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ABSTRACT
This paper presents an algorithm for robust noise reduction
technique and speech enhancement based on psychoacoustic
principles for low SNR corrupted speech signals. Assuming
the clean speech components as masker for the distortions in
the enhanced speech, a good quality of the enhanced speech
can be obtained, if the distortions in the enhanced speech
are kept below the masking curve of the clean speech. But
for a single channel noise reduction technique, the real clean
speech is not available. The speech components required to
compute the desired masking curve are therefore estimated
from the corrupted speech using advanced spectral subtrac-
tion techniques. The computed masking curve, the estimated
corrupting noise and a time-frequency dependent parameter
to control the desired predefined residual noise are then used
to derive the weighting function. The proposed approach per-
forms well for low SNRs of the corrupted speech compared
to other approaches. This is confirmed with the subjective
listening and objective grading tests. Some audio demon-
strations are available from:

http://www.hsu-hh.de/ant/index_74BUg40IeCJD04Zr.html

Index Terms— Speech Enhancement, Noise Reduction.

1. INTRODUCTION

Spectral enhancement has received a lot of attention for
decades, especially for single channel noise reduction tech-
niques because of its simplicity. This attention is also in-
creased mainly due to the necessity of integrating some noise
reduction techniques in mobile phones due to the fact that
transmitted speech can be corrupted by the environmental
noise. In order to enhance such corrupted speech, the cor-
rupting noise needs to be estimated first [1, 2] to finally de-
rive a gain function for the desired noise reduction techniques
[3, 4, 5, 6, 7].

In [4, 5, 6], Psychoacoustically Motivated Spectral
Weighting Rules (PMSWR), which derive a gain function
based on the psychoacoustical properties of the human hear-
ing system, were proposed. Unlike the Log Spectral Ampli-
tude (LSA) and the Optimally Modified Log Spectral Ampli-
tude (OMLSA) estimators [3, 7], the PMSWR approach [5]
does not try for a complete noise removal, it preserves instead
a predefined constant amount of the original noise throughout
the enhanced speech to account for the loss of weak speech
components. Therefore the enhanced speech from the PM-
SWR approach is composed of the speech components and
a predefined residual noise. Based on the error minimization
of the distortions of speech and noise components compared
to the masking curve of the rough clean speech estimate, a

gain function was derived [5]. In [4, 6], the computed mask-
ing curve is instead used to control the adaption of the over-
subtraction factor and the spectral flooring in a generalized
spectral subtraction technique.

In this paper an algorithm for the noise reduction tech-
nique and speech enhancement similar to the PMSWR ap-
proaches is proposed, where the predefined residual noise
level is instead controlled by a time-frequency dependent pa-
rameter. Unlike the PMSWR approach [5], the level of the
residual noise is here varied throughout the enhanced speech
based on discrimination between regions with speech pres-
ence and speech absence. By controlling the level of the
residual noise in the noise only region and keeping it below
the masking curve in the speech present region, the unpleas-
ant modulation effect of the residual noise is avoided for very
low SNRs. To determine the speech present or speech absent
region, a Voice Activity Detector (VAD) as explained in [2]
is applied. The clean speech components needed to com-
pute the masking curve are obtained here using the OMLSA
approach [7], while the corrupting noise is estimated using
[1, 2].

The outline of the paper is as follows. Some preliminary
definitions can be found in Section 2. Section 3 presents the
proposed enhancement approach. Experimental results and
conclusion are presented in section 4 and section 5 respec-
tively.

2. PRELIMINARY DEFINITIONS

Consider the spectrum of a corrupted speech signal to be de-
fined as

X(k,m) = S(k,m)+N(k,m), (1)

where S(k,m) and N(k,m) are the short-time DFT coeffi-
cients at frequency bin k and frame number m for the clean
speech and additive noise respectively. S(k,m) and N(k,m)
are assumed to be statistically independent and zero mean.
The enhancement process is done for the adjacent frames of
the corrupted speech x(n) overlapping by 75 % in time do-
main.

