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ABSTRACT
This paper addresses the minimisation of the overall distur-
bances of the output signal of an oversampling DFT subband-
coder filter bank. These disturbances are separated into alias-
ing and imaging. By means of the definitions of these distur-
bance components, two quadratic functions are derived that
are used as objective functions in the design approach. The
algorithm optimises in an iterative manner the coefficientsof
the prototype filters of the analysis and synthesis filter banks.
It is proved that the design problem is convex. An efficient
implementation of the algorithm is given. A numerical ex-
ample shows that the output disturbances are highly reduced
compared to standard designs.

1. INTRODUCTION

Complex-modulated (DFT) subband coder filter banks (Filter
Bank Pairs: FBP) are widely used in multirate signal process-
ing for uniform spectral decomposition [4, 8], where power
consumption and, hence, computation is crucial, whilst a
specified (output and/or subband) signal quality must strictly
be maintained; e.g. mobile systems, hearing aids, etc. In
this contribution, the design of non-recursive DFT FBP with
approximately perfect reconstruction is revisited, wherethe
signal degradation caused by aliasing and imaging is exclu-
sively controlled by sufficiently high stopband attenuation
of the FBP prototype filters. To avoid excessive FIR filter
lengths, suitable oversampling of the subband signals by an
integer factor is applied [1].

In [2], based on a two-criteria objective function, sub-
band (denoted by inband) aliasing and the FBP output dis-
turbance (so called residual aliasing) are concurrently min-
imised in the frame of an iterative design procedure: The co-
efficients of the prototype filters of the analysis and the syn-
thesis filter bank, AFB and SFB, are alternately optimised.

In a different approach [1], the mechanisms of the alias-
ing and imaging disturbances of oversampling DFT FBP
have thoroughly been investigated. As a result, an over-
all specification of the AFB and SFB prototype filters with
frequency-dependent stopband requirements has been de-
rived to maintain a prescribed FBP output signal quality that
is essentially independent of subband signal manipulation
(hearing aid application).

Stimulated by [1], the two-criteria objective function
used in [2] is modified as follows: i) The first criterion mea-
sures aliasing in the FBP output signal, which is mainly con-
trolled by the AFB prototype filter stopband rejection, ii)
The second criterion measures the imaging disturbance of the
FBP output signal, which is solely minimised by optimising
the SFB prototype filter coefficients. Similar to [2], the AFB
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Figure 1: Oversampling SBC filter bank;zo = zD
i

and SFB FIR prototype filters are alternately optimised; thus,
the disturbance by aliasing and imaging, respectively, is min-
imised in an iterative manner.

Subsequently, in sec. 2, the novel two-criteria objective
function is derived. The details and an efficient implemen-
tation of the optimisation procedure are presented in sec. 3.
Illustrative examples in comparison with results obtainedac-
cording to [2] are shown in sec. 4, followed by concluding
remarks.

2. FILTER BANK REPRESENTATION

2.1 Complex-Modulated Filter Banks

In our investigations we assume a uniform, complex-
modulated (DFT)M-channel FBP, a subband coder (SBC)
filter bank [4, 8], where the prototype filters of the anal-
ysis (AFB) and synthesis filter bank (SFB) are real-valued
FIR lowpass filters. The vectors of the impulse responses of
the AFB and SFB prototype filters are denoted byh(n)↔
H(ejΩ) and g(n) ↔ G(ejΩ). The respective filter lengths
Lh andLg are generally assumed different. The SBC filter
bank applies decimation by the factorD < M such that the
oversampling factorO = M

D > 1 is an integer (cf. fig. 1).
The transfer functions of the modulation components of

each filter bank are derived from those of the respective AFB
and SFB prototype filters [4, 8] by

Hm(zi) = H(ziW
m
M ) andGm(zi) = G(ziW

m
M ), (1)

whereWM = e−j2π/M, 0≤m≤M−1, andzi is related to the
input/output sampling ratefi of the FBP. The z-transforms of
theD-fold downsampled subband signals (AFB output ports)
are given by

Xm(zo) =
1
D

D−1

∑
d=0

H
(

ziW
m
MWd

D

)

X
(

ziW
d
D

)

, (2)

wherezo = zD
i . Finally, the transfer properties of the FBP are
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completely described by

Y(zi) =
1
D

D−1

∑
d=0

X(ziW
d
D)

M−1

∑
m=0

H(ziW
m
MWd

D)G(ziW
m
M ), (3)

which represents the z-transform of the overall output signal
subject to the input signal.

