
AUTOMATED MULTIMODE SYSTEM DESIGN FOR HIGH PERFORMANCE DSP 
APPLICATIONS 

Bertrand LE GAL1 and Emmanuel CASSEAU2 

1. IMS Laboratory, CNRS UMR 5218 - 351 Cours de la Libération, 33405 Talence, France 
email : bertrand.legal@ims-bordeaux.fr 

2. INRIA/IRISA – ENSSAT Université de Rennes1, 6 Rue de Kérampont - 22305 Lannion, France 
email: emmanuel.casseau@irisa.fr

ABSTRACT 
In a mobile society, more and more devices need to continu-
ously adapt to changing environments. Such mode switches 
can be smoothly done in software using a general purpose or 
digital signal processor. However hardware components are 
required to cope with throughput and power constraints. 
Reconfigurable hardware technologies like FPGA offer par-
tial reconfiguration at run-time but require too long recon-
figuration times to rapidly changing applications. In this 
paper we propose an automated design flow to implement 
multiple configuration and multi-constraint systems into a 
single circuit using conventional hardware technologies. 

1. INTRODUCTION 

In many applications, such as personal computers or high-
performance computing, the main focus of processor design 
is to increase the computing performance and efficiency. 
Fast growing increase in the development of DSP, multi-
media and communication applications causes the wide-
spread research on efficient platforms for integrating com-
plex systems on a chip. General purpose processors contain 
major limitations for DSP applications like memory laten-
cies, limits in parallelism exploitation, i.e. performance, and 
power consumption. ASIC allows designers to optimize the 
hardware for one or more parameters. However due to lack 
of flexibility, ASIC can not cope with the evolving standards 
and applications of today’s world. FPGA provides flexibility 
but at the cost of large performance, area, power and recon-
figuration time penalties. So the search for flexibility and 
performance at the same time is the requirement in digital 
design. 

Keeping in view the requirement of digital design, multi-
mode systems are proposed to realize a set of selected con-
figurations into a single system. The main intention of mul-
timode systems is to implement multiple configurations or 
modes using conventional hardware technologies. Although 
the reconfigurability of a multimode system is not as much 

much high as of FPGA but on the fly it can be reconfigured 
to one of the set of configurations for which it is designed 
for. Multimode systems provide both reconfigurability and 
efficiency in terms of area, performance, power consump-
tion and reconfiguration time. 

One of the goals of multimode system design is to mini-
mize area by reusing hardware resources effectively among 
different configurations. High-level synthesis (HLS) is an 
automated process that generates a register transfer level 
(RTL) architecture from an algorithmic specification and 
user defined constraints [1, 2, 3]. Conventional scheduling 
and binding algorithms used in HLS can accomplish 
resource sharing efficiently. The main idea of this paper is to 
make use of such algorithms in the synthesis of multimode 
systems to share hardware resources among the configura-
tions. 

The paper is organized as follow. Section II presents the 
advantages and the related work on multimode architecture 
design. An overview of the multi-constraint multimode sys-
tem design flow we propose is presented in section III. Sec-
tion IV detailed our high-level synthesis process. Experi-
mental results are reported in section V. Finally conclusions 
are presented in section V. 

2. INTRODUCTION TO MULTIMODE SYSTEMS 

Hardware implementation of a system (SoC for system on 
chip) is becoming more and more popular. However in most 
of SoC implementations, component utilization is low due to 
the high number of dedicated cores which are used in a 
timewise mutually exclusive way. For example with a multi-
standard decoder circuit (GSM, EDGE, etc.) only one stan-
dard is executed per time frame, so only one part of the cir-
cuit is used at a particular time. One way to increase the 
component utilization is to design a multimode architecture 
i.e. a single architecture to execute several applications (so 
called configurations or modes) as shown in figure 1. 

