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ABSTRACT
The estimation of a talker location in noisy and reverberant
conditions using microphone arrays requires complex algo-
rithms. However, the rapid increase in computational per-
formance during the last two decades has opened the way
for practical real-time talker localization applications. This
paper presents an implementation of such system based on
steered response power with phase transform (SRP-PHAT)
combined with a particle filter (PF). The system utilizes the
simplicity of SRP-PHAT and robustness of PF. The system
is implemented using Pure Data software running on a stan-
dard laptop PC. Using realistic test data we show that accu-
rate real-time talker location estimates can be produced even
with a relatively low particle density.

1. INTRODUCTION

Acoustic source localization (ASL) using spatially separated
microphone arrays has been an active research topic for at
least two decades. The aim of ASL is to obtain the loca-
tion of one or more acoustic sources using the audio signals
acquired by the microphones. The location information can
be used, e.g, in smart video conference systems to steer the
video camera towards the speaker. In reverberant room en-
vironments the system must be able to cope with secondary
signals reflected from the surfaces.

In [3] few popular methods for solving the ASL prob-
lem are presented. Lately the combination of steered beam-
forming (SBF) and time delay estimation (TDE) based
methods have become popular due to their relatively low
computational complexity. Among these methods the
steered response power (SRP) with phase transform (PHAT)
has been found to be robust in the presence of room
reverberation [3, 11].

In the recent years, some real-time ASL implementations
have been developed. Do et al. [4] based their system on
SRP-PHAT, while Lehmann et al. [9, 5] implemented a sys-
tem based on SBF and particle filter (PF), fused with a voice
activity detector (VAD). Both of these implementations were
found suitable for practical applications in terms of computa-
tional performance. The former method relies on finding the
global maximum of the SRP using stochastic region contrac-
tion (SRC). However, there is no assurance that the location
of the global maximum is actually the source location, as the
maximum can be caused by a brief dominant noise peak due
to reverberation. This problem can be overcome by using
Bayesian recursive estimation, such as PF, to make use of the
complete measurement history to provide the current source
location estimate.

This paper discusses a real-time ASL implementation
based on MULTI-PHAT and PF as described in [7, 10].

In the proposed implementation, MULTI-PHAT method de-
rived from SRP-PHAT is used to generate a combined spatial
likelihood function (SLF) that can be used as source evidence
for a PF algorithm. The likelihood data is generated by esti-
mating the temporal difference of the signals sensed by a mi-
crophone pair using PHAT-weighted generalized cross cor-
relation (GCC-PHAT). The resulting data from each micro-
phone pair is combined by multiplication instead of summa-
tion used in traditional SRP, hence the name MULTI-PHAT.
It has been shown that combining the likelihood data by mul-
tiplication decreases the variance of the spatial likelihood
distribution resulting in a significant reduction of the root
mean squared error (RMSE) [10].

This paper is organized as follows. The next Section
presents the TDE-function and a method for generating a
combined SLF using multiplication. In the third Section the
ASL problem is presented as a state-space filtering problem
and the Bayesian solution to this filtering problem is pre-
sented in a form of a PF algorithm. In the fourth Section the
implementation of the system is described and the complex-
ity of the implementation is stated. In the fifth Section the
setup and test data are described and the localization results
using real data are presented. The last Section concludes the
paper by summarizing the results.

2. LIKELIHOOD FUNCTION

Consider a room with an active sound source located atr and
a pair of spatially separated microphonesi and j. The signal
emitted from the sound source is sensed by the microphonei
after a propagation delay espressed as:

τi,r = |r−mi | ·c
−1,

wherec is the speed of sound,| · | is thel2 norm, andr andmi
are the Cartesian coordinate vectors of the sound source and
the microphonei, respectively. Due to the different sound
propagation paths to microphonesi and j, a time difference
of arrival (TDOA) can be calculated. Geometrically, assum-
ing spherical sound radiation pattern, the TDOA between a
microphone pairb = {i, j} can be expressed in discrete sam-
ples as:

