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ABSTRACT

A single-carrier quasi-orthogonal distributed block space-time coding
scheme for a wireless collaborative network with one relaying stage
composed of four nodes is proposed. This block quasi-orthogonal
design can attain full diversity and maximum rate, and is based on
simple amplify-and-forward processing at the relay nodes. A cyclic
prefix is introduced into the block transmission to overcome chan-
nel delay mismatches in the paths through the four relays. In single-
carrier operation, these delays are shown to introduce inter-symbol-
interference (ISI) in the destination signal. A linear pre-processing
scheme is therefore designed to mitigate this ISI through maximiz-
ing signal-to-interference-plus-noise ratio (SINR) at the receiver in
combination with iterative equalization. To reduce the computational
complexity of this scheme the underlying interference matrices are
rendered sparse by the pre-processing operation. Simulation studies
confirm the improvement in SINR of the proposed approach as com-
pared to one which only uses rectangular pre-windowing.

Index Terms– Cooperative Systems, Space-Time Coding,
Wireless Relay Networks, Asynchronous Communication

1. INTRODUCTION

Cooperative communication leverages multiple-input multiple-output
(MIMO) techniques to increase the available diversity gain in wire-
less networks with single-antenna relay nodes [1, 2]. Using cooperat-
ing relay nodes which overhear the broadcast signal from the source
node, it is possible to provide extra observations of the source signal at
the destination node. The separated relay nodes mitigate spatial cor-
relation in the MIMO channels, which is known to reduce the BER
performance in co-located MIMO systems [3]. However, diversity
gain and increased throughput/capacity gains offered in cooperative
systems comes at the expense of additional complexity in synchro-
nization between distributed systems both in time and frequency.

In this paper, we consider a parallel relay channel model assum-
ing a single source S communicates with a destination node D utilizing
four cooperating relays R1-R4, wherein no direct communication be-
tween S and D is assumed as illustrated in Fig.1. Separation of the re-
lay nodes makes timing synchronization with the destination node ex-
tremely challenging. However, we propose a robust space-time block
code (STBC) scheme that is tailored for single-carrier transmission
over asynchronous cooperative networks.

In previously developed asynchronous multi-carrier schemes [4,
5] the time-domain modulus of an information symbol can increase
by a factor as high as the number of subcarriers used; therefore to
avoid introducing nonlinear distortion effects, such as through clip-
ping within the power amplifier, we propose using a single-carrier
scheme. However, we demonstrate that single-carrier implementa-
tions for non-orthogonal code designs [6] can require additional com-
plexity in decoding due to significant inter-symbol-interference (ISI).
To cancel the ISI we propose using a low-complexity iterative receiver
design which can be adapted with a variety of scheduling strategies.
Since the symbol estimation performance is expected to be propor-
tional to the signal-to-interference-plus-noise ratio (SINR), we inves-
tigate the use of a linear pre-processing stage that renders the ISI re-
sponse sparse and thereby reduces the equalizer complexity.

Figure 1: Cooperative two stage relay network architecture

The paper is organized as follows. Section II details the operation
of the source and relay nodes. Section III introduces the destination
node processing, specifically the initial pre-processing to prepare the
data for linear combining. Section IV establishes the use of linear
pre-processing to render the ISI response sparse and follows with a
description of the equalization stage. Finally, Section V presents sim-
ulation results and Section VI concludes with a closing summary.

Notation: In this paper (·)∗ is used to denote conjugate, (·)T trans-
pose and (·)H conjugate transpose. Bold font denotes matrix and vec-
tor descriptions, D(b) denotes a diagonal matrix created from vector
b and C(b) denotes a circulant matrix with the first column b. The
matrices FN , IN denote an NxN unitary DFT and NxN identity matrix
respectively. The element of a matrix A at the nth row and mth col-
umn is denoted by [A]n,m, vector elements are indexed using subscript
notation ak. All indexing variables start at zero. The operator ℜ{·}
returns the real part of a complex argument, 〈·〉N signifies a modulo-N
operator and � represents the Hadamard product.

2. SYSTEM MODEL

To illustrate, we consider a parallel relay channel from source S to
destination node D as shown in Fig.1. The protocol is implemented in
two stages; firstly the source broadcasts coded symbols to cooperat-
ing relay nodes R j for j ∈ {1, . . . ,4}, the source node then terminates
transmission and the relays re-transmit the processed signals to the
destination node1.