 

 
Figure 1 - Multimode architecture approach 

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1289



A multimode architecture can be obtained through de-
signer knowledge and experience to identify similar patterns 
in different configurations and design the circuit in such a 
way to utilize the similar patterns again and again for the 
different configurations. In [4] Kumar et al. proposed an 
HLS-based approach to automate the design. This technique 
makes use of small scale reconfigurability along with high-
level synthesis of multimode systems. In small scale recon-
figurability the chip area is divided into fixed logic and re-
configurable logic areas. High performance along with re-
configurability is achieved by implementing most of the 
circuitry in the fixed logic and only small portion in the re-
configurable area. Although the design is not fully recon-
figurable like FPGA, it incorporates the reconfigurability up 
to the desired extend. To cope with the hardware recon-
figurability required by the previous approach, Chiou et al. 
proposed SPACT approach [5]. The different modes are 
represented by data-flow graphs (DFGs). Each DFG is 
scheduled separately under its own given resource or timing 
constraint. The scheduled DFGs are then concatenated into a 
single DFG. Finally this DFG is bound to resources. This 
technique leads to low complexity binding. However be-
cause modes are scheduled separately, similarities between 
configurations are not taken into account. Sharing cost (in-
terconnection resources like multiplexers, and controller) 
can be improved. Approach proposed by Chavet et al. in [6] 
aims at improving SPACT approach for timing constrained 
modes. DFGs are scheduled consecutively. Scheduling al-
gorithm aims at maximizing the similarities within control 
steps of each mode depending on the previously scheduled 
DFGs to minimize the controller complexity. Operations are 
then bound to arithmetic resources in such a way to mini-
mize resource sharing cost.  

Our proposed approach aims at handling timing as well 
as resource constraint modes. Previous synthesis methodolo-
gies perform the scheduling step and then try to optimize the 
binding step. However, we believe that processing the bind-
ing step after the scheduling is completed is not a good solu-
tion to reduce the sharing cost: scheduling decisions would 
not have been taken if the actual interconnect cost has been 
known. To limit extra sharing cost, we developed a join ad-
hoc scheduling and binding algorithm based on similarities 
between datapaths. The aim is not to focus on the minimiza-
tion of the arithmetic resources but the overall architecture, 
including registers and interconnection resources. 

3. DESIGN FLOW OVERVIEW 

The multimode system design approach is presented in Fig-
ure 2.  Inputs are the Matlab behavioural descriptions which 
specify the behaviour of the applications to implement, and 
their constraint. Our approach makes it possible to generate 
multimode architectures that can support different kinds of 
constraints. For example, if we have two configurations, one 
can be optimized for area and the other for a particular 
throughput. Each behavioural description is first transformed 
into a formal representation model. Usually DSP applications 
are regular and predictable. The modelling of such applica-
tions is generally performed using Data Flow Graph (DFG) 

or Signal Flow Graph (SFG) models [1;2] which clearly ex-
hibit the data dependencies. In the proposed design flow, the 
behavioural description is compiled to a SFG as internal rep-
resentation. Loops are unrolled and conditional structures are 
flattened. The intrinsic parallelism among operations can thus 
be easily exploited so that real time constraints (throughput) 
can be satisfied. Then a 3-step process is performed: 

1. The first step performs the analysis of the applications. 
Each configuration (couple application-constraints) is 
analysed independently. According to the target hard-
ware technology, delays can be associated to each oper-
ation of the internal representation (SFG) of a particular 
mode. Thus, for each mode, node mobility is found out 
by calculating the as soon as possible (ASAP) and, for 
timing constrained modes, as late as possible (ALAP) 
execution times. 

2. The second step is dedicated to the graph model mer-
ging. All of the annotated graphs are merged into a sin-
gle unified signal flow graph. Timewise mutually exclu-
sive relationship between the different modes is imple-
mented by a conditional node statement to emphasis mu-
tually exclusive branches. 

3. The third step carries out the synthesis process of the 
unified SFG. High-level synthesis is used to formally 
transform this graph into a hardware architecture. HLS 
not only meets all the constraints corresponding to the 
different applications but also try to minimize the total 
cost of the multimode architecture. 