The power level of the clean speech Rs(k,m), of the addi-
tive true noise Rn(k,m) and of the corrupted speech Rx(k,m)
are obtained by squaring their respective magnitude spec-
trum. The estimated noise power level Rñ(k,m) from the
corrupted speech power Rx(k,m) can be computed using one
of the techniques proposed in [1, 2], depending on the target
true mean noise level [1] or due to the rapid adaption time
to the noise change [2]. Based on the estimated noise power
level Rñ(k,m), the gain function G(k,m) can be derived as
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proposed in section 3 or using other desired noise reduction
techniques [3, 5, 6, 7]. The spectrum of the enhanced speech
is finally obtained by a simple filtering approach given by

S̃(k,m) = G(k,m) ·X(k,m). (2)

A brief explanation for Eq. (2) is as follows. If X(k,m)
represents noise, G(k,m) will then be a low value, which re-
sults in attenuating a particular frequency bin. Else if X(k,m)
represents speech, G(k,m) will then be close to 1, resulting in
speech preservation. To determine whether a particular fre-
quency bin belongs to speech or noise is done with the help
of the estimated noise power Rñ(k,m). G(k,m) is therefore
inversely proportional to the estimated noise power level. In
the following section an explanation how to derive the ex-
pression for G(k,m) in terms of the estimated noise is given.

3. THE PROPOSED APPROACH

In this work, the desired spectrum of the enhanced speech is
first defined as

S̃(k,m) = S(k,m)+ζ (k,m)N(k,m). (3)

In the following, a method to control the level of the residual
noise ζ (k,m)N(k,m) in such a way that it remains pleasant in
the enhanced speech is proposed. Fig.1 depicts the complete
system of the proposed approach. In the analysis stage, the
corrupted speech is processed as explained in section 2. The
rough clean speech estimate Ŝ(k,m) needed for the compu-
tation of the masking threshold RT (k,m) is obtained here us-
ing the OMLSA approach [7]. The masking curve RT (k,m)
is computed as described in [6, 8, 9, 10] and summarized in
[4, 6].

Fig. 1. Improved Psychoacoustically Motivated Spectral
Weighting Rule (IPMSWR approach).

From Eq. (2), the Power Spectral Density (PSD) of the
enhanced speech is given by

Rs̃(k,m) = G2(k,m) [Rs(k,m)+Rn(k,m)] . (4)

Eq. (4) reveals that the enhanced speech power consists of
two components. One is the clean speech and the other one
is the residual noise power. For the derivation of G(k,m),
the distortion of the speech and residual noise are first con-
sidered separately. The development of the psychoacoustical

inspired weighting rule relies on the error minimization of
the speech power distortion

REs(k,m) = Rs(k,m) [G(k,m)−1]2 (5)

and the residual noise power distortion

REn(k,m) = Rn(k,m) [G(k,m)−ζ (k,m)]2 . (6)

Practically a complete masking of both distortions

RE(k,m) = REs(k,m)+REn(k,m) < RT (k,m) (7)

is not possible. But by masking the residual noise power dis-
tortions, the speech power distortions can also be minimized
[5]. So equating noise power distortion to masking curve of
clean speech, the gain function is obtained from

RT (k,m) = Rn(k,m) [G(k,m)−ζ (k,m)]2 , (8)

with ζ (k,m) ≤ G(k,m) ≤ 1. Solving Eq. (8) using the es-
timated noise power Rñ(k,m), the spectral weighting rule is
then given by

G(k,m) = min(

√
RT (k,m)
Rñ(k,m)

+ζ (λ ,m),1), (9)

where λ represents therefor a frequency band and

ζ (λ ,m) =
{

10−SP/20 , if Sr(λ ,m) > δ (λ )
Gmin , otherwise (10)

with

Sr(λ ,m) =
∑
λ

∣∣Ŝ(λ ,m)
∣∣2

∑
λ

Rñ(λ ,m)
. (11)

Instead of computing ζ in Eq. (9) for each frequency bin k,
it is derived in Eq. (10) for three different frequency bands λ

(0 - 1kHz, 1 - 3kHz and 3kHz - fS/2) due to the energy dis-
tribution of the speech [2]. fS represents herein the sampling
rate. The three frequency bands stand for the simplified oc-
tave bands. Alternatively ζ has been also investigated using
the energy within one-third octave and critical bands. There-
for the simulation did not provide reliable results especially
for low frequency subbands. In Eq. (10), the parameter SP
stands for Speech Preservation factor in dB and the threshold
δ (λ ) is empirically determined.