2.2 Disturbances

In (3), the terms withd = 0 represent those desired compo-
nents that are transferred by the FBP without any non-linear
disturbance (aliasing and imaging). Hence, thedistortion
function

Fdist(zi) =
1
D

M−1

∑
m=0

H(ziW
m
M )G(ziW

m
M ) (4)

represents the linear distortion of the FBP [4]. In [5] this
function is shown to be2π

M -periodic.
To consider the non-linear disturbance introduced by the

FBP, we assume an input signal with a constant (white) spec-
trum

∣

∣X(ejΩ)
∣

∣ ≡ 1. This non-linear disturbance is measured
by the remaining terms, 1≤ d≤ D−1, of (3):

Falias(zi) =
1
D

D−1

∑
d=1

[

M−1

∑
m=0

H(ziW
m
MWd

D)G(ziW
m
M )

]

(5)

This function is commonly referred to asaliasing function,
though it contains both types of disturbances that are intro-
duced by the FBP: aliasing and imaging.

Finite stopband attenuation of the AFB prototype FIR fil-
ter leads to aliasing as a result ofD-fold downsampling (see
fig. 1). The only means to reduce the impact of aliasing, is to
increase AFB stopband rejection. Similarly, non-linear dis-
turbance of adjacent subbands by imaging is introduced by
the SFB. This disturbance can exclusively be controlled by
sufficiently high stopband attenuation of the SFB prototype
filter. Both types of non-linear disturbance are usually mea-
sured and optimised by concurrently minimising the overall
error energy according to [2]:

γ(h,g) =
1

πD

D−1

∑
d=1

∫ π

0

∣

∣

∣
H(ejΩWd

D)G(ejΩ)
∣

∣

∣

2
dΩ (6)

Note that, in deriving (6) from (5), it is sufficient to consider
only them= 0 term, since (5) is also2π

M -periodic like (4).
Subsequently, in contrast to (6), we measure and min-

imise the two types of nonlinear disturbances separately. To
develop two separate objective functions, we start with the
consideration of the aliasing disturbance with reference to
(6) and to fig. 2(a). The dashed line of fig. 2(a) represents
the magnitude response of SFB-channelm= 0, |G(ejΩ)|, col-
lecting all aliasing contributions folded onto the usable spec-
trum (in |Ω| ∈ [0,Ωs]) of this very subband signal byD-fold
downsampling (cf. fig. 1), which pass the stopbands of all
frequency-shifted magnitude responses of the AFB prototype
filter: |H(ejΩWd

D)|, d = 1, . . . ,D−1. Hence, the overall alias-
ing disturbance of the usable spectrum is measured by (6), if
the integration interval of (6) is restricted to the passband and
transition bands of the SFB prototype filter,|Ω| ∈ [0,Ωs], as
follows:

Ωs π
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Ω
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(a) Position of disturbance components behind D-fold upsampling and before
SFB filtering
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aliasing imaging

Ω
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Figure 2: Positions of disturbance components in subband
m= 0 (M even)

γA(h,g) =
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∑
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∫ Ωs
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∣

∣

∣
H(ejΩWd

D)G(ejΩ)
∣

∣

∣

2
dΩ. (7)