 
Figure 2- Design flow overview from application to circuit. 

At the end of the process a VHDL Register Transfer Level 
description of the architecture implementing all the applica-
tions under constraints is generated. The architecture is com-
posed of three main units : the data-path unit which performs 
the computations of the applications, the memory unit for the 
data storage and the controller unit (FSM) which controls the 
behaviour of the circuit depending on the selected mode.  

4. HIGH-LEVEL SYNTHESIS PROCESS 

The high-level synthesis design flow is shown in figure 3. 
From the unified graph model the synthesis process starts 

1290



with the selection of the hardware operators using a technol-
ogy-specific characterized library. Then allocation step is 
performed. According to the average number of operations 
per cycle, the allocation step defines the minimum number of 
arithmetic operators required for each kind of operation in 
order to satisfy the designer timing constraints. In the case of 
a multimode architecture, every resource can be shared with-
out distinction of mode so the number of arithmetic operators 
is optimized at this step. Multimode system operation sched-
uling is then performed. Conventional high-level synthesis 
methodologies perform the scheduling step and then try to 
optimize the binding step. Sharing of resources increases 
along with the number of modes. To limit extra cost (muxes 
and controller) due to this increased resource sharing, in our 
approach scheduling and binding steps are performed con-
currently and associate to each scheduled operation an arith-
metic operator, registers and interconnection resources. Reg-
ister sharing is performed on the fly. 

 

 
Figure 3 - Multimode system design flow 

Figure 4 shows an overview of the combined scheduling and 
binding algorithm. Compare to previous approaches, the 
main differences are 1) modes are not scheduled consecu-
tively but concurrently, 2) scheduling decisions depend on on 
the fly binding cost evaluation 3) the binding of an operation 
and its associated resources (interconnections and registers) 
is performed as soon as this operation has been selected for 
scheduling. The aim is to minimize the overall architecture, 
including registers and interconnection resources while satis-
fying the designer constraints. 
From the unified graph model, the list of operation nodes to 
be scheduled is first extracted (line 1 (L1)). Each clock cycle, 
when nodes can be scheduled, the process is the following. 
Timing constrained modes are first processed (L4). Ready 
nodes1 are sorted in such a way nodes that can not be delayed 

                                                             
1 A ready node represents an operation which can be sched-
uled, i.e. whose predecessors have already been scheduled. 

(zero mobility nodes) are first processed then other ready 
nodes are sorted based on the list-scheduling algorithm [2] 
using mobility as priority function. Highest priority node is 
selected disregarding its mode (L5). The binding cost of this 
node is computed over available resources. Binding cost in-
cludes the operator cost and the path cost (interconnection 
and register resource cost as well as controller cost). Op-
erator with lowest cost is selected (L6) based on the minimal 
weighted matching algorithm proposed in [7] for logic syn-
thesis. In our case, weight of edges is the sharing overcost. 
Now, at this step of the process, aim is to reuse this particular 
operator at this particular clock cycle among the other modes 
in order to benefit from the multimode architecture approach. 
Thus, for every other mode, including resource constrained 
modes, the cost of binding ready nodes to the selected opera-
tor is computed (L7). For each mode, node with lowest cost 
is extracted and scheduled (L8). Once again, minimal 
weighted matching algorithm is used. The set of nodes is 
then bounded to the selected operator (L9) and interconnec-
tion resources and registers are updated or allocated if re-
quired. This process (L5-L11) is carried out as long as ready 
nodes of timing constrained modes still remain and arithme-
tic resources are available. Finally if arithmetic resources are 
still free, remaining ready nodes of resource constrained 
modes can be processed. Aim is to benefit as much as pos-
sible of available arithmetic resources. Same multimode 
combined scheduling and binding process (L5-L11) is per-
formed until no more resource is available at current clock 
cycle. Then next clock cycle can be processed. The combined 
scheduling and binding process ends when every operation 
node from all of the modes has been processed. 