τb,r = Q((|r−mi|− |r−m j |) · fs ·c
−1), (1)

where fs is the sampling frequency andQ(·) is the quanti-
zation operator. From the measured signals, the TDOA be-
tween a microphone pairb can be estimated using a TDE-
function Rb(·). A popular choice for a TDE-function is the
so-called generalized cross correlation (GCC) function [6]:

RGCC
b (τb) = F−1{Wb(k)Xi(k)X̄j(k)}, (2)
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Algorithm 1: SIR particle filter

Input: {Si
κ−1,w

i
κ−1}

P
i=1,Zκ

Output: {Si
κ ,wi

κ}
P
i=1

for i = 1 : P do
Take a particle:
S

i
κ ⇐ q(Sκ |S

i
κ−1,Zκ)

Move the particle according to movement model:
S

i
κ = g(Sκ−1,aκ−1)

Calculate a weight proportional to the likelihood:
wi

κ ⇐ p(Zκ |S
i
κ)

end
Calculate the sum of weights:

W ⇐
P

∑
i=1

wi
κ

for i = 1 : P do
Normalize the weights:wi

κ ⇐W−1wi
κ

end
Resample using algorithm 2:
{Si

κ ,wi
κ}

P
i=1 ⇐ RESAMPLE({Si

κ ,wi
κ}

P
i=1)

whereX̄j (k) is the complex conjugate of the Fourier trans-
formed microphone signalx j(n), k is the discrete frequency,
F−1(·) denotes the inverse Fourier transform, andWb(k) is
the weighting function. The TDOA between the micro-
phonesi and j can be determined by locating the global
maximum of the real-valued TDE-functionRGCC

b (τb). PHAT
weighting have been shown to produce an emphasized peak
especially in reverberant rooms and therefore it is selected
for this implementation.

Using the equation (1), each source location candidate
inside the room of interest can be mapped into a set of mi-
crophone pair -specific TDOAsτb,r = {τ1 . . .τN}, whereN
is the total number of the microphone pairs. With a TDOA
value and corresponding TDE-function, a likelihood value
can be assigned to a given source location candidate using
the equation (2). Inversely, a TDOA value can be mapped
into a set of locations. The set of locations corresponding to
the argmaxRGCC

b (τb) traces out a hyperbola with a slightly
higher likelihood value than other locations in the spatialdo-
main. By combining several pairwise TDE-functions, a com-
bined spatial likelihood function (SLF) can be constructed.
In the SLF the hyperbolae intersect and through combination
form a global likelihood maximum at the intersection point.
In favourable conditions, the intersection point is the location
of the source.

Several different combination methods for SLF have
been introduced. Summation is used in [3], multiplication is
used in [8, 7] and the determinant is used in [2]. It is shown
in [10] that using multiplication instead of summation, the
peak in SLF is emphasized, resulting in 45% reduction in the
location RMS error.

Consider a set of microphone pairsΩ that contains the
microphone pairs inside each array for all arrays, but not the
inter-array pairs. The combined likelihood for a given source
location candidater using multiplication can be expressed
as:

L(RΩ|r) = ∏
b∈Ω

Rb(τr,b) (3)

Algorithm 2: Resampling algorithm

Input: {Si
κ−1,w

i
κ−1}

P
i=1

Output: {S j∗
κ ,wi

κ , i j}P
i=1

Initialize the cumulative distribution function (CDF):
c1 ⇐ 0
for i = 2 : P do

Generate CDF:ci ⇐ ci−1 +wi
κ

end
Start at the beginning of the CDF:i ⇐ 1
Draw a random starting point:u1 ∼ U[0,P−1]
for j = 1 : P do

Move along the CDF:u j ⇐ u1 +P−1

while u j > ci do
∗i ⇐ i +1

end
Resample by reassigning locations and weights:
S

j∗
κ ⇐ S

i
κ

wi
κ ⇐ P−1

end

Equations (2) and (3) form the basis for generating the
SLF used as source evidence for the tracking algorithm.

