
it represents within the matrix. The two paraunitary matrices U(z)
(of order 79) and V(z) (of order 34) can be seen in Figures 2 and
3 respectively. To ensure that an accurate decomposition was per-
formed despite truncating the polynomial matrices, the relative error
was calculated as

Erel =
∥∥∥A(z)− Ũ(z)S(z)V(z)

∥∥∥
F

/‖A(z)‖F . (25)

This measure was found to be 0.0087 demonstrating that a good ap-
proximation has been achieved. Convergence of the algorithm is
demonstrated in Figure 4, which demonstrates the F-norm, ν , of all
off-diagonal polynomial elements of the matrix A(z) over the series
of EPGRs. Note that this example only aims to demonstrate how the
PSVD by PQRD algorithm operates. For application purposes it may
be desirable to further truncate the order of the diagonal matrix S(z).
From inspection of Figure 1, it can be seen that the outer coefficients
of this matrix are very small, with the largest coefficients positioned
in the central lags, i.e. for this matrix the larger coefficients appear
to be positioned in lags −5, . . . ,5. If all coefficients outside of these
lags are truncated from this diagonal matrix, then the relative error
for this decomposition can again be calculated according to equation
(25) and was now found to be 0.0433.

The SBR2 algorithm was then used to obtain the PSVD of A(z).
However, to generate approximately the same level of decomposi-
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tion, i.e. in terms of the magnitude of the off-diagonal coefficients
of S(z), as that obtained when using the PSVD by PQRD algorithm
is not a simple task. An empirical process of trial and error must
be undertaken to find suitable values for both the stopping condi-
tion and truncation parameter of the algorithm that will generate a
diagonal matrix, whose off-diagonal coefficients are approximately
of the same magnitude as those obtained using the PSVD by PQRD
algorithm. For this example, the appropriate values of the stopping

condition and the truncation parameter were found to be 10−3 and

10−8 respectively. With these parameters the SBR2 algorithm re-
quired 6.70 seconds to formulate the decomposition, demonstrating
that this method is considerably slower than the PSVD by PQRD ap-

proach, which required only 2.71 seconds1 . Furthermore, the orders
of the matrices S(z) (order 178), U(z) (order 182) and V(z) (order
58) are all considerably larger than those obtained using the PQRD
approach. This last point is particularly important for the potential
application of the algorithm to MIMO equalisation, where the com-
putational complexity of the equaliser will be directly proportional
to the order of the diagonal matrix S(z).

5. CONCLUSIONS

We have presented a novel algorithm for calculating the SVD of a
polynomial matrix. The method has been compared to an existing
algorithm and has shown improved performance in terms of the com-
putational time taken for the algorithm to converge. Moreover, the
orders of the polynomial matrices generated by the algorithm are
typically shorter, which is an advantage if the decomposition is to be
applied within a MIMO communication system. However, the most
significant advantage of the algorithm proposed in this paper, is that
it operates directly on the polynomial matrix, which is something
that the SBR2 algorithm does not do. As as result, the PSVD by
PQRD method allows more control over the level of decomposition
performed and is also likely to be more numerically robust. Future
work aims at exploring the potential application of the PSVD by
PQRD algorithm to broadband MIMO channel equalisation. In par-
ticular, this work aims to compare this approach to previous results
obtained when using the SBR2 algorithm and those obtained using a
MIMO orthogonal frequency division multiplexing system [5].

1Computations undertaken on a Intel Centrino Duo processor with 1GB

of RAM.
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