 
Figure 4 -  Combined scheduling and binding algorithm 

overview 

5. EXPERIMENTS 

To evaluate the effectiveness of the proposed methodol-
ogy, several experiments were made. These experiments aim 
to compare our approach with: 

1291



• a conventional approach which performs the high-
level synthesis of each configuration independently. 
In this case, one architecture per mode is produced, 
i.e. there is no sharing of resources among the modes. 
We call it cumulative approach (CA). 

• the synthesis of a multimode architecture based on 
SPACT approach [5]. 

Results were obtained using the design flow we presented 
including graph analysis, graph merging and high-level syn-
thesis process. For this we used GraphLab2 tool.  
 
5.1 Hardware resource allocation 

Table 1 shows the number of allocated resources for sev-
eral multimode architectures: a FIR filter with different 
number of taps, a FIR/LMS design, a DCT/LMS/LWT de-
sign. Cumulative, SPACT and our proposed approaches are 
performed. Syntheses are constrained to get same through-
put. This experiment allows to focus on the resource sharing 
efficiency because the control cost is not included. 

Variable tap-length FIR filter experiment shows the ben-
efits of a multimode architecture. Compare to the cumula-
tive approach which requires a dedicated architecture per 
mode, the number of arithmetic resources and registers 
(REG) is small whatever the multimode approach. However, 
resource sharing among the modes involves extra cost like 
multiplexers. This number of multiplexers may become 
greater than the cumulative approach one if particular atten-
tion is not paid. Compared to SPACT approach, the number 
of multiplexers is reduced with our proposed approach be-
cause similarities between modes is taken into account. 

 

Table 1 - Allocated resources 

For the two other experiments, the arithmetic resource re-
quirements are different. Specific types of operators, i.e. 
operators which can not be used by other modes, are neces-
sary. Behaviour is also different. In that case, difference be-
tween the number of registers of the cumulative approach 
and multimode design approaches is less because data life-
                                                             
2 http://www.enseirb.fr/~legal/wp_graphlab 

time does not match so conveniently. Sharing cost is also 
greater compared to FIR filter experiment. 
 
5.2 Logical synthesis results 

We experimented two kinds of sets of modes targeting eve-
ryday signal and image processing an embedded system 
may implement: 
1) one single application with different profiles. We have 

considered FIR filtering with various numbers of taps, 
Viterbi decoding with different constraint lengths accord-
ing to software radio needs, and sum of absolute differ-
ences SAD for different macro-block sizes based on 
video standards. 

2) different applications. We have combined transformations 
with their inverse like two-dimensional discrete cosine 
transform DCT and inverse DCT used in video processing 
systems, fast Fourier transform FFT and inverse FFT used 
in communication systems. We have also combined less 
similar applications like FFT and DCT, FIR and LMS fil-
tering, SAD and sum of square differences SSD, DCT and 
local wavelet transform LWT and LMS filtering. 

To analyse the overall multimode architecture efficiency, a 
logical synthesis was performed after the high-level synthe-
sis using Synopsys Design Vision. We target ASIC standard 
cell CMOS 65nm technology from ST Microelectronics. For 
these experiments, word-length of resources was 16 bits 
except for Viterbi decoders where 12-bit resources only are 
required. Fixed-point format was used. Some applications 
have also been synthesized using IEEE-754 floating-point 
hardware resources. 

Table 2 shows experimental results: cumulative approach 
area (number of gates), area and dynamic power consump-
tion for SPACT approach and our approach. Area results 
correspond to the complete architecture area, i.e. the data-
path including storage resources and its controller. We set 
heterogeneous synthesis constraints: timing constraint (T), 
resource constraint (R) and no constraint (N) that is to say 
an “as fast as possible” implementation using resources of 
other modes is targeted. 