3. TALKER TRACKING

Traditionally, the global maximum of the most recent SLF
is considered as the source location. However, the measure-
ment data is often corrupted by noise and reverberation, and
dominant peaks can occur outside the actual source location
resulting in false source evidence. In the proposed imple-
mentation, a sequential Monte Carlo method called particle
filter (PF) is incorporated to provide past location informa-
tion and to increase robustness against these outliers.

The estimation of the sound source location is essen-
tially a special case of a problem of estimating the state of
the system using noisy measurements. In Bayesian frame-
work, the SLF represents the noisy measurement distribution
p(Rκ |Sκ), whereRκ is the noisy measurement obtained us-
ing GCC-PHAT, andSκ is the state of the system at time
indexκ .

The aim is to estimate the current stateSκ using all the
measurement dataR1:κ available so far. The subindexes in-
dicate that past measurement data is taken into account while
estimating the current state.

The solution to this state-space filtering problem is ob-
tained by the two-step principle of prediction and update.
Assuming that the posterior distributionp(Sκ−1|R1:κ−1) is
known at time indexκ −1, the prediction of the state at time
indexκ can be calculated:

p(Sκ |R1:κ−1) =
∫

p(Sκ |Sκ−1)p(Sκ−1|R1:κ−1)dSκ−1 (4)

and when the new measurementRκ becomes available, the
predicted prior distribution of the system at the current time
instanceκ can be updated to posterior distribution using the
Bayes’ rule:

p(Sκ |R1:κ) =
p(Rκ |Sκ )p(Sκ |R1:κ−1)

p(Rκ |R1:κ−1)
, (5)
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Figure 1: Diagram of the sound source localization system.

where the normalizing constant can be expressed as:

p(Rκ |R1:κ−1) =
∫

p(Rκ |Sκ)p(Sκ |R1:κ−1)dSκ .

The recursive evolution of the distribution by prediction and
update described in (4) and (5) is repeated at each time in-
stanceκ.

The principle of particle filtering is that the distributionis
approximated by a set ofP weighted particles{Sρ

0:κ ,wρ
κ}

P
ρ=1,

where {S
ρ
0:κ}

P
ρ=1 is a set of points each with associated

weights{wρ
κ}

P
ρ=1 , andS0:κ is the set of all states so far. The

true posterior density at time instanceκ can be approximated
as:

p(S0:κ |R1:κ ) ≈
P

∑
ρ=1

wρ
κ δ (S0:κ −S

ρ
0:κ ),

where δ (·) is the Dirac delta function. As the numberP
increases very large, the discrete approximation becomes
equivalent to the functional representation of the posterior
distribution.

In our implementation, the state consists of a 3D coor-
dinate, and the prediction and update of the sampled distri-
bution is performed by recursively processing the particles
according to sampling importance resampling (SIR) [1], pre-
sented in Algorithm 1. The algorithm propagates the parti-
cles (prediction) according to a motion model, and when a
new SLF is constructed, assigns each particle a weight pro-
portional to the likelihood value at the location of the parti-
cle. It is assumed that the speakers are seated and only move
their heads randomly. Therefore Brownian motion is used to
model the movement.

The algorithm also includes a resampling step (update),
presented in Algorithm 2, to avoid the so-called degeneracy
problem. In this step, particles with low weight are system-
atically replaced with ones with high weight. This causes the
particles to clusterize at locations with high likelihood.In
order to avoid the clusterization of every particle, seven per-
cent of the particles are relocated in random locations inside
the measurement space. The idea of this step is to expand
the spatial range of measurement in the presence of a sound
source, and to be able to ”sense” the appearance of another
sound source at another location.

After resampling, it is only the matter of selecting a point
estimate based on the updated particle mass. One logical way
is to look where the most particles reside. In our implementa-

Table 1: The asymptotic time complexity of different proce-
dures in GCC-PHAT module.

