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ABSTRACT

When speech recognition is used in real-world environments,
simultaneous speaker and environmental adaptation and
compensation for time-varying noise effects is needed. Noise
compensation methods like missing feature reconstruction
should be combined with adaptation methods like constrained
maximum likelihood linear regression (CMLLR). This is only
straightforward if reconstruction is used prior to CMLLR.
In this work, reconstruction is modified so that we can esti-
mate CMLLR transformations prior to reconstruction. The
new approach is evaluated on large vocabulary speech data
recorded in noisy public and car environments and compared
to using reconstruction prior to CMLLR estimation. The
results suggest the noise environment determines which ap-
proach is better. Using adaptation prior to reconstruction has
the better performance when evaluated on data from public
environments. The relative reductions in letter error rate
were 47–50 % compared to the baseline and 13–19 % com-
pared to using either adaptation or reconstruction alone.

1. INTRODUCTION

Automatic speech recognition works reasonably well when
the system is tested and trained under the same conditions,
but speaker and environmental variation and environmental
noise make the recognition task difficult. In this work, we
discuss an important but insufficiently solved problem which
arises when automatic speech recognition is applied in real-
world environments: how to achieve simultaneous speaker
and environmental adaptation and compensation for time-
varying noise effects? Adaptation methods such as the con-
strained maximum likelihood linear regression (CMLLR) [1]
are designed to improve statistical robustness in general
rather than compensate for noise, so adaptation should be
combined with a separate noise compensation method.

Methods intended specifically for noise compensation in-
clude the missing feature methods proposed in [2][3]. The
missing feature methods are applied in compressed spectral
domain, where noise corruption is typically such that some
spectrotemporal regions are reliable and represent mostly
speech, while some represent mostly noise. The missing fea-
ture methods 1) find the noise corrupted regions, where the
speech informations is missing, and 2) handle speech recogni-
tion with missing valued. In missing feature reconstruction,
the missing values are replaced with estimates calculated
based on the reliable, speech dominated features and clean
speech statistics [3]. Missing feature reconstruction methods
have performed well under various noise conditions [3][4],
but since noise robustness alone is often not enough, recon-
struction needs to be combined with, for example, speaker
compensation.

In previous work [5], we combined missing feature re-
construction and CMLLR for large vocabulary continuous
speech recognition in noisy environments. When reconstruc-
tion was applied prior to CMLLR, using CMLLR improved
the speech recognition performance modestly. In this work,
we examine if the speech recognition performance further

improves when CMLLR transformations are estimated prior
to reconstruction (from the noisy features) rather than after
reconstruction (from the reconstructed features). We pro-
pose to modify cluster-based missing feature reconstruction
[3] so that CMLLR transformations can be estimated prior
to reconstruction and their effect accounted for in missing
feature reconstruction. This is referred to as using adapta-
tion prior to reconstruction in the rest of this work. The
proposed method is evaluated and compared with previous
approaches on Finnish large vocabulary continuous speech
data recorded in noisy public environments, such as parks
and cafeterias, and inside cars.

2. METHODS

2.1 Baseline system

Our large vocabulary continuous speech recognition sys-
tem uses a morph-based growing n-gram language model [6]
which is trained on 145 million words of book and newspa-
per data. Since all words and word forms can be represented
with the unsupervised morphs, the decoding vocabulary is
in practise unlimited [7]. The decoder is a time-synchronous
beam-pruned Viterbi token-pass system [8] and the acoustic
models are state-clustered hidden Markov triphone models
constructed with a decision-tree method [9]. Each state is
modelled with 16 Gaussians, and the states are also associ-
ated with gamma probability functions to model the state
durations [10].

The speech signal is represented with 12 MFCC and a log
energy feature. Features are used with their first and second
order differentials, and treated with cepstral mean subtrac-
tion (CMS) and maximum likelihood linear transformation
(MLLT) [11] optimised in training. In addition, features are
adapted with constrained maximum likelihood linear regres-
sion (CMLLR) [1] in order to reduce the mismatch between
training and testing conditions (i.e. compensate for speaker
and environmental variation). CMLLR is essentially a model
adaptation method, but it can be formulated as a linear fea-
ture transformation. CMLLR transformations are estimated
from the test data in an unsupervised manner.