Compared to the cumulative approach, area decreases 
from 14% up to 68% (average saving 40%) with our ap-
proach. Best results are obtained when application behav-
iour is similar (FIR filtering). For configurations without 
obvious behaviour similarities like 2dDCT/FFT64 or 
LWT/DCT/FFT, results are still interesting. When a floating-
point data representation is investigated, a multimode archi-
tecture is even more attracting. Architecture remains the 
same but area saving is increased because floating-point 
operators are more costly. Compared to SPACT approach, 
area saving is 9,4% on average and dynamic power con-
sumption is reduced by about 12%. Actually, our approach 
takes similarities between modes into account. The number 
of input ports of the multiplexers is reduced on average and 
by the way the complexity of the decoding part of the con-
troller is also decreased. This leads to area saving as well as 
power saving. 

 

Multimode Design ADD SUB MUL DIV2 REG MUX

FIR 

8/16/32/64

FIR 8

FIR 

8/16/32/64

FIR 16

FIR 

8/16/32/64

FIR 32
FIR 

8/16/32/64
FIR 64

FIR 

8/16/32/64
C.A.

FIR 

8/16/32/64

SPACT approach

FIR 

8/16/32/64

Proposed appro.

FIR16 + 

LMS16

FIR 16

FIR16 + 

LMS16

LMS 16
FIR16 + 

LMS16
C.A.

FIR16 + 

LMS16
SPACT approach

FIR16 + 

LMS16

Proposed appro.

DCT8 + 

LMS16 + 

LWT8

DCT 8

DCT8 + 

LMS16 + 

LWT8

LMS 16

DCT8 + 

LMS16 + 

LWT8

LWT 8DCT8 + 

LMS16 + 

LWT8 C.A.

DCT8 + 

LMS16 + 

LWT8

SPACT approach

DCT8 + 

LMS16 + 

LWT8

Proposed appro.

4 4 16 4

4 4 25 19

4 4 42 46

4 4 74 83

16 16 157 152

4 4 110 159

4 4 76 86

4 4 25 19

4 1 4 45 77

8 1 8 70 96

4 1 4 65 100

4 1 4 61 82

8 8 8 37 48

4 1 4 45 77

4 4 4 16 14

16 13 12 4 98 139

8 8 8 4 65 121

8 8 8 4 57 119

1292



 
 

6. CONCLUSION 

Multimode architectures, due to the good perform-
ance/area/power consumption trade-off they can achieve, 
have a strong interest for embedded devices. In this paper a 
methodology to automate the design of such architectures is 
proposed. It is based on high-level synthesis. The different 
configurations of the multimode architecture can be op-
timized for heterogeneous constraints (performance, area) 
which further increases the interest of the proposed ap-
proach. Multimode system design implies extra costs mainly 
due to the increase of the controller complexity and extra 
sharing resources. To limit these costs a combined ad-hoc 
scheduling and binding algorithm based on similarities be-
tween modes is used. Area decrease shows the effectiveness 
of our proposed approach. Area saving is about 40% com-
pared to a conventional cumulative approach. 

REFERENCES 

[1]. J. P. Elliott, Understanding Behavioral Synthesis. A 
Practical Guide to High-Level Design, Kluwer Academic 
Publishers, 2000. 

 
[2] S. Gupta, R. Gupta, N. Dutt, A. Nicaulo, SPARK: A Par-
allelizing Approach to the High-Level Synthesis of Digital 
Circuits, Springer, 2004 
[3]. High-Level Synthesis: From Algorithm to Digital Cir-
cuit, P. Coussy, A. Morawiec, (Eds), Springer, 2008 
[4]. V.V. Kumar, J. Lach, “Highly flexible multimode digital 
signal processing systems using adaptable components and 
controllers”, EURASIP Journal on Applied Signal Process-
ing, Volume, Issue 1, January 2006, pp.73-82. 
[5]. L.-Y. Chiou, S. Bhunia, K. Roy, “Synthesis of applica-
tion-specific highly efficient multi-mode cores for embed-
ded systems”, ACM Transactions on Embedded Computing 
Systems, Volume 4, Issue 1, February 2005, pp.168-188. 
[6]. C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau, E. 
Juin, P. Urard, E. Martin, “A design flow dedicated to multi-
mode architectures for DSP applications”, Int. Conf. on 
Computer-Aided Design, ICCAD, pp. 604-611, 2007. 
[7]. C-Y. Huang, Y. Chen, Y. Lin, Y. Hsu, "Data path alloca-
tion based on bipartite weighted matching", Proc. 
ACM/IEEE Design Automation Conf. (DAC), pp. 499-504, 
1990.