Procedure Asymptotic time complexity
Hanning weighting O(A×m×L)
FFT O(A×m×L log2L)
PHAT O(A×M×L)
IFFT O(A×M×L log2L)

Table 2: The asymptotic time complexity of different proce-
dures in the PF module.

Procedure Asymptotic time complexity
Normalization O(A×M×L)
Particle propagation O(P)
TDOA calculation O(A×M×P)
Weight assignment O(A×M×P)
Resampling O(P2)
Median estimation O(P2)

tion, a 2D point estimate is drawn by calculating the median
coordinate of the particles separately across two dimensions:

Ŝκ(x,y) = med{ρ1 . . .ρP}d,

where{·}d is the set ofP particles ordered according to di-
mensiond = {x,y}.

4. IMPLEMENTATION

The system proposed in this paper is developed and tested on
a standard laptop PC with 2.2 GHz Intel Core Duo processor
and 2 Gb of DDR2 SDRAM. The theoretical computational
efficiency of the processor is 17.6×109 floating point opera-
tions per second (FLOPS). The operating system on the lap-
top is Kubuntu Linux with a real-time kernel version 2.6.20-
16. For development environment, Pure Data (PD) software
[12] was selected. PD is a real-time graphical open source
programming environment for creation of computer music
and multimedia. The PD distribution includes a vast col-
lection of internal objects, which enable even the most ad-
vanced audio signal processing. The modular code base of
PD also enables the programming of external custom objects
in C programming language.

Our system is implemented using both internal objects of
PD and external objects programmed in C. Briefly, the cal-
culation of GCC-PHAT is performed using the internal ob-
jects, and an external object was programmed to implement
the particle filter algorithm. Figure 1 illustrates the differ-
ent modules and the main procedures of the system. Be-
fore running the localization system, the microphone coordi-
nates, measurement space dimensions, particle number and
the variance of the movement model need to be given as pa-
rameters. The latter parameter determines the spread of the
particles at the prediction stage.

The system employsA= 3 microphone arrays, each con-
sisting ofm= 4 microphones. The acquired audio data is first
read in frames ofL = 1024 samples and then passed to GCC-
PHAT module. There the frames are Hanning-weighted
in order to avoid spectral leakage, and then processed into
source evidence by making theM = 6 inter-channel compar-
isons within an array using the equation (2), thus resultingin
A×M = 18 GCC-PHAT vectors. The asymptotic time com-
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Figure 2: Recording room configuration. The microphones
are located on the wooden table, surrounded by the sofas and
the loudspeakers acting as sound sources. The microphone
arrays consist four microphones in Y-shaped geometry.

plexity of generating the source evidence at each time stepκ
is presented in Table 1. The exact algorithmic implementa-
tion of the fast Fourier transform (FFT) in PD is unknown,
and therefore an estimation of the time complexity based on
a well-known and widely used algorithm (Radix-2) is pre-
sented.

After generating the source evidence, the GCC-PHAT
vectors are passed to the particle filter module. The parti-
cles are iteratively processed according to Algorithm 1. The
GCC-PHAT vectors are used as look-up tables to assign a
weight to each particle. The likelihood values from different
GCC-PHAT vectors are combined using equation (3). The
asymptotic time complexity of the main procedures in the
implemented particle filter is presented in Table 2.

UsingP= 500,A×M = 18, andL = 1024, the CPU load
was around 50% during computation as opposed to 5% load
of idle time. This implies a calculational load of approxi-
mately 8.8× 109 FLOPS, which is high compared to, e.g.,
the method presented in [5], but nevertheless computable us-
ing modern PCs. Moreover, the focus in this implementation
was more on simplicity rather than computational efficiency.
For example, in the estimation of median coordinate, sort-
ing of particles was performed using computationally costly
insertion sort algorithm.

5. REAL-DATA RESULTS

The most important properties of a sound source localiza-
tion application are the ability to localize the sound source
accurately and to quickly adapt to the change of the source
location. In real-time applications location estimates need to
be generated at high rate.