2.2 Noise mask estimation

Noise that originates from sources uncorrelated with speech
corrupts the speech signal additively in power spectral do-
main. Thus, in logarithmic mel-spectral domain, when
speech dominates over noise, the time-frequency components
Y (τ, i) may be considered as reliable estimates of the clean
speech values X(τ, i) which would have been observed if the
speech signal had not been corrupted with noise. In other
words, for the reliable components, Xr(τ, i) ≈ Yr(τ, i). The
components in the noise dominated regions are, on the other
hand, unreliable and provide only an upper bound for the
corresponding clean speech values, Xu(τ, i) ≤ Yu(τ, i). La-
bels dividing the noisy speech mel-spectrogram to reliable
and unreliable parts are referred to as a spectrographic mask
(Figure 1).
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Figure 1: Logarithmic mel-spectrogram for noisy speech and
an example spectrographic mask that divides the features to
reliable (black) and unreliable (white) regions.

In this work, the spectrographic masks are constructed
based on local signal-to-noise ratio (SNR) estimates. The
estimates are derived from noise estimates that we calculate
during speech pauses, which are detected using a Gaussian
mixture based speech/non-speech classifier. The non-speech
frames i.e. the frames Y (τ) that have been classified as non-
speech are collected and temporally smoothed to produce the
noise estimate N(τ). Now, time-frequency components are
taken to be unreliable if their observed value Y (τ, i) does not
exceed the estimated noise power N(τ, i) with minimum of
γ dB. The speech/non-speech classifier and noise power esti-
mation are described in our previous work [5]. The threshold
γ = 3 dB which has been decided based on experiments with
the far recorded parameter optimisation data (see Section 3
for dataset description).

2.3 Missing feature reconstruction

Recognising partially observed speech is possible if either (i)
the classifier (decoder) is modified to marginalise over the
missing values or (ii) data imputation is used and the fea-
tures reconstructed. Classifier modification methods such as
bounded marginalisation [2] have been efficient when tested
with a limited vocabulary (e.g. in a connected digit recogni-
tion task) but using these methods limits the speech recog-
niser to operate on the log-spectral features. When data
imputation is used instead, the unreliable components are
replaced with estimates that correspond to clean speech. In
this case, the reconstructed log-spectral features may be fur-
ther processed as usual and the decoder needs not be modi-
fied (Figure 2). This is especially important in large vocab-
ulary continuous speech recognition where the state-of-the-
art systems typically use various normalisation and feature
transformation methods.

In this work, we use the cluster-based feature reconstruc-
tion method proposed in [3] for data imputation. Here, the
log-spectral clean speech features X(τ) are assumed inde-
pendent and identically distributed according to a Gaussian
mixture model (GMM)

P (X) =
∑

ν

c(ν)N (X; µ(ν), Σ(ν)) (1)

where c(ν) are the component weights (prior probabilities),
µ(ν) the components means and Σ(ν) the covariance matri-
ces. Reconstructed values for the unreliable feature compo-
nents are chosen so that the reconstructed feature maximises
the likelihood of the clean speech model but does not exceed
the observed values Yu. The bounded MAP estimate for the
unreliable values is given as

X̂u = arg max
Xu

P (Xu|Xr, Xu ≤ Yu, θ ) (2)

where θ are the GMM parameters from Equation (1). If the
Σ(ν) here are diagonal, Equation (2) can be solved analyti-
cally. In this work, however, we use full covariance matrices,
and to calculate the bounded MAP estimate, we iterate over
the frequency channels i as proposed in [3]:

1. Initialise X̂(i) = Y (i) ∀ i

2. Repeat until X̂ is converged: for each X(k) ∈ Xu

X̂(k) = arg max
X(k)

P (X(k)|X(i) = X̂(i) ∀ i 6= k, θ ) (3)

X̂(k) = min{X̂(k), Y (k)} (4)

The clean speech model used in this work is a 5-component
GMM trained with 96-minute extract from the SPEECON
training set described in Section 3. The clusters and distribu-
tion parameters are jointly estimated using the expectation-
maximisation (EM) algorithm in the GMMBAYES Matlab
Toolbox [12].