To facilitate the use of STBCs all channels in the network are as-
sumed to be quasi-static for the length of the block code. For analysis
all channels are assumed to be independent flat Rayleigh fading and
are modelled using zero mean circular symmetric complex Gaussian
(ZMCSCG) random variables with unity variance.

2.1 First Stage - Source Node Processing
At the source node, complex modulated symbols are grouped into four
blocks of length N, represented by the vector s(i) where i ∈ {1, . . . ,4}.
Symbol mapping is used to later represent the proposed STBC in the
original form [6],

1The half-duplex operation of the relay nodes significantly reduces the
design complexity at the cost of halving the maximum achievable data-rate.
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s̃ =


s(1)

−s(2)∗

−s(3)∗

s(4)

 (1)

We assume each block can be subject to a uniformly distributed chan-
nel delay with range [0,τmax) and upper bounded by τmax. Without
any design consideration inter-block-interference (IBI) is possible be-
tween adjacent blocks at the destination. To mitigate IBI we insert a
cyclic prefix (CP) of length Np ≥ τmax at the source increasing the
block length to J = N + Np. The modified blocks are denoted as√

Ps Tcp s(i) with Ps representing the source transmit power, Tcp is
illustrated in matrix notation,

Tcp =
[
0Np x (N−Np) | INp

IN

]
J ×N

(2)

2.2 Relay Node Processing
Each relay R j receives a noisy copy of the broadcast signal from
the source node perturbed by the source-relay flat-fading channel re-
sponse hs, j,

r
(i)
j = Hs, j(Tcps

(i))+v
(i)
j (3)

where Hs, j = hs, jIN is the diagonal channel matrix representing the
quasi-static channel between R j and S. The elements of v

(i)
j are addi-

tive white Gaussian noise (AWGN) with zero mean and variance σ 2.
To extract diversity from the relay channel we employ a general-

ized form of a Jafarkhani [6] quasi-orthogonal STBC based on block
encoding,

S = β


r

(1)
1 −r

(2)∗
2 −r

(3)∗
3 r

(4)
4

ζ (r(2)
1 ) ζ (r(1)∗

2 ) −ζ (r(4)∗
3 ) −ζ (r(3)

4 )
ζ (r(3)

1 ) −ζ (r(4)∗
2 ) ζ (r(1)∗

3 ) −ζ (r(2)
4 )

r
(4)
1 r

(3)∗
2 r

(2)∗
3 r

(1)
4


4J ×4

(4)

where ζ (·) performs time-reversal on all vector elements as illustrated
with an arbitrary vector a,

ζ (a) =

a(N +Np−1)
...

a(0)


J ×1

(5)

Assuming the absence of channel state information (CSI) transmit
power allocation for relaying is equally distributed over the relay
nodes,

β =
√

Pr

Ps +σ 2 (6)

where Pr is the allocated relay power. NB. Relay processing is identi-
cal to [5].

3. DESTINATION NODE PROCESSING

3.1 Pre-processing
As a precursor to linear combining pre-processing in the form of CP
removal and then re-alignment is required. Without loss of generality
we will assume errorless synchronization with R1 as a basis for CP re-
moval. To re-align the information symbols transmitted on the second
and third time-slots a circular shift is implemented,

ζ
′(a[n]) = a[〈n− (Np +1)〉N ] (7)

equivalent to an N-point DFT/IDFT applied twice (P = FN FN), i.e.

Pa = [a[0],a[N−1], . . . ,a[1]]T (8)

The equivalent input-output relationship for the collaborative network
can now be written as,


y(1)

y(2)∗

y(3)∗

y(4)

=

 H1 H2 H3 H4
H∗2P −H∗1P H∗4P −H∗3P
H∗3P H∗4P −H∗1P −H∗2P
H4 −H3 −H2 H1



s(1)

s(2)

s(3)

s(4)

+


w(1)

w(2)∗

w(3)∗

w(4)


(9)

y = Hs+w (10)

Each equivalent channel matrix H j shown in (9) is taken as the product
of the channel matrices from S-R j and R j-D,

