17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

AN IQML TYPE ALGORITHM FOR AR PARAMETER ESTIMATION FROM NOISY
COVARIANCE SEQUENCES

Prabhu Babu', Petre Stoica', and Thomas L Marzetta®

'Department of Information Technology
Uppsala University
P.O. Box 337
SE-751 05 Uppsala
SWEDEN

2Communications and Signal Processing Research Group
Bell Laboratories, Alcatel-Lucent
NJ 07974 Murray Hill
USA
Email: prabhu.babu@it.uu.se,
ps@it.uu.se,
tlm @research.bell-labs.com
Web: www.it.uu.se/research/syscon/signalprocessing

ABSTRACT

In this paper, we deal with the problem of AR parameter
estimation from noisy covariance sequences. An iterative
quadratic maximum likelihood (IQML) type of algorithm is
proposed to solve the problem. The convergence and con-
sistency properties of the method are studied by carrying out
several numerical simulations.

1. INTRODUCTION

The problem of parameter estimation of an ARMA or an MA
process from its sample covariance sequence has been stud-
ied quite extensively in the literature [1-4]. For example [1],
solves the problem by fitting the sample covariance sequence
to the true sequence of a specific order MA process. Simi-
larly [4], deals with ARMA parameter estimation with the
additional problem of missing data. In this paper, we deal
with the problem of parameter estimation of an AR process
of specific order from its noisy covariance sequence.

The problem of identifying the parameters of an AR
model from noisy measurements of the autocovariance
model is motivated by a classical geophysical inverse prob-
lem and also by its counterpart in vocal tract estimation.
Physically, one has normal-incidence wave propagation in
a stratified medium comprising homogeneous equal travel-
time layers (the so-called Goupillaud model). The inter-
face between each pair of adjacent layers is described by a
reflection coefficient whose magnitude is less than one; at
the bottom of the deepest (M-th) layer the reflection coef-
ficient and all deep reflection coefficients are equal to zero.
Consider the application of an impulsive pressure pulse at
the free surface: the resulting discrete-time reflection re-
sponse, sampled at one-half of the one-way travel time in
each layer, can be shown to equal one side of the autocovari-
ance sequence that is associated with an M-order AR spec-
trum [5]. The reflection coefficients (a.k.a partial correlation
coefficients or Schur parameters) are identical to the phys-
ical reflection coefficients. Given the noise-free reflection
response, a straightforward application of the Levinson algo-
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rithm will perform the inversion. However the noisy reflec-
tion response may not be positive-definite, and in any case
the application of the Levinson algorithm is certainly subop-
timal. The methods like Yule-Walker (YLW) and total least
squares (TLS) are not applicable here, as they are applicable
only for AR parameter estimation from noisy sample data,
and to our knowledge there are no methods available for AR
parameter estimation from noisy covariance sequences. In
this paper, we will propose an IQML type method for AR
parameter estimation from noisy covariance sequences, and
study its convergence and consistency.

In section II, we state the problem, and section III
presents the IQML type algorithm and its brief theoretical
study. Section IV contains two numerical examples and sec-
tion V draws some conclusions.

2. PROBLEM FORMULATION

Let {?k}fzo denote the given noisy covariance sequence and

{re}]_, denote the true covariance of an AR(M) process,
where M denotes the AR order and is considered to be known
and less than 7. The noise in the sequence is assumed to be
white Gaussian with zero mean and variance 62, and inde-
pendent of the process:

f=ntegeor=rte, (1)
where
1" p=TlRe )
E(ee”) = oI 2)

r={[ro--rr
T
g:[go...gT] ,

Leta=[ag---ay]" denote the parameters of the AR(M) pro-
cess. The problem is: given {f"k},{:O, find a, the parameters

of AR(M). 3. IQML TYPE METHOD

Let us introduce a matrix A of size T —M + 1 by T + 1, which
is made from a as shown below:

aM ao O
AT = : A3)
0 ay -+ ap
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The true covariance sequence r lies in the nullspace of matrix
AT, that is

ATr=o0. 4)
This follows from the fact that

aorg+airg—1+--+aurki-y =0, k=M,...,T. 5)
By premultiplying (1) with A7 on both sides and using (4),
we get

ATp=ATe. (6)

This observation implies that asymptotically (for T > M),
the following minimization problem will yield the maximum
likelihood estimate of a:

r?i?{ fla) 2 FTAATA) AT 7). (7

The above mentioned problem is highly nonlinear in a. And
also the minimizer is not unique, because for any p # 0, the
cost function will have the same value for pa and a. The
nonuniqueness can be tackled by imposing the constraint that
ap = 1, but it will still be hard to handle the nonlinearity.
However in the literature, this kind of problems are han-
dled effectively by an algorithm called the iterative quadratic
maximum likelihood (IQML). The idea of IQML was intro-
duced in [6] to handle a similar minimization problem in
DOA estimation. According to the IQML principle, the min-
imization in (7) is solved iteratively as follows:

1. Initialize ATA = I, and solve the minimization problem
to obtain dg:

T

&o:r&i}nHAT?H; st. ula=1, ®)

where = [1 0---0]" constraints the first element of a to
be 1, in order to avoid the trivial estimate a = 0.
2. For k =1,2,..., end, solve the following minimization
problem:
= min||ATF[}, st ula=1, ©)
{a}
where W = (AT A;_1)~! and AT | is obtained from
dy_1 as in (3).
The iteration can be stopped when the change in a is neg-
ligibly small, that is ||dy — @ 1||* /M < &, where € can be
chosen around 10~8. The constrained minimization in (8)
and (9) can be carried out easily as follows. At any iteration
the cost function in (9) can be rewritten as

112
[A77][5, < ||&7d| (10)
w
where R is given by
RS 0
T Pu+1r T 71
R = . S . an
Pr Pr—m

So the constrained minimization in (9) can be rewritten as

2
|| AT
mmHR aH st Wla=1. (12)
{a} w

The above problem is quadratic in a with a linear constraint;

its solution can be written analytically as follows:

0 'u

aA:
ul QO '’

13)

where Q = RWR" (see, e.g., [7]).

Instead of constraining the first element of a to be equal
to one, the norm of a can be constrained, such that a’a = 1,
in which case the solution equals the eigenvector correspond-
ing to the minimum eigenvalue of Q. In general, the AR pa-
rameters obtained via the above mentioned procedure may
lead to unstable systems for which the zeros of the polyno-
mial, a(z) = ap + az Y+ +ayz ™, lie outside the unit
circle. However, we have observed empirically that even at
low values of signal to noise ratio (SNR) and 7', the zeros of
a(z) lie inside the unit circle. For T >> M, the above men-
tioned method requires about O(2T> —4MT? +3M?T) flops
to compute the solution at each iteration. In the next section,
the convergence and consistency of the IQML type algorithm
are discussed.

4. CONVERGENCE AND CONSISTENCY
ANALYSIS

Convergence and consistency of IQML type algorithms in
the array processing context are discussed in detail in [8, 9].
The IQML algorithm generally converges, but the conver-
gence point might not be a stationary point of f(a) in (7).
In general, the proposed IQML type method will converge,
but not necessarily to a local minimum. This claim can be
verified by carrying out a simple test as follows:

1. Obtain a., the convergence point of IQML type method,
as discussed in equations (8) and (9).

2. Minimize the cost function, f(a) =T A(ATA)~'AT#, via
a nonlinear unconstrained minimization algorithm, ini-
tialized with a., to obtain the local minimum ay,.. For
example the function “fminsearch” in MATLAB can be
used to obtain a;,,.

3. Find the normalized error, W

4. If the normalized error is “zero”, then IQML has con-

verged to a local minimum, else the convergence point a,
is not a local minimum.

As shown in the simulations in the next section, most of the
time the IQML type method does not converge to a local
minimum.

Next in this section, we will discuss the consistency (as
T, the number of covariance lags, tends to infinity) of the
algorithm. At moderate and low SNRs, the first step in the
IQML algorithm will always give biased estimates. However
it is important to note that the consistency of the IQML
algorithm does not depend on the bias in dy, the estimate
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Figure 1: True pole locations of AR(2) process.

from the first step of the IQML algorithm.

Let us rewrite the cost function in (8) as

fla) =TAAT 7. (14)
Substituting (1) into (8), we get
fla)=rTAATr+-2/TAAT e + T AAT e (15)
Taking expectation and using a trace property yield:
E(f(a)) =rTAAT r+ 2tr(AATE (€)rT)
+tr(AATE (eeT)). (16)

Because the noise in the covariance sequence is white with
zero mean, we get

E(f(a)) = rTAATr + 6°tr(AAT). (17)

Using (10) and (3), the above expression can be rewritten as

E(f(a))=a’RRTa+ c*(T —M +1)(a" a). (18)
Dividing the above expression by % on both sides and apply-
ing the limit T — oo, we get

ocX(T-M+1)

lim ~E(f(a)) .

fim E(/ (@) = Jim 7a R a+ Jim

1
= lim ?aTRRTa—i-O'Z(aT ).