D-fold upsampling of the subband signals distorted by alias-
ing (cf. fig. 1) yields the spectral representation depictedin
fig. 2(a): Adjacent to the usable spectrum, we observeD−1
spectral repetitions of the usable spectrum (images) that dis-
turb all adjacent subband signals after SFB filtering and com-
bination at the FBP output port. Obviously, these images also
contain the spectral repetitions of AFB aliasing. Since, how-
ever, the energy of these aliasing components is highly re-
duced by the AFB stopband attenuation, it is neglected in the
treatment of imaging subsequently. With this assumption, the
overall disturbance due to SFB imaging is again measured by
(6), if the integration interval of (6) spans the entire stopband
region of the SFB prototype filter,|Ω| ∈ [Ωs,π], as stated by

γ I(h,g) =
1

πD

D−1

∑
d=1

∫ π

Ωs

∣

∣

∣
H(ejΩWd

D)G(ejΩ)
∣

∣

∣

2
dΩ. (8)

The aliasing and imaging spectra resulting at the FBP
output port are shown in fig. 2(b), confirming the above ne-
glecting of the spectral repetitions of the aliasing contribu-
tions.

For input signals with constant (white) spectral density,
as assumed here, it is well known that least-squares filter
designs yield the optimum output signal-to-noise ratio [4].
Obviously, the optimisation of the AFB and SFB prototype
filters subject to the minimisation of the quadratic functions
(7) and (8) w.r.t. the respective filter coefficients represents
such a least-squares optimisation problem.

Since aliasing is predominantly measured by (7), and
imaging is completely comprised by (8), an iterative de-
sign procedure that alternately optimises the AFB and SFB
prototype filter coefficients, respectively, is most appropri-
ate. Moreover, the frequency domains for both optimisa-
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tions,|Ω| ∈ [0,Ωs] and|Ω| ∈ [Ωs,π], are disjoint. As a conse-
quence, the two sub-optimisations exhibit only small mutual
impact on each other. Since, in addition, the optimisation
problem is convex (to be shown in sec. 3), fast convergence
can be expected.

The two objective functions to be alternately minimised,
are given by (7) and (8). Subsequently, these objective func-
tions are analysed and elaborated to a form that, furthermore,
considerably reduces the computational load and, thus, the
speed of convergence.

3. ITERATIVE FILTER BANK DESIGN

3.1 Minimisation of Aliasing

The squared absolute values of the prototype filters of the
AFB and the SFB are given by

∣

∣

∣
H(ejΩ)

∣

∣

∣

2 DTFT
←→ φhh(n) and

∣

∣

∣
G(ejΩ)

∣

∣

∣

2 DTFT
←→ φgg(n) (9)

whereφhh(n) andφgg(n) denote the respective autocorrela-
tion functions [6]. Using (9), we reformulate (7) as a func-
tion of the coefficients of the analysis and synthesis prototype
filters. Note that

1
D
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∣

∣
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∣

∣

2
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∣

∣
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∣

∣

∣

2
−

1
D

∣

∣
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2

⇒
1
D
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∑
d=1

∣

∣

∣
H(ejΩWd

D)
∣

∣

∣

2 DTFT
←→ wD(n)φhh−

1
D

φhh, (10)

where

wD(n) =
1
D

D−1

∑
d=0

W−dn
D (11)

represents the comb sequence [8]. With (10) we get

∣

∣

∣
G(ejΩ)

∣

∣

∣

2 1
D

D−1

∑
d=1

∣

∣

∣
H(ejΩWd

D)
∣

∣

∣

2

=
Lconv

∑
n=0

φgg(n)∗

[(

wD(n)−
1
D

)

φhh(n)

]

e−jΩn (12)

where use is made of the DTFT [6], andLconv= 2(Lh+Lg)−
3 is the length of the convolution ofφhh(n) with φgg(n). Us-
ing the stopband cut-off frequencyΩs = π

D , we reformulate
(7):

γA(h,g) =
1

2πD

D−1

∑
d=1

∫ Ωs

−Ωs

∣

∣

∣
H(ejΩWd

D)G(ejΩ)
∣

∣

∣

2
dΩ

=
Lconv

∑
n=0

φgg(n)∗

[(

wD(n)−
1
D

)

φhh(n)

]

∫ π
D

− π
D

e−jΩndΩ

=
Lconv

∑
n=0

φgg(n)∗

[(

wD(n)−
1
D

)