 

Modes
Synthesis 

constraints

Data 

format

Throughtput 

(Msample/s)

C.A.     

(gates)

SPACT 

approach

SPACT 

approach

Proposed 

approach

Proposed 

approach
% C.A. % SPACT% SPACT

Modes
Synthesis 

constraints

Data 

format

Throughtput 

(Msample/s)

C.A.     

(gates)
Area 

(gates)
Power 
(mw)

Area 
(gates)

Power 
(mw)

Area 
saving

Area 
saving

Power 
saving

1

FIR 8/16/32/64 N/H/T/T
16 bits

32/20/13/8
14758 7026 2,59 5300 2,05 64,1!% 24,6!% 20,9!%

1

FIR 8/16/32/64 N/H/T/T
IEEE-754

32/20/13/8
47529 19349 5,45 15474 4,56 67,4!% 20,0!% 16,3!%

1
Viterbi 

16/64/256

N/N/T 12 bits 26/7/2 131660 126592 44,70 113209 39,98 14,0!% 10,6!% 9,8%

1
Viterbi 

16/64/256
N/N/T 12 bits 53/22/7 179077 147731 52,17 130742 46,17 27,0!% 11,5!% 10,9%1

Viterbi 

16/64/256
N/N/T 12 bits 53/40/13 224517 175511 61,98 154162 54,44 31,3!% 12,2!% 11,1%

1

SAD 8x8 

16x16
T/R 16 bits 7/2 2667 1470 0,68 1458 0,68 44,9!% 0,8!% 0,3!%

2

DCT - iDCT T/T
16 bits

176/208
12217 7070 1,69 6906 1,64 43,5!% 2,3!% 2,8!%

2

DCT - iDCT T/T
IEEE-754

176/208
52493 28750 4,37 28044 4,214 45,2!% 2,5!% 3,6!%

2

FFT64 - 

iFFT64
T/N

16 bits
384/384

69997 46176 18,79 37232 12,16 46,8!% 19,4!% 35,3!%

2

FFT64 - 

iFFT64
T/N

IEEE-754
384/384

272503 174525 56,15 140488 35,06 36,0!% 19,5!% 37,6!%

2

2d DCT - 

FFT64
T/N

16 bits
256/512

68480 48315 13,12 45448 12,57 29,4!% 5,9!% 4,2!%

2

2d DCT - 

FFT64
T/N

IEEE-754
256/512

259645 178047 33,89 171520 32,82 31,4!% 3,7!% 3,2!%
2

FIR16 - 

LMS16
T/T

16 bits
20/10

7008 4895 1,71 4621 1,63 34,1!% 5,6!% 4,7!%
2

FIR16 - 

LMS16
T/T

IEEE-754
20/10

23535 15154 3,7113 14629 3,6182 35,6!% 3,5!% 2,5!%

2

SAD 8x8/16x16 

SSD 8x8/16x16
N/T/N/T 16 bits 7/7/2/2 8181 3597 0,93 3389 0,88 58,6!% 5,8!% 5,5!%

2

DCT8 / LWT8 / 

LMS8
R/N/T

16 bits
176/208/16

9300 7500 1,84 6664 1,49 28,3!% 11,2!% 19,0!%

2

DCT8 / LWT8 / 

LMS8
R/N/T

IEEE-754
176/208/16

44256 28752 4,091 28316 3,65 35,0!% 1,5!% 10,8!%

39,6!% 9,4!% 11,9!%  
Table 2 - Synthesis results 

1293