T—oo

The first term in the right hand side of the equation (19) will
attain its minimum value zero only at gy, the true value of
the a. So at high SNRs (low c?2), the first step of the IQML
algorithm will give a good estimate of a. However at low
SNRs (high 62), the second term in (19) dominates the first

(a’a

)

19)

Figure 2: IQML estimated pole locations of AR(2) process
for 50 trials, SNR = 5dB, 7' = 50.

Figure 3: True pole locations of AR(4) process.

Figure 4: IQML estimated pole locations of AR(4) process
for 50 trials, SNR = 5dB, 7 = 50.
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Figure 5: E (W) vs SNR, T = 50.

term in the cost function, so the estimate of a obtained by
minimizing that cost function will be biased towards zero.

Regarding the consistency analysis of step 2 (9) of
IQML, it is more complicated to analyze the iterations.
In [8, 9], the authors have derived the necessary condition
for consistency for the same sort of algorithm. By following
the derivation in [8], the necessary condition for consistency
of step 2 (9), is given by

VTPatrue = 07 (20)
p=U" (1® (ArTmeAtrue)il)Ua

where U and V are given by

vec(AT) =Ua
I=[uV]. @1)

From equation (20), it is readily seen that for the IQML
algorithm to be consistent, Pay,. should lie in the nullspace
of VT, which is too restrictive to hold in general. The in-
consistency of the IQML algorithm can also be explained
simply as follows: for higher values of T, the true covari-
ance sequence of the finite order AR process will be close to
zero, and the sample covariance sequence will be made only
of noise, so the performance of IQML algorithm (or of any
other algorithm, for that matter) will not improve with the
increasing of value of 7.

5. NUMERICAL RESULTS

In this section, we will use the IQML type method in two
examples, a second order and a fourth order AR process with
coefficients:

3.5 T T T T T

—AR(2)
3[F~~. - - -AR@)| T

MSE

9% = 0 5 10 15 20
SNR (dB)

Figure 6: MSE vs SNR, T = 50.

l.a=[1 -15 0.7].
2. a=[1 —1.6408 2.2044 —1.4808 0.8145]".

For each example, 500 Monte Carlo simulations are
carried out on the noisy covariance sequence generated from
the true covariance sequence and white Gaussian noise of
zero mean and a certain variance, and the following results
are shown:

—

The estimated pole locations of the AR process.

2. Mean square error (MSE) of estimated coefficients versus
signal to noise ratio (SNR) and 7.

3. Convergence of IQML estimate to a local minimum (we

will show the averaged value of W

SNR).

The MSE analysis has been carried out to analyze the
consistency of the IQML estimate and the convergence
analysis has been carried out to show that the IQML will not
always converge to a local minimum.

versus

loc

The plots in Fig. 1, Fig. 3, Fig. 2 and Fig. 4 show the
true and the IQML estimates of the pole locations of the two
AR processes. As indicated in the discussion in section III
about the stability of the system, it is clearly seen that all
the estimated poles lie inside the unit circle. Furthermore,
the estimated pole locations are quite accurate in most
realizations. Regarding the convergence of the IQML, the

plotin Fig. 5 of E (W) vs SNR, shows that indeed

the IQML type method does not necessarily converge to a
local minimum. It shows that only at high SNRs, the IQML
type method converges to or very near to a local minimum.

The plot in Fig. 6 shows the variation of MSE vs SNR; it
is clearly seen from the figure that the MSE decreases with
increasing SNR. Fig. 7 shows the variation of MSE vs SNR
for the estimates from the first and the final step of the IQML,;
it is seen from the figure that the estimates from the final
step are more accurate than the estimates from the first step
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Figure 7: MSE vs SNR for AR(2) process, T = 50
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Figure 8: E (w) vs SNR, T = 10%.
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of the IQML. Finally numerical simulations are carried out
to analyze the consistency of the IQML in the number of
A2
samples (T). Fig. 8 plots the mean value of (7“!1:70““2) Vs
SNR, where u = [10-- -O}T, and d represents the estimate
from the first step of the IQML,; it is seen from the figure that
atlow SNRs, the estimates from the first step of the algorithm
are biased towards zero. Fig. 9 shows the variation of MSE
vs T for AR(2) process at an SNR = 0 dB; it shows that, as T’
increases, the MSE decreases but does not quite converge to
ZEero.

6. CONCLUSIONS

The problem of AR parameter estimation from noisy covari-
ance sequences has been considered for an application in the
field of geophysics. An IQML type method has been pro-
posed to solve the problem, and its convergence and consis-

100 200 300 400 500 600 700 800
Number of Samples (T)

Figure 9: MSE vs T for AR(2) process, SNR=0dB.

tency have also been studied. Finally numerical simulations
were carried out to back the theoretical analysis.
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