φhh(n)

]

2π
D

si
(

n
π
D

)

, (13)

where si(x) = sin(x)
x . To set up the minimisation problem

subject to the optimisation of coefficients of the AFB pro-
totype filter, we exploit the fact that the Hessian matrix of
(13),HA = ∂γA(h,g)

∂hi∂h j
, leads to the objective function

γA(h,g) = hTHA(g)h. (14)

Particularly for practical implementation it is valuable to
know the structure of the second derivative ofφhh with re-
spect toh. The gradient ofφhh is given by

∂φhh(n)

∂hν
= h(ν−n)+h(ν +n) =

∂φhh(−n)

∂hν
, (15)

wherehν = h(ν). Note the structure of the gradient:

∂φhh(n)
∂h0

= [hLh−1 · · · h1 2h0 h1 · · · hLh−1]
∂φhh(n)

∂h1
= [ 0 · · · h0 +h2 2h1 h0 +h2 · · · 0 ]

...
...

As a result, the terms of∂φhh
∂hi∂h j

can be written as follows:

∂φhh(n)
∂h0∂h0

= [0 · · · 0 0 2 0 0 · · · 0]
∂φhh(n)
∂h0∂h1

= [0 · · · 0 1 0 1 0 · · · 0]
...

...
∂φhh(n)
∂h1∂h0

= [0 · · · 0 1 0 1 0 · · · 0]
∂φhh(n)
∂h1∂h1

= [0 · · · 0 0 2 0 0 · · · 0]
...

...

(16)

Note that the second derivative ofφhh with respect toh is
independent of the coefficients of the AFB prototype filter.
This additionally shows that (14) represents a quadratic op-
timisation problem. Considering (7), negative values are ex-
cluded by definition which consequently makes this objective
function strictly convex. Hence, a unique solution always ex-
ists.

3.2 Minimisation of Imaging

To reformulate (8) to a quadratic minimisation problem sub-
ject to the optimisation of the coefficients of the SFB pro-
totype filter, we can similarly proceed as in sec. 3.1. The
objective function is then given by

γ I(h,g) =
Lconv

∑
n=0

φgg(n)∗

[(

wD(n)−
1
D

)

φhh(n)

]

·

(

2π si(nπ)−
2π
D

si
(

n
π
D

)

)

(17)

With the Hessian matrix of (17),HI = ∂γ I(h,g)
∂gi∂g j

, we finally

define the respective optimisation problem

γ I(h,g) = gTHI(h)g. (18)

The second derivative ofφgg with respect tog has a similar
structure compared to the one in (16) and is also independent
of g; (8) takes on only positive values by definition, thus (18)
again represents a strictly convex optimisation problem.

3.3 Constraints to the Optimisation

The prototypes of the FBP are to be designed under the con-
dition that the resulting distortion function (4) is approxi-
matly a linear-phase allpass function. The desired distortion
function can thus be stated as

Fd(e
jΩ) = e−jΩτd, (19)

2650



whereτd = lM with l ∈N is the desired delay [5]. Hence for
every step of optimisation the constraints are defined by

∣

∣

∣
Fdist(e

jΩ)−Fd(e
jΩ)

∣

∣

∣
≤ ε(Ω) ∀Ω ∈

[

0,
π
M

]

, (20)

where the restricted frequency range exploits the2π
M -

periodicity of the distortion function. With the real rotation
theorem [3] it is possible to estimate the upper bound of a
complex value by its real part. Employing this theorem to
(20) we get

R

{

Fdist(e
jΩ)ejα

}

≤ cos(α−Ωτd)+ ε(Ω)

∀Ω ∈
[

0,
π
M

]

and∀α ∈ [0,2π] (21)

To write (21) as a system of linear inequalities, the left hand
side has to be reformulated as a function of the respective
prototype filter coefficients, to be optimised. In [5] it is
shown thatFdist(ejΩ) can be written as