The system proposed in this paper was tested using real
speech samples from the TIMIT database consisting of male
and female speech. Three different multi-channel sequences
were created from the samples and played through four Gen-
elec 1029 A active loudspeakers with sound pressure of 80

Table 3: 2D tracking RMSE values.
Sequence Content 2D RMSE [m]
1 Male speech 0.297
2 Female speech 0.278
3 Male+Female speech 0.249
Mean 0.275

dB, each loudspeaker transmitting separate channel. The ac-
tive loudspeaker changed between the different speech sam-
ples to emulate a human discussion. The first sequence con-
sisted of male speech, and the second sequence of female
speech. The third sequence consisted of both male and fe-
male speech with slightly overlapping samples. During play-
back, the soundscape was recorded using the microphones.
The acquired signals were then sampled at 48000 Hz using
32 bits per sample and saved as separate mono WAV files.

The recording took place at the audio laboratory, located
at the Tampere University of Technology, Department of sig-
nal processing. The room dimensions are 4.53× 3.96 ×
2.59 m and theT60 reverberation time of the room is ap-
proximately 0.26 seconds. The room interior consists of a
table, sofas, loudspeakers and other equipment. The micro-
phones were placed on the table in three arrays in Y-shaped
geometry. DPA 4060-BM prepolarized omnidirectional con-
denser microphones were used with a 48 V phantom feed.
The recording setup is illustrated in Figure 2.

The recorded WAV files were used as input data for the
tracking system. During the tracking procedure, the source
location estimates (x- and y-coordinate) were saved in a text
file for evaluation of tracking accuracy. 500 particles were
used for the tracking and the measurement space height was
limited to 2 meters resulting in particle density of approx-
imately 14/m3. The variance of the movement model was
5×10−4.

The tracking accuracy was evaluated by calculating the
2D root mean squared error (RMSE) of the source location
estimate against the actual source position across the whole
duration of the sequence. The tracking results of each se-
quence were averaged over three test runs. The results are
presented in Table 3. A typical 2D tracking plot of a 4-source
scenario is presented in Figure 3.

The mean RMSE of the tracking results is slightly less
than 30 cm. However, RMSE is a very strict measure; for
example, a small delay in the adaptation causes a brief but
significant difference between the estimate and the ground
truth. Based on the visual evaluation of the tracking plots the
estimates remain mainly close to the ground truth, except for
a slight systematic bias in the x-coordinate of loudspeaker
3, also visible in Figure 3. This can be caused by e.g. re-
verberation. During the slightly overlapping portions of the
sequence 3, the location estimate oscillates between the lo-
cations of the active sources.

To estimate the effect of different parameter setups on the
computational load, the processing time of a 24 second signal
(sequence 1) was measured while using different number of
particles and frame lengths, and averaged over three test runs.
The averaged processing times were then normalized by the
length of the input signal. Figure 4 illustrates the normalized
processing times as a function of particle number, value 1
indicating real-time computing.

When using a frame of 512 samples the PF algorithm is
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Figure 3: 2D tracking plot of using the data from sequence 2
as input. The different locations of sound sources are clearly
visible and the adaptation to the change of location is rapid.
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Figure 4: Normalized processing times for different frame
lengthsL as a function of particle numberP.

executed approximately 94 times per one second of input sig-
nal as opposed to approximately 23 times when using a frame
of 2048 samples. The use of a shorter frame thus increases
the computational load, which must be compensated by de-
creasing the number of particles in order to generate location
estimates in real-time.

6. CONCLUSIONS

In this paper a real-time version of a talker localization sys-
tem proposed in [7] is presented. Tests with realistic input
data indicate that the system is able to localize a sound source
simulating a human talker and rapidly adapt to the change of
source location. The effect of different input parameters on
the computational load is examined and the results show that
by using a modern PC, accurate location estimates can be
generated in real-time by adjusting the number of particles
or frame length.
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