H j =
{

Hd, jHs, j j=1,4
Hd, jH ∗s, j j=2,3

where Hd, j denotes the response of the channel R j-D, the product H j is
therefore circulant. It is understood that CP insertion at the transmitter
and removal at the receiver converts a linear convolution into a circular
convolution [7, Page 202] enabling the channel matrix to be described
as a circulant matrix, therefore readily diagonalized by the DFT,

D j = FNH jF
H
N

= hs, j hd, j Φτj
(11)

where Φτj
is a diagonal matrix denoted as,

[Φτ j ]k,k =
{

e− j2πkτ j/N k = 0,1, . . . ,(N−2)/2
e j2π(k−N)τ j/N otherwise

(12)

This channel model approximates the linear phase rotations at dis-
cretely sampled frequency intervals arising due to the re-transmission
delay τ j associated with signals received via R j.

3.2 Linear Combining
Efficient linear combining in the frequency-domain is proved possible
via exploiting the structure of H j (11) using the FFT/IFFT algorithm,
however we focus on time-domain linear combining for illustrative
purposes,


z(1)

z(2)

z(3)

z(4)

=


HH

1 PHT
2 PHT

3 HH
4

HH
2 −PHT

1 PHT
4 −HH

3
HH

3 PHT
4 −PHT

1 −HH
2

HH
4 −PHT

3 −PHT
2 HH

1




y(1)

y(2)∗

y(3)∗

y(4)

 (13)

z = HHy (14)

Relay reordering (5) and re-alignment at the destination (7) now en-
able the exploitation of the following properties for any arbitrary cir-
culant matrix X,

PXP = X T and PX∗P = X H (15)

as shown in (13). If we consider the overall input-output relationship it
is relatively straightforward to combine (10)-(14) into a simple model,

z = As+HHw (16)

which decouples the information blocks {s(1),s(4)} and {s(2),s(3)}
simplifying the equalization stage as illustrated by expanding the ma-
trix A,

A =

 Γ 0 0 Λ
0 Γ −ΛT 0
0 −ΛT Γ 0
Λ 0 0 Γ

 (17)
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Figure 2: a) discrete representation of the coupling matrix Ă b) binary
masking operator M with width parameter D

In (17) it is shown that A is composed of diagonal matrix Γ and an
‘interference’ matrix Λ,

Γ = FH

(
4

∑
j=1
|D j|2

)
F (18)

Λ = 2FH (ℜ{D∗4D1−D3D
∗
2})F (19)

In the next section we exploit the structure (16)-(19) to perform low-
complexity equalization.

4. ITERATIVE SYMBOL ESTIMATION

Taking the preprocessed observation z (16) the destination node can
now estimate the transmitted symbols s in the presence of ISI. In
the problem formulation we assume a non-zero matrix Λ (19), there-
fore requiring an equalization stage to infer the coded symbols from
the observation. Exploiting the structure of (17) equalization can
be performed in parallel on two decoupled subsystems {z(1),z(4)}
and {z(2),z(3)}. We illustrate this using only one of the subsystems
{z(1),z(4)} as an example,

[
z(1)

z(4)

]
=
[
Γ Λ
Λ Γ

][
s(1)

s(4)

]
+
[

HH
1 PHT

2 PHT
3 HH

4
HH

4 −PHT
3 −PHT

2 HH
1

]
w(1)

w(2)∗

w(3)∗

w(4)


(20)

z̆ = Ăs̆+H̆w (21)

An illustration of the location of non-zero elements of Ă is shown in
Fig.2 a).

4.1 Rectangular Windowing
The reduced order subsystems (21) are still computationally expen-
sive O(N3) for performing the necessary matrix inversion involved in
minimum mean square error (MMSE) estimation. We propose reduc-
ing the complexity to O(D3), where D << N, by retaining only the
significant elements of Ă. This is performed using a binary mask-
ing operation M, i.e. M� Ă, to target the ISI-response to a given
rectangular window of width 2D + 1. The shaded regions in Fig.2 b)
show the retained elements of Ă after masking. Fig.2 b) specifically
illustrates that the 2D + 1 central diagonals, a D x D lower triangular
matrix in the bottom left corner and a D x D upper triangular matrix

are retained as contributions from Γ and Λ. The parameter D controls
the number of additional observations used in the estimation process
at the expense of increased computation of the covariance matrix in-
version performed in linear MMSE estimation. In Section V the re-
lationship between τmax and SINR are presented for variations of the
parameter D.