2.4 Motivation

The missing feature methods could be a solution for speech
recognition especially in changing and unpredictable noise
conditions since they make minimal assumptions about the
noise and do not utilise noise estimates. In this work, a sim-
ple noise estimate is used in spectrographic mask estimation,
but if the mask was estimated based on e.g. perceptual crite-
ria, as suggested in [13], noise estimation would be unneces-
sary. Common approaches to handling the missing features
in speech recognition include missing feature reconstruction
and bounded marginalisation. Bounded marginalisation as
defined in [2] limits the recogniser to use log-spectral features
and operate under the assumption that frequency channels
are uncorrelated. As these limitations are not well-suited for
HMM-based large vocabulary speech recognition, we choose
to use reconstruction instead.

There is one problem particular to the reconstruction ap-
proach: while reconstructing the features reduces noise inter-
ference, it also produces artefacts in the observed features.
Now, although the net effect from the reduced interference
and increased artefacts remains positive on speech recogni-
tion performance, the effects on speaker and environmental
adaptation may be privative. In addition to the increased
artefacts, since reconstruction is carried out based on a low-
complexity speaker-independent GMM, the process is likely
to remove or smooth speaker-dependent characteristics. This
affects the feature statistics used for CMLLR estimation and
can degrade adaptation performance, as suggested in [5].
Therefore, it appears we should look for reversing the order
between reconstruction and adaptation: adaptation prior to
reconstruction.

2.5 Using adaptation prior to reconstruction

Adaptation was, in previous work [5], applied after recon-
struction because missing feature methods operate in the
log-spectral domain while adaptation is applied after the
differantial features have been calculated and the features
treated with DCT, CMS, and MLLT transformations as de-
scribed in Section 2.1. This will be referred to as the acoustic
model domain. If we wish to estimate the CMLLR transfor-
mations prior to reconstruction, the reconstruction process
needs to be modified to take later adaptation into account.
While the feature likelihoods are normally evaluated in the
log-spectral domain as illustrated in Equation (2), the clean
speech model in Equation (1) is now trained in the acoustic
model domain. The noisy log-spectral features Y are trans-
formed into the acoustic model domain and also treated with
adaptation. Now, the bounded MAP estimates are solved it-
eratively from

X̂u = arg max
Xu

P ( A·T (X) + b |Xr, Xu ≤ Yu, θ
′) (5)
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Figure 2: Feature extraction and missing feature reconstruc-
tion. After reconstruction in mel-spectral domain, the re-
constructed features are processed like normal features.

Figure 3: Feature extraction when CMLLR transformations
are estimated prior to missing feature reconstruction and
their effect on transformed features compensated for in the
reconstruction process (adaptation prior to reconstruction).

where X = Xr ∪Xu and T (X) the transformation from log-
spectral to acoustic model domain, matrix A and vector b
are the speaker-dependent CMLLR transformation parame-
ters, and θ ′ the GMM parameters estimated in the acoustic
model domain. Note that the missing values are still infilled
in the log-spectral domain although the optimal values are
chosen based on likelihood scores calculated after adapta-
tion in the acoustic model domain. Thus, reconstruction has
changed from finding the optimal clean speech estimates to
finding the optimal clean speech estimates when it is known
that a specific linear transformation will be used for adapta-
tion later in the process. With adaptation thus compensated
for, the speaker-dependent transformations estimated prior
to reconstruction are applicable to the reconstructed features
as such, and the feature extraction process becomes as illus-
trated in Figure 3.

It should be noted that when the candidate reconstructed
features are propagated to the acoustic model domain for
likelihood evaluation, the CMS coefficients and first and sec-
ond differentials are calculated from the noisy rather than
reconstructed features. This is because both CMS and dif-
ferential features at time τ are calculated based on features
X(τ − T ) . . . X(τ + T ) i.e. over several frames, while recon-
struction processes one frame at a time. After the features
X(τ−T ) . . . X(τ +T ) have all been reconstructed in the mel-
spectral domain, CMS and differential features for X(τ) are
recalculated from the reconstructed features. Thus, the fea-
tures used for speech recognition are completely recalculated
based on the reconstructed mel-spectral features.