Fdist(e
jΩ) = O

Lh+Lg−2

∑
n=0

s(n)wM(n)e−jΩn

= O

⌊
Lh+Lg−2

M ⌋

∑
n=0

e−jΩnMs(nM) (22)

wheres = h∗g andwM(n) is defined by (11) withD = M.
The number of constraintsNconstr depends on the num-

ber of discrete frequency pointsND over
[

0, π
M

]

, and on the
chosen gridNα over the 2π-period realising the real-rotation
theorem:

Nconstr= ND ·Nα . (23)

3.4 Algorithm

Finally, the complete algorithm for FBP prototype filters de-
sign consists of three steps:

1 Initialisation Define initial filtersh andg with the respec-
tive lengthsLh andLg. Set the costsch(0) andcg(0) that
represent the value of the objective functions to an arbi-
trarily high value and the counter variable tok = 1.

2 Optimise analysis filter Start optimisation of (14) under
the constraints (21). Setch(k) = γA(h,g)|h=hopt and
check if ch(k− 1)− ch(k) ≥ κch(k− 1) is true, where
κ is a small number (e.g.κ = 10−4). Then seth = hopt
and continue with step 3, otherwise stop the algorithm.

3 Optimise synthesis filter Start optimisation of (18) un-
der the constraints (21). Setcg(k) = γ I(h,g)|g=gopt and
check ifcg(k−1)−cg(k)≥ κcg(k−1) is true. Then set
g = gopt, k = k+ 1 and continue with step 2, otherwise
stop the algorithm.

Consider that the initial filters can be chosen randomly be-
cause of the convexity of the respective optimisation prob-
lems. Further more the algorithm always converges to the
unique solution of the design approach. The algorithm stops
if either in step 2 or 3 the relative improvement ranges below
the factorκ .
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Figure 3: Design result for a SBC filter bank withM = 64,
D = 16 and filter lengthsLh = Lg = 85

4. DESIGN EXAMPLE

4.1 Discussion of a Design Result

The following design result is a solution for a FBP withM =
64 channels and a downsampling/interpolation factorD = 16
so that the oversampling factorO = 4. Initially, the lengths
of the filters of the AFB and SFB were set toLh = Lg = 85.
The constraint (20) of the distortion function is chosen to
ε(Ω) = 0.01. Furthermore, the desired group delay was set
to τd = M.

During the design iterations the number of equi-angular
points α ∈ [0,2π] used in (21) to implement the real rota-
tion theorem is initially set toNα = 4 and always doubled
from iteration to iteration. Hence, due to (23), the number
of constraints was kept low initially. Consequently, this pro-
cedure accelerates convergence, considering that the initial
filters could be random vectors. In this case the algorithm
stopped after four iterations (i.e. two optimisations of each
prototype filter).

The obtained prototype filters lead to an aliasing (7) of
−183.91 dB and an imaging (8) of−175.65 dB. These re-
sults are a significant improvement compared to linear-phase
equiripple designs [7] using the same filter lengths, and with
approximately the same quality of distortion function and
overall group delay. These filters contribute both aliasingand
imaging of−108.19 dB.

Note that both responses exhibit a remarkable resem-
blance with Nyquist(D)filters (D-th band filters [4]) with
interlaced stopband domains of higher and lower rejection
(i.e. don’t care regions), whereD represents the decima-
tion/interpolation factor. Considering the AFB response,
those aliasing components that are folded onto the passband
centres of the respective SFB filters are best captured by the
SFB and, hence, must maximally be attenuated by the AFB
prototype. These aliasing components are allocated about
Ωd = 2π d

D , d = 1, . . . ,D− 1, where the AFB stopband re-
sponse exhibits the highest rejection. As to the synthesis fil-
ter bank, an SFB can, in principle, be derived from its dual
AFB by transposition [4]. In the case of our SFB design,
this is reflected by the fact that the SFB prototype filter mag-
nitude response highly resembles that of the corresponding
AFB; cf. fig. 3. For a more detailed discussion refer to [1].