4.2 Open Loop Linear Preprocessing

To maximize the SINR we propose a linear preprocessing stage prior
to MMSE symbol estimation that renders the ISI response sparse. The
structure of the interference matrix (19) facilities preprocessing that
confines the signal energy into the residual coefficients retained af-
ter the masking is performed. The parameter D then effectively con-
trols the target ISI-response length and the computational complexity
of the MMSE decoder. We consider only a window design for sub-
system (21), however it is straightforward to generalize for the other
subsystem not specified.

4.2.1 Frequency-Domain ISI shortening

Single-carrier systems can achieve ISI-shortening via convolutive lin-
ear filtering, however we propose leveraging the FFT used in fre-
quency domain combining to perform fast convolution in the fre-
quency domain therefore increasing efficiency when N is large. For
example in matrix notation fast convolution for the system denoted by
(21) can be written as,

x̆ = T (ν)z̆ (22)

= T (ν)Ăs̆+T (ν)H̆w (23)

assuming,

T (ν) =
[
C(ν) 0N
0N C(ν)

]
(24)

where ν denotes the time-domain impulse response of the shortening
filters corresponding to the first/last N rows of Ă. The frequency-
domain equivalent linear processing may be expressed as,

b := F̆ν (25)

where β = [bT bT ]T is the frequency-domain representation of the
shortening filter impulse response and

F̆ =
[

FN 0N
0N FN

]
(26)

It is then simple to show that ISI mitigation can be performed in the
frequency-domain,

x̆ = F̆H D(β )F̆z̆ (27)

which demonstrates that the linear preprocessing can be performed in
the frequency domain after linear combining.

4.2.2 Maximizing SINR

Utilizing the symmetry in the symbol coupling matrices shown in (20)
we can formulate the SINR optimization based on the following re-
duced order system,

x̆(i) = C(ν)z(i) (28)

= C(ν)Ă(i)s̆+C(ν)H̆(i)w (29)

which follows from (20)-(21) using the definitions below,

Ă(1) :=
[
Γ Λ

]
Ă(4) :=

[
Λ Γ

]
127



H̆(1) :=
[
HH

1 PHT
2 PHT

3 HH
4

]
H̆(4) :=

[
HH

4 −PHT
3 −PHT

2 HH
1

]
To define the optimization problem we sub-divide the symbol cou-
pling matrix Ă(i) into a ‘desired’ signal component which is retained
after masking and an interference plus noise component. Assuming
E{s̆s̆H} = I2N it can be shown that the Frobenius norm representing
the desired signal εs and total signal energy εt can be express as,

εs = ‖M� (C(ν)Ă)‖2
F (30)

= bH (S� (F(Γ Γ
H +Λ Λ

H)FH)
)
b (31)

εt = ‖(C(ν)Ă)‖2
F +σ

2
w‖C(ν)H̆‖2

F (32)

= bH diag
(
F(Γ Γ

H +Λ Λ
H +σ

2
w.Γ)FH)b (33)

where,

[S]n,m :=
sin
(

π

N (2D+1)(n−m)
)

N sin
(

π

N (n−m)
) (34)

The optimization problem can then be specified in generalized eigen-
value form,

b∗ := argmax
b

εs

εt − εs
(35)

where we denote the optimal solution using the notation (·)∗.

4.3 Iterative MMSE equalizer
In the following formulation we only consider the structuring of data
for estimating s(1) and do not include elements outside the rectangular
window; it is straightforward to generalize the estimation process for
other blocks from this description. To formulate our low-complexity
equalizer design, only elements in the observation z̆ (21) which are
contributions from s̆ after windowing are retained, rendering the new
observation vector,

z̆k := [z̆<k−D>N , . . . , z̆<k+D>N , z̆<k−D>N+N , . . . , z̆<k+D>N+N ]T (36)

For the remainder of this discussion unless otherwise stated all index-
ing in this section is taken as Modulo-N. To incorporate linear pre-
processing we use the definitions Λ̆ := C(ν)Λ and Γ̆ := C(ν)Γ. As-
suming the channel shortening restricts the ISI to lie inside the mask-
ing operator shown in Fig.2 b) the subsystem vectors and matrices can
be re-written as,

Λ̆k :=

[Λ̆]k−D,k−2D . . . [Λ̆]k−D,k

. . .
...