3. DATA

The acoustic model is trained with data selected from the
Finnish SPEECON database [14]. The 26-hour training set
contains clean speech recorded with a close-talk microphone
(a headset) in quiet conditions. 208 speakers, including
both male and female subjects, are represented in the data.
Among the utterances used for training are words, sentences
and free speech. The speech/non-speech classifier required
for noise estimation, on the other hand, is trained with tele-
vision news data from the Finnish Broadcasting Company
(YLE) as described in [5] except that the data has been arti-
ficially corrupted with babble noise to improve the classifier
performance.

Also the test data used in this work is from SPEECON.
The utterances used for parameter optimisation and evalua-
tion are all read sentences recorded either a) in public places
both indoors and outdoors where speech, footsteps, unspec-
ified clatter etc. appears in the background or b) in car en-
vironments. The sentences are excerpts from Internet texts
and occupy a large (unlimited) vocabulary. The 60-minute
and 29-minute parameter optimisation sets for public and
car environments have speech from 20 and 10 speakers, re-
spectively, and the 94-minute and 57-minute evaluation sets
have been collected from 30 and 20 speakers, respectively.
The evaluation sets do not share speakers with each other,
the parameter optimisation sets, or the acoustic model train-
ing data. The data is recorded in 3-minute sessions with one
speaker in one environment. CMLLR transformations are
estimated per session, so the system is adapted to both the
speaker and the environment. The environmental differences
that CMLLR can compensate for include e.g. the distance
between the speaker and the microphone and static noise
components.

The proposed method is tested under three conditions:
we use data recorded with the headset, data recorded with a
lavalier microphone, and data recorded from 0.5 m–1 m dis-
tance (microphone mounted on the rear-view mirror in car
environments). The three recordings have been made simul-
taneously, so they have exactly the same speech contents. In
the speech data recorded in public environments, SNR values
estimated with the recording platform are on average 24 dB
in the headset data, 14 dB in the lavalier data, and 9 dB in
the far recorded data, and in the speech data recorded in car
environments, 13 dB in the headset data, 5 dB in the lavalier
data, and 8 dB in the far recorded data. Speech recognition
performance on the headset data recorded in public envi-
ronments corresponds well to performance on speech data
recorded in quiet environments, whereas in the lavalier and
far recorded data, both environmental noise and reverbera-
tion affect the speech signal and decrease performance.

Note that although SNR estimates are higher for the data
recorded in public environments, the dynamic noise scene is
rather challenging for the conventional noise compensation
methods. The car engine noise is more static and concen-
trated on low-frequencies. Note how in car environments,
the average SNR in far recorded data is higher than in lava-
lier data even if the lavalier microphone is positioned closer
to the speaker. This is likely because the lavalier microphone
picks the low-pass component from the car engine noise more
strongly than the far microphone (which is in the rear-view
mirror). Low-pass noise decreases SNR but does not mask
important speech frequency regions. Therefore it has a small
effect on the actual speech recognition performance.

4. RESULTS

We examine how speech recognition performance changes
when cluster-based missing feature reconstruction and adap-
tation with constrained maximum likelihood linear regres-
sion (CMLLR) are used in a noisy speech recognition task
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Table 1: Public environments. Speech recognition results
over the evaluation data recorded in noisy public environ-
ments such as parks and cafeterias. The headset data (H) is
practically clean speech with average SNR 24 dB, while the
lavalier (L) and far recorded (F) data are noisy speech with
average SNR 14 dB and 9 dB, respectively. The best results
obtained in each condition are underlined.