The design results have also notable characteristics con-
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used parameters: measures from [2] in dB novel measures in dB
Lh = Lg = 85 inband residual number of
τd = 64,ε(Ω) = 0.086 dB aliasing aliasing (6) aliasing (7) imaging (8) iterations ∆Fdist in dB

novel approach −158.38 −172.81 −183.91 −175.65 4 0.086

approach
according

to [2]

v = M −173.29 −171.40 −175.49 −179.89 6 0.086
v = 2M −174.28 −170.37 −173.79 −180.10 6 0.086
v = 3M −174.72 −169.72 −172.81 −180.18 6 0.086

Table 1: Summary of the comparison with the design method proposed in [2]

cerning the FBP group delay, which is approximately con-
stant within the passband. This group delay oscillates be-
tween 63.38 and 64.61 samples, which shows that the initial
specification ofτd = M = 64 is well maintained.

4.2 Comparison to an Alternative Design Approach

The design approach proposed in [2] uses a weighting fac-
tor v while optimising the inband and residual aliasing. This
factor defines the weight of the inband aliasing related to that
of the residual aliasing of the objective function. In the fol-
lowing, three design results of this algorithm are compared
with our design results. To assure a fair comparison, all
above specified parameters are identical for both design ap-
proaches.

A summary of the comparison of the design approaches
is given in table 1, and discussed below. The obtained results
of both methods are evaluated with the measures of [2] as
well as with those defined in this paper for aliasing (7) and
imaging (8). Furthermore the number of required iteration
steps and the maximum deviation of the distortion function
∆Fdist are given.

Considering the proposed separate measurement of the
overall aliasing (7) and imaging (8) energy at the FBP output
port, our design yields somewhat better results than that of
[2], regardless of the weighting factorv. This is further con-
firmed by the non-coherent combination of both disturbances
at the FBP output port, which is best reflected by the "resid-
ual aliasing" column of table 1, since it represents the sum of
the novel defined measures. On the other hand, the aliasing
energy contained in the subbands (inband aliasing) is smaller
with the design approach of [2]. This is due to the fact that in
our approach aliasing is solely measured at the FBP output
port, whereas, in [2], inband aliasing is directly minimised in
the FBP subbands.

To perform the comparison of our design results with
those obtained according to [2], the latter being likewise con-
strained by condition (20) has also been implemented by ap-
plying the real rotation theorem [3] with doubling ofNα from
one iteration step to the next one. As a result, the computa-
tional loads of both design approaches grow exponentially
with the number of iterations. Hence, a small number of iter-
ations is highly desirable. As to be seen from table 1, this is
better achieved by our design procedure as a result of the dis-
joint frequency domains of the alternating sub-optimisations.

5. CONCLUSION

We have proposed a novel iterative approach to the design
of oversampling uniform DFT filter bank pairs (FBP) of the
SBC type that approximately achieve perfect reconstruction.
In view of extensive subband signal manipulation (e.g. in
hearing aid applications), solely the magnitude responsesof

the AFB and SFB are matched, whilst aliasing compensation
is not exploited.

The AFB FIR prototype filter is optimised by minimis-
ing the overall aliasing energy collected in the passband and
the transition bands[−Ωs,Ωs] of the prototype. Contrary, the
SFB parameters are optimised by minimising the overall en-
ergy of images allocated throughout the stopband frequency
range[Ωs,2π−Ωs] of the SFB prototype filter. Since the
frequency domains of the alternating AFB and SFB optimisa-
tions are disjoint, the proposed design approach requires only
few iterations. Moreover, some novel ideas are exploited to
speed up the kernel of the optimisation procedure. Most im-
portantly, the design approach is convex and, thus, the opti-
mum result is independent of any initial solution.

Our design results compare well with those obtained ac-
cording to [2], if the overall disturbance caused by aliasing
(7) and imaging (8), or the residual aliasing of [2], respec-
tively, is considered. Nevertheless, further research shall
clarify, how aliasing (7) and imaging (8) disturbances can
better be balanced, for instance, by choosing different lengths
of the AFB and SFB prototype filters, and whether or not the
overall disturbance can still be reduced by this action.
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