The advantage of Eq. (11) is that, both the rough en-
hanced speech and the noise power spectrum are not av-
eraged over the entire frequency spectrum. Otherwise this
could mask the high frequency contents since the energy of
the low frequency bins is generally high compared to the en-
ergy of the high frequency bins. To overcome this, the SNR is
found in three different frequency bands separately and each
of them is compared to an adaptive threshold δ (λ ) [2] to
determine whether it is a speech present or speech absent re-
gion. This also helps to retain some weak consonants whose
energy is concentrated in a very narrow frequency band [11].
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The idea in this approach is that the residual noise is not
going to be kept constant over frames. It is varied based on
whether a frequency region is speech present or speech ab-
sent. The control parameter ζ is made equal to Gmin < 0.1
(-20 dB) in speech absent frequency region, yielding a gain
function mostly depending on RT (k,m) and Rñ(k,m) (s. Eq.
(9)). But in speech present region a small residual noise is al-
lowed. There are two reasons to proceed like that for speech
present region. Firstly, the residual noise will be mostly
masked by the speech components and remains inaudible.
Secondly, if there is a small error in speech estimation, the
residual noise will then make up for the loss. For this reason
the Noise Reduction factor NR from [5] is here replaced by
the Speech Preservation factor SP in speech present regions.
By controlling in such a way the level of the residual noise
in the noise only region and keeping it below the masking
curve in the speech present region, the unpleasant modula-
tion effect of the residual noise, which is perceived in results
from the PMSWR approach at very low SNRs, is avoided.
To reduce spectral outliers of the final enhanced speech, a
temporal smoothing of the gain function

G̃(k,m) = (1−β )G(k,m−1)+βG(k,m) (12)

is applied in the frequency domain. β < 1 is herein a desired
constant smoothing parameter. To still control the coarse-
ness after Eq. (9) values of G̃(k,m) < 10−SP/20 are replaced
by some constant value smaller equal to Gmin. Recall that
10−SP/20 must be chosen higher than Gmin in Eq. (9).

There is a big advantage for the use of the OMLSA ap-
proach to compute Ŝ(k,m) instead of Spectral Subtraction as
proposed in [5], despite the computation time. The OMLSA
provides a better estimation of the enhanced speech and sup-
presses the musical noise effect better than Spectral Subtrac-
tion [12]. The OMLSA performs also well in speech absent
sections, which is important for very low SNR signals. The
masking threshold obtained from the OMLSA is therefore a
better rough estimation than the one from Spectral Subtrac-
tion in [5].

One disadvantage observed with OMLSA approach is
some speech loss in certain frequency bins. But this is con-
trolled here by ζ governed by the Speech Preservation factor
SP to preserve the speech components in the speech sections.
In order to find whether a frequency region is speech present
or speech absent, a Voice Activity Detector (VAD) as pro-
posed in [2] and shown in Eq. (10) is applied. The proposed
approach avoids musical noise efficiently as the computation
of the weighting function implicitly uses the OMLSA esti-
mator which accounts for the musical noise phenomena.

The interpretation for the derivation of G(k,m) in Eq. (9)
is pretty straightforward as explained in [5]. Let first consider
a relatively strong estimated clean speech. a high value for
the masking threshold RT (k,m) is thus obtained. Therefore
RT (k,m)/Rñ(k,m)+ζ (k,m) yields G(k,m) close to 1, result-
ing in less noise reduction. This is expected because speech
will mask the noise and noise reduction is thus not required.
If, on the contrary the estimated clean speech is relatively
weak, RT (k,m) will consequently be a low value. The ra-
tio RT (k,m)/Rñ(k,m) will be close to zero and G(k,m)→ ζ ,
yielding a strong reduction of the corrupting noise.