WER

H L F

(a) BASELINE 13.8 43.8 67.6

(b) ADA 12.3 28.8 44.9

(c) REC 14.1 30.5 46.8

(d) REC→ADA 12.9 27.2 41.2

(e) ADA→REC 12.5 25.7 39.1

LER

H L F

(a) BASELINE 3.4 22.1 34.6

(b) ADA 2.7 12.7 22.0

(c) REC 3.4 13.6 22.2

(d) REC→ADA 3.0 11.7 20.4

(e) ADA→REC 2.8 11.0 18.3

with large vocabulary continuous speech data. Speech recog-
nition performance is evaluated with the following systems:
(a) baseline system without adaptation, (b) baseline system
with adaptation, (c) missing feature reconstruction without
adaptation, (d) missing feature reconstruction prior to adap-
tation, (e) adaptation prior to missing feature reconstruction
as proposed in Section 2.5. The results for speech recorded
in noisy public environments are given in Table 1 and the
results for speech recorded in car environments in Table 2.
Since the words in Finnish are often long and consist of sev-
eral morphemes, speech recognition performance is measured
primarily in letter error rate (LER). In this work, also the
word error rates (WER) are reported, but system compar-
isons are based on the letter error rates. Statistical signif-
icance is tested using the Wilcoxon signed rank test with
significance level p = 0.05. This test is used for all pairwise
system comparisons in this work.

The results in Tables 1 and 2 indicate that adaptation (b)
improves speech recognition performance in all test condi-
tions. Reconstruction (c) improves the results when applied
on noisy data i.e. in all test conditions excluding the head-
set data from public environments. The improvements from
baseline (a) are statistically significant (p < 0.05). The best
results with the headset data in both public and car environ-
ments were obtained with the baseline system with adapta-
tion (b). With the speech data from public environments, the
best results with lavalier and far recorded data were obtained
with the system using adaptation prior to reconstruction (e),
and with the speech data from car environments, the best re-
sults with lavalier and far recorded data were obtained with
the system using reconstruction prior to adaptation (d).

5. DISCUSSION

CMLLR adaptation (b) and missing feature reconstruc-
tion (c) significantly improve the speech recognition results
over the noisy, lavalier and far recorded data from public
environments (Table 1). When adaptation and reconstruc-
tion are used together (results (d) and results (e) in Ta-

Table 2: Car environments. Speech recognition results over
the evaluation data recorded in cars. The headset data (H)
has average SNR 13 dB, the lavalier data (L) average SNR
5 dB and the far recorded data (F) average SNR 8 dB. The
far microphone has been in the rear-view mirror, where the
engine noise is not as loud as in the lavalier position. The
best results obtained in each condition are underlined.

WER

H L F

(a) BASELINE 14.7 51.5 95.7

(b) ADA 10.7 24.7 72.1

(c) REC 13.9 40.9 68.4

(d) REC→ADA 10.8 23.7 51.9

(e) ADA→REC 11.3 28.2 63.2

LER

H L F

(a) BASELINE 4.2 33.7 60.1

(b) ADA 2.5 11.5 42.7

(c) REC 3.7 23.3 38.6

(d) REC→ADA 2.5 10.6 33.5

(e) ADA→REC 2.7 13.5 37.2

ble 1), the system performance further improves. The best
results are obtained when adaptation is used prior to recon-
struction (e). This confirms the hypothesis suggested in our
previous work [5], where missing feature reconstruction and
CMLLR were also tested in noisy public environments, but
reconstruction was only used prior to adaptation. However,
the situation changes in car environments (Table 2). For the
lavalier and far recorded data, the best results are obtained
when reconstruction is used prior to adaptation. To under-
stand why the results are different in the two environments,
we shall discuss in detail the results from using adaptation
prior to reconstruction (e) and reconstruction prior to adap-
tation (d).

5.1 Adaptation prior to reconstruction

Using adaptation prior to reconstruction means that the CM-
LLR transformations are estimated from the noisy rather
than reconstructed features. In public environments, the
noise interference is typically not static and contains noise
events such as footsteps or car passing the scene. CMLLR
transformations, on the other hand, are estimated over sev-
eral sentences and cannot compensate for dynamic effects.
Thus, even if the transformations are estimated from noisy
features, they are likely to compensate mostly for speaker
variation and other mismatched static elements such as the
microphone position. Reconstruction and the CMLLR trans-
formations estimated prior to reconstruction compensate for
different elements in the acoustic scene, so using reconstruc-
tion after adaptation (e) improves the results from adapta-
tion (b) as indicated in Table 1. The difference is statistically
significant (p < 0.05).