. . .
[Λ̆]k+D,k . . . [Λ̆]k+D,k+2D

 (37)

Γ̆k :=

[Γ̆]k−D,k−2D . . . [Γ̆]k−D,k

. . .
...

. . .
[Γ̆]k+D,k . . . [Γ̆]k+D,k+2D

 (38)

Ck :=


[ν ]k−D [ν ]k−D−1 . . . [ν ]k−D−N+1

[ν ]k−D+1 [ν ]k−D . . . [ν ]k−D−N+2

. . .
. . .

. . .
. . .

[ν ]k+D [ν ]k+D−1 . . . [ν ]k+D−N+1

 (39)

C̆k :=
[
Ck 0
0 Ck

]
(40)

Ăk :=
[
Γ̆k Λ̆k

Λ̆k Γ̆k

]
(41)

s̆k := [s̆<k−D>N , . . . , s̆<k+D>N , s̆<k−D>N+N , . . . , s̆<k+D>N+N ]T (42)

defining the new equalization problems as,

z̆k = Ăks̆k + w̆k (43)

where w̆k represents the processed AWGN induced at the destination
and relay nodes. The noise covariance matrix is defined in the next
section, however because of constraints on space the derivation of w̆k
is left to the interested reader.

4.3.1 Linear MMSE estimator

Although each symbol defined by sk belongs to a finite alphabet Ω,
we assume temporarily that the vector s̆k has the a-priori Gaussian
distribution s̆k ∼NC (ma,Σa), assuming,

ma = E{s̆k} (44)

Σa = E{(s̆k−ma)(s̆k−ma)H} (45)

This justifies the use of a linear MMSE estimator where z̆k and s̆k can
be assumed jointly Gaussian giving the linear MMSE estimate,

ŝ = ma +ΣSZΣ
−1
ZZ (z̆k−mz̆k ) (46)

The symbols ΣZZ and ΣSZ define auto and cross-covariance ma-
trices associated with the observation and transmitted symbol random
variables. In addition if we assume prior information

E{w̆k} = 0 (47)

E{w̆kw̆
H
k } = ΣWW (48)

E{s̆kw̆
H
k } = 0 (49)

E{s̆ks̆
H
k } = Σa (50)

then it is possible to show,

ΣZS = ΣaĂ
H
k (51)

ΣZZ = ĂkΣaĂ
H
k +ΣWW (52)

mz̆k = Ăkma (53)

where the noise covariance2 matrix is given by,

ΣWW = σ
2
wCkĂCH

k (54)

assuming,

σ
2
w = σ

2 (β 2
4

∑
j=1
|hd, j|2 +1) (55)

2After combining the noise can no longer be considered uncorrelated.
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4.3.2 Calculating the priors

In the first iteration of the equalization stage we initialize all priors us-
ing (44), (45) and (51)-(53). Under a conditional Gaussian assumption
the a-posteriori probability for ŝk can then be determined,

P (sk|z̆k,Ăk) ∝ exp

(
− 1

σ 2
p, k
|sk− ŝp, k|2

)
(56)

assuming the first and second order statistics are

ŝp, k = eT (ma +ΣZSΣ
−1
ZZ (z̆k−mz̆k )

)
(57)

σ
2
p, k = eT

(
Σa−ΣZSΣ

−1
ZZ Ăk)Σa

)
e (58)

where e = [11 02 . . .02D+2]
T is used as a selection vector. After the

first iteration extrinsic information can be calculated,

me, k = ∑
sk∈Ω

sk ·P (sk|z̆k,Ăk) (59)

σ
2
e, k = ∑

sk∈Ω

|sk−me, k|2 ·P (sk|z̆k,Ăk) (60)

To accurately obtain the new priors and decouple from the esti-
mates derived in a previous iteration we use only extrinsic informa-
tion from other interfering symbols, i.e. ŝi for i 6= k, therefore at-
tempting to minimize error propagation. If we make the assumptions

1
|Ω| ∑s∈Ω s = 0 and 1

|Ω| ∑s∈Ω |s|2 = 1 then the new extrinsic information
can be constructed for the kth symbol estimate,

mk̄ = [0k me,<k−D>N+N . . .me,<k+D>N+N ]T (61)