4. EXPERIMENTAL RESULTS

This section presents the performance evaluation of the pro-
posed enhancement technique in comparison with the PM-
SWR [5] and the OMLSA [7] approaches. To have a fair
comparison, tests were carried out for different noise chara-
cteristics (s. Fig. 6). Some parameters for the simulation
in the proposed approach are SP ≤ 20 dB, Gmin ≤ 0.1 (≤ -
20 dB), δ (λ ) = 1.3 and β = 0.95. A window length of 512
samples with a hopsize of 75 % for analysis and synthesis
is applied. The noise power Rñ(k,m) used in the three ap-
proaches is estimated using Optimal Smoothing and Mini-
mum Statistics algorithm [1]. The enhanced speech from all
three approaches is subjected to the tests listed below. Fig. 2
depicts the results with the PMSWR and IPMSWR approach
for a speech signal corrupted with car noise at 5 dB SNR
(s. Fig. 2(b)). Only for the sake of clarity the result with
OMLSA is not reported for the following two figures.

Fig. 2. Results from investigated speech enhancement tech-
niques. Clean speech (a), corrupted speech with care noise
(b), PMSWR approach (c) and IPMSWR approach (d).

Fig. 3 reports here the results with the PMSWR and
IPMSWR approach for a speech signal corrupted with white
noise at 9 dB SNR (s. Fig. 3(b)).

Fig. 3. Results from investigated speech enhancement tech-
niques. Clean speech (a), corrupted speech with white noise
(b), PMSWR approach (c) and IPMSWR approach (d).
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As the real clean speech is generally not available for
a single channel noise reduction technique, Fig. 4 and 5
present the simulation results with the OMLSA, PMSWR
and IPMSWR approach for a speech signal corrupted with
cockpit noise at 0 dB SNR. For this case, the clean speech
was not available. Fig. 4(b) presents result with the OMLSA

Fig. 4. Results from investigated speech enhancement tech-
niques. Corrupted speech (a), OMSLA approach (b) and
IPMSWR approach (c).

as implemented in [11]. The result in Fig. 4(b) reveals that
the noise only regions are properly attenuated. Although the
speech regions are preserved, some speech components are
removed at this low SNR signal. This drawback of decision
directed approaches [3, 7] at low SNRs has been already ob-
served and investigated in [13]. The result in Fig. 5(b) is
obtained applying advanced spectral subtraction techniques
(OMLSA) to estimate the rough clean speech Ŝ(k,m) needed
for the computation of the masking threshold RT (k,m) as
stated in [5]. The parameter ζ is set to 0.1 (NR = 20 dB)
and can be varied.

Fig. 5. Results from investigated speech enhancement tech-
niques. Corrupted speech (a), PMSWR approach (b) and
IPMSWR approach (c).

Clearly the Psychoacoustically Motivated Spectral
Weighting Rules preserve the speech regions and speech
components properly compared to the OMLSA from Fig.

4(b). Combining the advantages of the OMLSA approach
in speech absent regions (s. Fig. 4(b)) and the advantages of
the PMSWR approach for speech preservation (s. Fig. 5(b)),
the IPMSWR approach yields good results at low SNRs as
shown in Fig. 4(c)-5(c) and confirmed with subjective and
objective validations. Obviously the IPMSWR approach en-
hances better the corrupted speech than the compared ap-
proaches (s. Fig. 4 - 6).

4.1 Informal listening tests
In Fig. 6 results obtained during listening test with head-
phones are presented. The fifteen subjects recruited for this
test are all working in our lab. For this test, subjects had first
to find the hidden reference signal and assign it 100%. The
results from the simulated algorithms are then compared to
the reference signal grade. The Mean Opinion Score (MOS)
represents the grades of the three enhancement techniques
for three different kinds of noise (Fig. 6). Table 1 and Fig. 6
reveal that the IPMSWR approach was graded best.