The results are different when we use adaptation prior
to reconstruction in car environments (Table 2). Evaluated
on the lavalier data, adaptation (b) gives better results than
adaptation prior to reconstruction (e) (p < 0.05). Since
the car engine noise is quite static, adaptation can com-
pensate for the noise, and reconstruction is not necessary.
The relative error reduction from adaptation (b) alone is
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66 %. Evaluated on the far recorded data, adaptation prior
to reconstruction (e) gives better results than adaptation (b)
(p < 0.05) unlike in the previous case. The state sequence
hypothesis (corresponding to the baseline result (a)) used
for unsupervised adaptation contains so many errors that
the CMLLR estimates become less than optimal; only in
this case are better results obtained with reconstruction (c)
than adaptation (b) (p < 0.05). Since adaptation does not
do well in compensating for noise (or other variation), using
reconstruction improves the results. However, also with the
far recorded data, the results from using adaptation prior to
reconstruction (e) in car environments are not as good as the
results from using reconstruction prior to adaptation (d).

5.2 Reconstruction prior to adaptation

In previous work [5], we tested using reconstruction prior
to adaptation on speech data recorded in noisy public envi-
ronments same as here. This did not significantly improve
the speech recognition results compared to using reconstruc-
tion without adaptation. In this work, the difference be-
tween the results from reconstruction (c) and reconstruction
prior to adaptation (d) in Table 1 is statistically significant
(p < 0.05), and the results from adaptation prior to recon-
struction (e) are even better (p < 0.05). We believe this is
because reasons discussed in Section 2.4.

Evaluated on the data from car environments, recon-
struction prior to adaptation (d) gives better results than
adaptation prior to reconstruction (e) (p < 0.05). When the
CMLLR transformations are estimated from noisy features,
adaptation and reconstruction both compensate for noise,
but when reconstruction is used prior to adaptation and the
CMLLR transformations are estimated from reconstructed
features, adaptation learns mismatched elements other than
noise. Thus, even if reconstruction probably degrades adap-
tation performance, using reconstruction prior to adapta-
tion (d) is better than having both methods compensate
for noise, which is what happens when we use adaptation
prior to reconstruction (e) in car environments. Evaluated
on the lavalier data, the difference between using reconstruc-
tion prior to adaptation (d) and adaptation (b) in Table 2
is not statistically significant (p = n.s.). Evaluated on the
far recorded data, reconstruction prior to adaptation (d) is
the better system (p < 0.05) in all pairwise comparisons,
but there is another reason for this: the error-filled baseline
result (a) is not well-suited for unsupervised adaptation, so
in this case, adaptation really benefits from the better state
sequence hypothesis that is constructed after reconstruction.

6. CONCLUSIONS AND FUTURE WORK

We proposed a new method to combine constrained maxi-
mum likelihood linear regression (CMLLR) [1] and cluster-
based missing feature reconstruction [3] and evaluated the
methods in noisy speech recognition task with data recorded
in public and car environments. In our experiments, using
both adaptation and reconstruction consistently improved
the speech recognition results on the noisy lavalier and far
recorded data. Using adaptation prior to reconstruction gave
the best results on data recorded in public environments,
while on the other hand, using reconstruction prior to adap-
tation gave the best results on data recorded in car environ-
ments. We suggested that the result is due to the fundamen-
tal differences in the noise conditions between public and car
environments.

In our previous work [5], adaptation did not significantly
improve the speech recognition results when applied on the
reconstructed features. While this is not the case here, and
the proposed method significantly improved the results on
noisy speech recognition, we believe adaptation and recon-
struction could do better still. In future, we aim to inves-

tigate other methods for using adaptation prior to recon-
struction. For example, with minor changes to the feature
extraction process, it would be possible to approximately
propagate the adapted features to the log-spectral domain.
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