Σk̄ = D
(
1k σ

2
e,<k−D>N+N . . .σ 2

e,<k+D>N+N

)
(62)

Based on the updated extrinsic information the probability of the new
priors can now be calculated,

P (sk|z̆k,Ăk) ∝ exp

(
− 1

σ 2
e, k
|sk− ŝe, k|2

)
(63)

where the Gaussian pdf is fully defined by,

ŝe , k = pH
k

(
z̆k−Ăkmk̄

)
(64)

σ
2
e, k = 1−pH

k ak (65)

using the following substitutions for simplicity,

pk =
(
ĂkΣk̄Ă

H
k +ΣWW

)−1
ak (66)

ak = Ăke (67)

The new probability mass function (63) can then be used to populate
extrinsic information (61)-(62) for the next iteration.

5. SIMULATION RESULTS

In this section we present Monte-Carlo based simulation results for
the proposed scheme. Simulations are based on N = 32 symbols per
frame, i.i.d. ZMCSCG channel realization and noise with unity and
SNR−1 variance respectively. QPSK modulation is assumed as the
symbol alphabet. We assume perfect channel state information at the
destination (decoding) node.

Fig.3 shows the channel-averaged SINR performance of various
window sizes with and without linear pre-processing (10,000 channel
realizations). We consider an SNR of 25dB at the destination node
before linear combining is performed. Fig.3 clearly demonstrates that
linear combining and our definition of the signal contribution (30) for

equalization results in an SINR above 25dB. However, taking the syn-
chronous case as a base point for comparison, i.e. τmax = 0, it is clear
that using optimal linear pre-processing (max-SINR) significantly im-
proves the SINR over just rectangular windowing (rect) for high τmax
and reduces the window size requirements D. Fig.3 also suggest a
positive correlation between τmax and generation of ISI outside of the
banded rectangular window, therefore supporting the increase in win-
dow size when the upper bounded delay τmax is relaxed which shows
a performance increase at the cost of higher receiver complexity.
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Figure 3: SINR versus τmax for N = 32, SNR = 25 dB, Rayleigh fading,
and various D.

6. CONCLUSION

This paper has introduced a novel quasi-orthogonal space-time trans-
mission scheme for use in asynchronous wireless relay networks.
Single-carrier quasi-orthogonal transmission however comes at the
price of increased ISI between transmitted symbols compared to
multi-carrier counterparts, leading to the requirement for equalization.
In this paper we demonstrated a low-complexity soft ISI-cancelling it-
erative equalizer design which leverages linear pre-processing to ren-
der the ISI-response sparse and maximize SINR for a given target re-
sponse length D, therefore resulting in reducing complexity of the or-
der O(N3) to O(D3) where D << N.

REFERENCES

[1] A.Sendonaris, E.Erkip and B.Aazhang, “User Cooperation Di-
versity - Part I: System Description” IEEE Trans. Comms, Vol.
51(11), pp. 1927-1937, Nov 2003.

[2] J.N.Laneman, Cooperative Diversity in Wireless Networks: Algo-
rithms and Architectures. PhD Thesis, MIT, Sept 2002.

[3] A.Paulraj, R.Nabar and D.Gore, Introduction to Space-Time Wire-
less Communications. Cambridge University Press, 2003.

[4] Z.Li and X.Xia, “A Simple Alamouti SpaceTime Transmission
Scheme for Asynchronous Cooperative Systems,” IEEE Signal
Processing Letters, vol. 14, pp. 804-4, Nov 2007.

[5] M.Hayes, J.A.Chambers and M.D.Macleod, “A Simple Quasi-
Orthogonal Space-Time Scheme for use in Asynchronous Virtual
Antenna Array Enabled Cooperative Networks ,” in Proc. EPSRC
2008, Lausanne, Aug 25-29 2008.

[6] H.Jafarkhani, “A Quasi-Orthogonal Space-Time Block Code,”
IEEE Trans. Inform. Theory, vol. 45, pp. 1-4, Jan 2001.

[7] G.H.Golub and C.F.van Loan, Matrix Computations. 3rd ed.,
Johns Hopkins University Press, Baltimore, 1996.

129