Fig. 6. Results from listening test using headphones. Bars
denote 95 % confidence interval.

Table 1. Comparison of the methods using preference in %.
Cockpit noise at 0dB (A), cockpit noise at 5dB (B), room
noise at 9dB (C) and white noise at 9dB (D).

Method A B C D
OMLSA 48.43 58.14 62.0 65.9
PMSWR 55.57 58.07 63.1 63.4
IPMSWR 75.64 69.14 77.4 77.4

Table 1 presents the averaged grades of the three com-
pared techniques (OMLSA, PMSWR, IPMSWR) for each of
the four simulated signals (A,B,C,D) respectively. The re-
sults in Table 1 are derived from the informal listening tests
and should therefore reflect the results in Fig. 6.

4.2 Objective quality measures
The objective evaluation is performed as proposed in [14]
using the codes available in [11]. The clean speech and
the enhanced speech are compared based on Log Likeli-
hood ratio (LLR), Segmental SNR (SSNR), Weighted Spec-
tral Slope (WSS), Perceptual Evaluation of Speech Quality

173



(PQ), Speech quality ratio (SQ) and Overall quality ratio (OQ)
using the composite tool from [11]. The results obtained for
a simulation of a clean speech signal corrupted with car noise
at 5 dB SNR are shown in Table 2. In the second row of Table

Table 2. Objective quatily measurement.

LLR SSNR WSS PQ SQ OQ

Reference 0 35 0 4.5 5 5
Corrupted 0.68 3.09 30.66 2.27 3.49 2.86
OMLSA 0.6 7.11 60.18 2.51 3.45 2.89
PMSWR 0.70 6.33 38.4 2.7 3.68 3.2
IPMSWR 0.51 7.44 28.65 2.75 3.96 3.34

2, the clean speech is compared to itself yielding the upper
limits of the reference grades. In the third row results ob-
tained by comparing clean speech and corrupted speech are
shown. These scores represent the lower limits of the refer-
ence grades. The LLR and WSS scores indicate the speech
loss and therefore should be minimum. Whereas the remain-
ing parameters should be maximum. The results in Table 2
show that the IPMSWR approach is graded best for LLR,
SSNR and WSS parameters, but remains close to the PM-
SWR approach for the PQ and OQ parameters. Results in
Table 2 clearly reveal that the IPMSWR approach combines
the advantages of the OMLSA approach in terms of LLR and
SSNR improvement and the advantages of the PMSWR ap-
proach in terms of WSS, PQ, SQ and OQ improvements.

The results in Table 2 clearly reveal that PQ measure does
not properly correlate with the distortions introduced by the
noise reduction techniques, as it is generally the case with
distortions introduced with speech transmitted via commu-
nication networks [11]. Although a numerical minor corre-
lation with results in Fig. 6 can be observed, the results in
Table 2 are still to handle with care as the composite tool
does not yet provide 100 % reliable results.

5. CONCLUSION

A speech enhancement technique based on psychoacoustics
principles is proposed here. The key components of this
approach are a time-frequency dependent control parame-
ter for the residual noise and a better estimate of the rough
clean speech. Since the residual noise is more reduced in
the speech absent sections, this algorithm is very well suited
for low SNR signals. The estimate of the rough enhanced
speech by OMLSA approach also supports this activity as its
masking curve is less distorted. Moreover a small correc-
tion factor to control the estimation of the enhanced speech
is proposed. Subjective and objective quality measurements
reveal that the proposed approach performs better than the
PMSWR and OMLSA approaches for very low SNR signals.
Although the proposed approach currently provides good re-
sults, its parameter optimization remains necessary.

Future works will thus concern the increase of the speech
intelligibility by appropriately smoothing the gain coeffi-
cients and addressing the phase information to account for
some speech loss. Moreover, an investigation of the perfor-
mance of the VAD for a large number of speech segments
at various SNRs is required. Finally a big campaign for
the comparative study over a very large number of corrupted
speech at different SNRs should be conducted.
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